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ABSTRACT

The dense vector representation of vocabulary terms, also
known as word embeddings, have been shown to be highly
effective in many natural language processing tasks. Word
embeddings have recently begun to be studied in a num-
ber of information retrieval (IR) tasks. One of the main
steps in leveraging word embeddings for IR tasks is to esti-
mate the embedding vectors of queries. This is a challenging
task, since queries are not always available during the train-
ing phase of word embedding vectors. Previous work has
considered the average or sum of embedding vectors of all
query terms (AWE) to model the query embedding vectors,
but no theoretical justification has been presented for such a
model. In this paper, we propose a theoretical framework for
estimating query embedding vectors based on the individual
embedding vectors of vocabulary terms. We then provide a
number of different implementations of this framework and
show that the AWE method is a special case of the proposed
framework. We also introduce pseudo query vectors, the
query embedding vectors estimated using pseudo-relevant
documents. We further extrinsically evaluate the proposed
methods using two well-known IR tasks: query expansion
and query classification. The estimated query embedding
vectors are evaluated via query expansion experiments over
three newswire and web TREC collections as well as query
classification experiments over the KDD Cup 2005 test set.
The experiments show that the introduced pseudo query vec-
tors significantly outperform the AWE method.
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1. INTRODUCTION
Computing semantic similarity between vocabulary terms

has been an important issue in natural language process-
ing (NLP) and information retrieval (IR) for many years.
Many approaches, such as latent semantic indexing [10] and
the information content-based method [31], have been pro-
posed to capture semantically similar terms. Recent de-
velopments in distributed semantic representations based
on dense vectors, also called word embeddings, have been
proven to be highly effective in many NLP tasks, such as
word analogy [27] and named-entity recognition [11]. Word
embedding techniques are unsupervised learning algorithms
that assign each term a low-dimensional (compared to the
vocabulary size) vector in a “semantic vector space”. In
this space, the embedding vectors of semantically or syn-
tactically similar terms are designed to be close to each
other. Word2vec [27] and GloVe [29] are examples of success-
ful implementations of word embedding vectors. Word2vec
and GloVe learn the word embedding vectors using neu-
ral network-based language model and matrix factorization
technique, respectively.

Following the impressive results achieved by word embed-
ding techniques in NLP tasks, these techniques have begun
to be studied in IR tasks [28, 35, 39, 40]. However, there
are still several issues that need to be addressed in order to
effectively use word embeddings in many IR tasks. In this
paper, we address one of the main problems in this area: how
to compute the embedding vectors of search queries? This
is a challenging problem, since (1) search queries are not
always available during the training time of embedding vec-
tors, and (2) queries may contain several keywords that do
not co-occur with each other frequently in the corpus, which
makes training the embedding vectors for such queries prob-
lematic. Therefore, previous studies, such as [21, 24, 28, 35,
39], have decided to average or sum the word embedding
vectors of all query terms to generate the query embedding
vector. However, to the best of our knowledge, there has
been no theoretical justification for such a decision.

In this paper, we propose a theoretical framework based
on maximum likelihood estimation to estimate query embed-
ding vectors using the individual embedding vectors of vo-
cabulary terms. This framework which is independent of the
embedding learning algorithms, maximizes the likelihood of
a query language model and the probabilistic distribution
over vocabulary terms computed based on the query embed-
ding vector. The proposed framework consists of two main
components. The first component is the similarity function
that computes the similarity of two given embedding vectors.
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The second component is the query language model. We
develop our framework based on two different and effective
similarity functions: the softmax and the sigmoid transfor-
mations of the cosine similarity. For the softmax function,
we derive a closed-form formula to estimate query embed-
ding vectors. For the sigmoid function which has recently
been introduced to transform embedding similarity scores
[37], a gradient-based approach is proposed to maximize the
defined objective function. Furthermore, we estimate the
query language models (the second component) using maxi-
mum likelihood estimation and a pseudo-relevance feedback
technique.

An interesting outcome of our framework is that when
the similarities of embedding vectors are computed using the
softmax function and the query language model is estimated
using maximum likelihood estimation, the computed query
embedding vector is equivalent to the average or sum of the
embedding vectors for all query terms. Therefore, a theo-
retical justification is introduced for the heuristic method
that has been used in previous work [21, 24, 28, 35, 39] to
estimate query embedding vectors.

We extrinsically evaluate the estimated query embedding
vectors based on different implementations of the proposed
framework using two well-known IR tasks: query expan-
sion and query classification. In the query expansion ex-
periments, we consider three standard TREC collections:
Associated Press (AP), the TREC Robust Track 2004 col-
lection, and the TREC Terabyte Track 2004-2006 collection
(GOV2). In the query classification experiments, we con-
sider the KDD Cup 2005 test set that contains web queries
from real users. Our experiments show that the proposed
pseudo query vectors (estimating query embedding vector
based on pseudo-relevant documents) in general outperform
the methods based on maximum likelihood estimation of
query language models, significantly.

To summarize, the contributions of this paper include
proposing a theoretical framework for estimating query em-
bedding vectors, providing a theoretical justification for a
widely used approach to estimate query embedding vectors
(i.e., AWE), introducing pseudo query vectors that outper-
form the existing AWE method, and evaluating different
query embedding vectors in two IR tasks.

2. RELATED WORK
In this section, we first review previous studies on word

embeddings applied to IR tasks. We further briefly intro-
duce related work on the query expansion and the query
classification tasks.

2.1 Word Embedding for IR
Unlike NLP, where word embeddings have been success-

fully employed in several tasks, word embedding techniques
in IR have only recently begun to be studied. The Fisher
Vector (FV) [8] is a document representation framework
based on continuous word embeddings, that aggregates a
non-linear mapping of word embedding vectors into a docu-
ment-level representation. Although FV was shown to per-
form better than latent semantic indexing (LSI) [10] in ad-
hoc retrieval, it does not outperform popular IR frameworks,
such as the TF-IDF and the divergence from randomness
retrieval models. A number of approaches based on word
embedding vectors have been proposed to improve retrieval
performance. Zheng and Callan [39] proposed a supervised

embedding-based term re-weighting technique applied to the
language modeling and BM25 retrieval models. BWESG
[35], a bilingual word embedding method, has recently been
developed and applied to information retrieval. This model
learns bilingual embedding vectors from document-aligned
comparable corpora. Ganguly et al. [15] considered the
semantic similarities between vocabulary terms to smooth
document language models. Zuccon et al. [40] proposed to
employ word embeddings within the well-known translation
model for IR. Sordoni et al. [33] employed word embedding
techniques for expanding queries in a supervised manner.
They used click-through and task-specific data.

Computing the semantic similarity between documents
has been studied for a number of IR-related tasks. Para-
graph vector [24] is a popular method that trains embed-
ding vectors for phrases, paragraphs, and even documents.
Word mover’s distance (WMD) [22] is an interesting ap-
proach that measures the minimum traveling distance from
the embedded words of one document to another one. This
approach was shown to be effective in document classifica-
tion. Kenter and de Rijke [20] proposed a supervised ap-
proach to compute semantic similarity between short texts.
Training word embedding vectors based on additional data,
like query logs and click-through data, was also studied in
[16, 17, 18], which are out of the scope of this paper. More
recently, Diaz et al. [12] proposed to train word embedding
vectors on topically-constrained corpora, instead of large
topically-unconstrained corpora. These locally-trained em-
bedding vectors were shown to perform well for the query
expansion task.

While query embedding vectors play a key role in a num-
ber of the aforementioned methods, such as [35, 39], they
only considered the average or sum of word embedding vec-
tors of all query terms as the query vector. Therefore, esti-
mating accurate query embedding vectors can improve the
performance of many of the embedding-based methods that
need to compute query vectors. It should be noted that in
a realistic case, queries are not available during the training
time of embedding vectors. This makes training of query
embedding vectors problematic. In this paper, we focus on
estimating embedding vectors for queries based on the em-
bedding vectors of individual terms.

2.2 Query Expansion
Query expansion is the process of adding relevant terms

to a query to improve the retrieval performance. There are
a number of query expansion methods based on linguistic
resources such as WordNet, but they have not substantially
improved the retrieval performance [34]. Although a num-
ber of data-driven query expansion methods, such as [1],
can improve the average retrieval performance, they can be
unstable across queries [9]. Therefore, although query ex-
pansion is not a new technique for improving retrieval effec-
tiveness, it is still a challenging task [7]. As suggested by Xu
and Croft [36], query expansion techniques can use global or
local document analysis. Global analysis often relies on ex-
ternal resources or document collections, such as a similarity
thesaurus [30] and Wikipedia [13]. On the other hand, lo-
cal analysis expands queries using the documents that are
related to them, such as the top-retrieved documents. This
kind of query expansion is called pseudo-relevance feedback
(PRF). PRF has been proven to be highly effective in im-
proving retrieval performance [23, 36, 38].
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2.3 Query Classification
Query classification, also known as query categorization,

has the goal of classifying search queries into a number of
pre-defined categories. Two types of classification have been
studied. In the first, the labels are query types, such as nav-
igational queries, informational queries, and transactional
queries, e.g., [4, 25]. The other task is classifying queries
based on their topics. Early work only considered local in-
formation about queries, i.e., the terms of queries [2, 3].
More recently, a number of methods were proposed to enrich
queries using external information, such as the top-retrieved
documents [14, 32] and query context [6]. Given the impor-
tance of the query classification task in web search, the 2005
ACM Knowledge Discovery and Data Mining competition
(called, KDD Cup 2005) [26] focused on this task: classify-
ing the queries issued by real web users based on query top-
ics. Successful submissions in this competition used search
engines to retrieve relevant documents for enriching initial
queries [26]. The usefulness of the query classification task
for web search has been shown in the literature, e.g., [19].

3. QUERY EMBEDDING VECTORS
Estimating accurate query models is a crucial component

in every retrieval framework. It has been extensively stud-
ied in existing retrieval models and several approaches have
been proposed for estimating query models, especially in
the language modeling framework. On the other hand, while
word embedding techniques have been shown to be highly ef-
fective in capturing semantic similarities in many NLP tasks,
their usefulness in IR tasks is still relatively unstudied. In
this paper, we focus on query representation in the embed-
ding semantic space: how to estimate accurate embedding
vectors for queries? More formally, let E denote a set of
d-dimensional embedding vectors for each vocabulary term
w. Given a query q = {w1, w2, · · · , wk} with the length
of k, the problem is to estimate a d-dimensional vector ~q,
henceforth called query embedding vector, for the query q.

In this section, we propose a probabilistic framework to
estimate query embedding vectors based on maximum like-
lihood estimation. The main idea behind our approach is to
maximize the likelihood of an accurate query language model
and a probabilistic distribution that can be calculated us-
ing the embedding semantic space for each query vector. To
do so, let δ(·, ·) denote a similarity function that computes
the similarity between two embedding vectors. Hence, the
probability of each term w given a query vector ~q, henceforth
called the query embedding distribution, can be calculated as:

p(w|~q) =
δ(~w, ~q)

Z
(1)

where ~w ∈ E denotes the embedding vector of the given
term w. The normalization factor Z can be calculated as
follows:

Z =
∑

w′∈V

δ( ~w′, ~q) (2)

where V denotes the set of all vocabulary terms.1 On the
other hand, assume that there is a query language model
θq for the query q, that shows how much each word con-
tributes to the query. Our claim is that a query embedding

1In this paper, we assume that the embedding vectors of all
query terms are available.

vector ~q∗ is a proper query embedding vector, if the query
embedding distribution (see Equation (1)) is “close to” the
query language model θq. In other words, our purpose is to
find a query embedding vector that maximizes the following
log-likelihood function:

~q∗ = argmax
~q

∑

w∈V

p(w|θq) log p(w|~q) (3)

The high computational complexity of the normalization
factor in calculating the query embedding distribution (see
Equation (2)) makes optimizing the log-likelihood function
expensive. Note that since the normalization factor Z de-
pends on the query embedding vector, it cannot be com-
puted offline. Therefore, similar to many other optimization
problems, we need to relax our objective function. To this
end, we assume that the normalization factor Z in Equa-
tion (1) is equal for all query vectors. Although this sim-
plifying assumption is not true, our observations indicate
that this is not a harmful assumption. To give an intuition
about the validity of this assumption, we consider many
(> 200, 000) random query vectors and calculate the nor-
malization factor Z for all of these query vectors. The mean

and standard deviation for all Z values are (1.7± 0.15)∗10
4

.
The mean value is an order of magnitude larger than the
the standard deviation, and this shows that most of the Z

values are close to the mean value, which indicates that our
assumption is reasonable. It is worth noting that all the
following calculations can be done without this assumption,
but with high computational cost.

Therefore, based on this relaxation, we can re-write our
objective function as follows:

argmax
~q

∑

w∈V

p(w|θq) log δ(~w, ~q) (4)

As shown in Equation (4), our framework consists of two
main components: the query language model θq and the sim-
ilarity function δ. Since the output of δ(~w, ~q) is dependent
on the query vector ~q, the function δ can affect the way that
we can optimize the objective function. In the following sub-
section, we solve this optimization problem for two effective
similarity functions. We further discuss how we calculate
the query language models.

3.1 Similarity Functions
There are several similarity metrics for word embedding

vectors, including the cosine similarity, which have been con-
sidered for NLP tasks, e.g., [11, 27]. In the following, we
describe two different functions to compute the similarity
between embedding vectors. We also explain how our ob-
jective function can be optimized based on these functions.2

3.1.1 Softmax Function

The similarity function δ for computing the similarity be-
tween two embedding vectors can be calculated using the
softmax function as follows:

δ(~w, ~w′) = exp

(

∑d

i=1
~wi

~w′
i

‖~w‖‖ ~w′‖

)

(5)

2These similarity functions are transformations of the cosine
similarity. Since the results obtained by the cosine similarity
(without transformation) are substantially lower than those
achieved by these transformations, for the sake of space, we
do not consider the cosine similarity itself.
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where d denotes the dimension of embedding vectors. With-
out loss of generality, assume that the embedding vectors of
all vocabulary terms are unit vectors, and thus their norms
are equal to 1. Therefore, our objective function (see Equa-
tion (4)) can be re-written as follows:

argmax
~q

∑

w∈V

p(w|θq).

∑d

i=1
~wi~qi

‖~q‖
(6)

To make this objective function even simpler, we add a
constraint to force the query vector be a unit vector. In
other words, we consider the following constraint: ‖q‖ = 1.
Based on this constraint, we obtain the Lagrange function
as follows:

L(~q, λ) =
∑

w∈V

(

p(w|θq)

d
∑

i=1

~wi~qi

)

+ λ

(

1−

d
∑

i=1

(~qi)
2

)

(7)

where λ denotes the Lagrange multiplier. Using the math-
ematical optimization method of Lagrange multipliers, we
compute the first derivatives of the Lagrange function as
follows:

{

∂L
∂~qi

=
∑

w∈V ~wip(w|θQ)− 2λ~qi
∂L
∂λ

= 1−
∑d

i=1
(~qi)

2
(8)

where ~qi denotes the ith element of the query vector ~q. By
setting the above partial derivatives to zero, we can find the
stationary point of our objective function as below:

~qi =

∑

w∈V ~wip(w|θQ)
√

∑d

j=1
(
∑

w∈V ~wip(w|θQ))2
(9)

Therefore, the query embedding vector can be calculated
using the above closed-form formula.

3.1.2 Sigmoid Function

In this subsection, we consider the sigmoid function as
another mapping function for transforming the cosine simi-
larity scores, which was proposed by Zamani and Croft [37].
The similarity function δ can be computed based on the
sigmoid function as follows:

δ(~w, ~w′) =
1

1 + exp

(

−a

(∑
d

i=1
~wi

~w′
i

‖~w‖‖ ~w′‖
− c

)) (10)

where a and c are two free parameters. Similar to the pre-
vious subsection, without loss of generality, we can assume
that embedding vectors of all vocabulary terms are unit vec-
tors. Therefore, the objective function in this case is calcu-
lated as below:

argmax
~q

∑

w∈V

−p(w|θq) log

(

1 + exp (−a(

∑d

i=1
~wi~qi

‖~q‖
− c))

)

(11)
The partial derivative of the above objective function (cal-

led F) with respect to each element of the query embedding
vector is computed as:

∂F

∂~qi
=
∑

w∈V

p(w|θq)

(

a(
~wi

‖~q‖
−

~qi
∑d

j=1
~wj~qj

‖~q‖3
)(1− δ(~w, ~q))

)

(12)
where δ is the sigmoid-based similarity function as shown
in Equation (10). Query embedding vectors can be now

estimated using gradient-based optimization methods. Note
that this objective function is not convex, and thus the initial
value of the query embedding vectors can affect the results.

3.2 Estimating Query Language Model
As described earlier, the query language model is the other

component in our framework to compute the query embed-
ding vectors. Several approaches have been proposed to es-
timate query language models. In this subsection, we intro-
duce two of these methods that have been widely explored
in the language modeling literature.

3.2.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a simple yet
effective approach for estimating query language models.
MLE for a given query q can be calculated by relative counts:

p(w|θq) =
count(w, q)

|q|
(13)

where θq, count(w, q), and |q| denote the unigram query lan-
guage model, the count of term w in the query q, and the
query length, respectively.

3.2.2 Pseudo-Relevance Feedback

Pseudo-relevance feedback (PRF) has been shown to be
highly effective at improving retrieval effectiveness. PRF
in the language modeling framework estimates a query lan-
guage model from a small set of top-retrieved documents.
In PRF, in addition to updating the weights of query terms,
a number of new terms will be added to the query. In this
paper, we consider the relevance model (with the i.i.d. sam-
pling assumption) [23], a state-of-the-art PRF method, to
estimate the query language model as follows:

p(w|θq) ∝
∑

d∈F

p(w|d)
∏

w′∈q

p(w′|d) (14)

where F denotes the set of feedback documents. The prob-
ability of each term in the document (e.g., p(w|d)) can be
computed by smoothing the maximum likelihood estimation
probability. The top m terms with highest probabilities are
usually selected in the feedback language models. We call
the query embedding vectors estimated using the PRF dis-
tributions, pseudo query vectors (PQV).

4. DISCUSSION
Average word embedding (AWE) is a popular method to

estimate query embedding vectors. Although AWE has been
shown to be effective in previous studies, this method of
embedding vector construction was ad-hoc. In this section,
we first show that AWE is a special case of the proposed
framework, and thus there is a theoretical justification for
this very simple approach. We further compare the two
ways of optimizing the defined objective function based on
the softmax and the sigmoid functions, respectively.

4.1 Special Case: Average Word Embedding
AWE, averaging or summing the embedding vectors of all

query terms, has been previously used to construct embed-
ding vectors of queries [21, 24, 28, 35, 39]. In this subsection,
we show that AWE is a special case of the proposed theo-
retical framework.
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Table 1: Statistics of the collections employed in the query expansion experiments.
ID collection queries (title only) #docs doc length #qrels
AP Associated Press 88-89 TREC 1-3 Ad-Hoc Track, topics 51-200 165k 287 15,838

Robust
TREC Disks 4 & 5 minus
Congressional Record

TREC 2004 Robust Track,
topics 301-450 & 601-700

528k 254 17,412

GOV2 2004 crawl of .gov domains
TREC 2004-2006 Terabyte Track,

topics 701-850
25,205k 648 26,917

Assume that we consider the softmax function as the sim-
ilarity function to compute the similarity between two em-
bedding vectors. As shown in Subsection 3.1.1, each ele-
ment of the query embedding vector can be calculated using
Equation (9). In this equation, the denominator is just a
normalization factor to force the embedding vector be a unit
vector. Now, assume that the query language model θq is es-
timated using maximum likelihood estimation, as explained
in Subsection 3.2.1. Therefore, the query embedding vector
is calculated as:

~qi ∝
∑

w∈q

count(w, q)

|q|
. ~wi (15)

where ~qi denotes the ith element of the query vector. In
the above equation, the summation is just over the query
terms, since the count of other terms is equal to zero, and
thus they will not affect the result. The above equation is
equivalent to AWE. To summarize, when the similarity of
embedding vectors is calculated using the softmax function
and the query language model is estimated using maximum
likelihood estimation, the proposed framework will produce
the AWE method.

4.2 Softmax vs. Sigmoid
In this subsection, we discuss the differences between us-

ing the softmax and the sigmoid functions in estimating
query vectors. As calculated above, we come up with a
closed-form formula for query embedding vectors when us-
ing the softmax function. This formula is easy to compute
and very efficient, especially when only a limited number
of terms have non-zero probability in the query language
model θq. In addition, the calculated query vector is the
global optimum solution for the defined objective function.
The method based on the sigmoid function is an iterative
gradient-based method. Since the objective function in this
case is not convex, achieving the global optimum solution is
not guaranteed. It should be noted that the objective func-
tion depends on the similarity function (see Equation (4))
and the local optimum solution of the objective function
based on the sigmoid function might produce a better query
vector compared to the global optimum of the one with the
softmax function.

Furthermore, there are two free parameters involved in
the sigmoid function, which make it more flexible than the
softmax function. We expect that this flexibility leads to
better performance for near-optimal parameter settings.

5. EXPERIMENTS
In this section, we extrinsically evaluate the proposed que-

ry embedding vectors in two well-known IR tasks: query
expansion and query classification. In all experiments, we
employed the word embedding vectors computed using the
GloVe method [29]. The word embedding vectors were ex-
tracted from a 6 billion token collection (Wikipedia 2014

plus Gigawords 5), unless otherwise stated.3 The dimension
of embedding vectors are set to 300 in all experiments, ex-
cept those related to studying the sensitivity of methods to
the embedding dimension. In the experiments related to the
pseudo query vector (PQV) methods (estimating query em-
bedding vectors using pseudo-relevance feedback language
models), the number of feedback documents is set to 10.
For optimization of the sigmoid-based query embedding vec-
tor estimation, we employed the MALLET4 implementation
of the limited-memory BFGS algorithm (LBFGS) [5]. We
used the MLE+Softmax method (AWE) as the initial query
vector for the sigmoid-based methods.

In the following, we first employ query word embeddings
for query expansion. We further consider the constructed
query embedding vectors for the query classification task.

5.1 Evaluation via Query Expansion
In the first set of extrinsic evaluations, we consider query

word embeddings for expanding query models in the lan-
guage modeling framework. In the following, we first briefly
explain how we expand query language models using the
query word embeddings and then introduce our experimen-
tal setup. We afterward report and discuss the results.

5.1.1 Query Expansion Using Query Vectors

In these experiments, we use the language modeling frame-
work. To expand the query language models, we first cal-
culate the probability of each term given the query vector
using Equation 1. We then linearly interpolate this probabil-
ity with the maximum likelihood estimation of the original
query, as follows:

p(w|θ∗q ) = α pmle(w|θq) + (1− α) p(~w|~q) (16)

where α denotes the interpolation coefficient and controls
the weight of the original query language model. We con-
sider the top m terms with highest probabilities in θ∗q as the
expanded query language model.

5.1.2 Experimental Setup

To evaluate the proposed query embedding vectors in the
query expansion task, we used three standard TREC col-
lections: AP (Associated Press 1988-1989), Robust (TREC
Robust Track 2004 collection), and GOV2 (TREC Terabyte
Track 2004-2006 collection). The first two collections con-
tain high-quality news articles and the last one is a large
web collection. We report the statistics of these collections
in Table 1. The titles of topics are considered as queries.
In the experiments, we only considered the queries where
the embedding vectors of all terms are available. Therefore,
146 out of 150, 241 out of 250, and 147 out of 150 queries
were considered for AP, Robust, and GOV2, respectively.

3We consider this corpus, since it is a relatively large corpus
containing formal texts with a diverse vocabulary set.
4http://mallet.cs.umass.edu/
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Table 2: Comparing the proposed query embedding vectors via query expansion. The superscripts 0/1/2 denote that the
improvements over QL/MLE+Softmax/MLE+Sigmoid are statistically significant.

Collection Metric QL
MLE+Softmax

(AWE)
MLE+Sigmoid PQV+Softmax PQV+Sigmoid

AP
MAP 0.2236 0.24700 0.24860 0.2695012 0.2717012

P@5 0.4260 0.44520 0.45070 0.44930 0.454801

P@10 0.4014 0.42600 0.42740 0.42260 0.42330

Robust
MAP 0.2190 0.22990 0.23030 0.2355012 0.2364012

P@5 0.4606 0.47300 0.47140 0.4564 0.4591
P@10 0.3979 0.42370 0.42450 0.40830 0.41410

GOV2
MAP 0.2696 0.2719 0.2727 0.2771012 0.2798012

P@5 0.5592 0.58370 0.58640 0.57550 0.58640

P@10 0.5531 0.56530 0.572101 0.56940 0.572101

The standard INQUERY stopword list was employed in all
experiments, and no stemming was performed.
We considered the KL-divergence retrieval model with the

Dirichlet prior smoothing method. All experiments were
carried out using the Galago toolkit5.

Parameters Setting. In all the experiments, the Dirich-
let prior smoothing parameter µ was set to Galago’s de-
fault value of 1500. In all the experiments (unless otherwise
stated), the parameters α (the linear interpolation coeffi-
cient), m (the number of terms added to each query), and n

(the number of feedback terms considered in the PQV meth-
ods) were set using 2-fold cross-validation over the queries
in each collection. We sweeped the parameter α between
{0.1, . . . , 0.9}. The values of parameters m and n were also
selected from {10, 20, ..., 100}. The sigmoid parameters (i.e.,
a and c in Equation 10) were also set using the same proce-
dure from the [0, 50] and [0.8, 0.9] intervals, respectively.

Evaluation Metrics. Mean Average Precision (MAP) of
the top-ranked 1000 documents and the precision of the top
5 and 10 retrieved documents (P@5 and P@10) are used to
evaluate the retrieval effectiveness. Statistically significant
differences of performances are determined using the two-
tailed paired t-test computed at a 95% confidence level.

5.1.3 Results and Discussion

In this subsection, we first evaluate the proposed query
embedding vectors. We further study the parameters sen-
sitivity of the methods. Finally, we study the sensitivity of
the methods to different word embedding vectors. In our
experiments, we evaluate all combinations of using softmax
vs. sigmoid as similarity function and MLE vs. PRF (PQV)
as the query language model. We compare our results with
those obtained by the standard maximum likelihood esti-
mation of query language models without query expansion
(QL). As explained in Subsection 4.1, the MLE+Softmax
method is equivalent to the AWE method, previously used
in [21, 24, 35]. Since the contribution of this paper is to esti-
mate accurate query embedding vectors, not proposing the
most effective query expansion technique, we do not compare
our methods with a large number of state-of-the-art query
expansion methods. It should be also noted that queries are
not accessible during the training time of word embedding
vectors, which makes training of query embedding vectors
problematic.

The results of the proposed methods are reported in Ta-
ble 2. According to this table, the results achieved by the
embedding-based query expansion methods outperforms QL

5http://www.lemurproject.org/galago.php

in all collections, in terms of MAP. These improvements are
often statistically significant, especially in the newswire col-
lections (AP and Robust). In GOV2, expanding query lan-
guage models using both PQV methods significantly outper-
forms the QL baseline, in terms of MAP. The relative and
absolute MAP improvements in the newswire collections are
higher than those in the GOV2 collection. The reason could
be related to the word embedding vectors that we used in
our experiments. As explained in the beginning of Section 5,
the embedding vectors were extracted from the Wikipedia
and the Gigawords corpora that contain formal texts. At
the end of this subsection, we report the results achieved by
word embedding vectors extracted from other corpora. The
proposed query expansion methods also outperform QL, in
terms of P@5 and P@10, in most cases.

The results achieved by the MLE methods (i.e., MLE+So-
ftmax (AWE) and MLE+Sigmoid) show that MLE+Sigmoid
always outperforms MLE+Softmax in terms of the consid-
ered evaluation metrics (except in terms of P@5 in Robust).
Similar behaviour can be observed by comparing the re-
sults achieved by PQV+Softmax and PQV+Sigmoid, i.e.,
PQV+Sigmoid always outperforms PQV+Softmax in terms
of MAP, P@5 and P@10. It is notable that although the im-
provements of the sigmoid function over the softmax func-
tion are not statistically significant, the sigmoid-based meth-
ods consistently outperform the softmax-based methods, in
terms of all evaluation metrics.

Comparing the results achieved by the PQV methods with
those obtained by the MLE methods highlights substantial
and statistically significant improvements between employ-
ing the aforementioned query language model distributions
(i.e., MLE and PRF) in estimating the query embedding
vectors. In other words, the PQV methods significantly out-
perform the MLE methods in all the collections, in terms
of MAP. However, this is not the case for precision at top-
retrieved documents. The MLE methods are better than the
PQV methods in some cases, in terms of P@5 and/or P@10.
In particular in the Robust collection, the MLE methods
perform well, in terms of P@5 and P@10. These results indi-
cate that using PRF distributions to estimate query embed-
ding vectors can successfully improve the overall retrieval
performance, but sometimes it harms the precision of the
top-ranked documents.

Parameters Sensitivity. To study the sensitivity of the
proposed methods to the free parameters, we set the pa-
rameters m (the number of expansion terms), α (the inter-
polation coefficient in Equation (16)), and n (the number of
feedback terms considered to estimate PQVs) to 50, 0.5, and
10, respectively. In each set of experiments, we sweep one
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Figure 1: Sensitivity of PQV+Softmax and PQV+Sigmoid to the number of expansion terms (m), the interpolation coefficient
(α), and the feedback term count used to estimate query embedding vectors (n), in terms of MAP.

of these parameters and plot the performance of methods,
in terms of MAP. The results are plotted in Figure 1. For
the sake of visualization, we only plot the results of PQV
methods, but MLE methods also behave similarly.

According to Figure 1a, the behaviour of performance
changes with respect to the number of expansion terms (m)
completely depends on the retrieval collection. For instance,
by increasing the number of expansion terms in GOV2, the
performance significantly increases; while in AP, the perfor-
mance drops. In Robust, the performance in general slightly
decreases by increasing the number of expansion terms, but
the performance changes are not significant. The results in-
dicate that in the newswire collections (AP and Robust), a
few top expansion terms are highly relevant to the query;
while in the web collection (GOV2) there are a number of
good expansion terms that are not very close to the esti-
mated query embedding vector, and thus more expansion
terms are needed.

Figure 1b plots the sensitivity of the methods to the pa-
rameter α. According to this plot, the PQV methods behave
similarly in the newswire collections: they achieve their best
performance when α is set to 0.6. This means that the
weight of the generated language model using the estimated
query embedding vectors should be close to the weight of
the original query language model. In contrast, in the GOV2
collection, the PQV methods achieve their best results when
α is equal to 0.8. This means that more weights should be
given to the original query language model. Therefore, qual-
ity of the generated language model using query embedding
vectors in AP and Robust might be higher than in GOV2.

According to Figure 1c, the number of feedback terms
needed to estimate query embedding vectors in the newswire
collections is much lower than those needed in the web col-
lection. This plot again shows that the methods behave
similarly in the newswire collections. All plots in Figure 1
show that the results achieved by the PQV method based
on the sigmoid function in most cases are higher than those
obtained based on the softmax function. These differences
are higher in the GOV2 collection. This shows that while
there is no guarantee to find global optimum solution for
the sigmoid-based methods, they generally outperform the
softmax-based methods.

Sensitivity to the Embedding Vectors. In this set of
experiments, we study the sensitivity of PQV+Sigmoid (the
method with highest MAP values) to the employed embed-

Table 3: Sensitivity of PQV+Sigmoid to the dimension of
embedding vectors in query expansion, in terms of MAP.
The superscripts 1/2/3 denote that the MAP improvements
over the dimensions of 50/100/200 are significant.

Collection
Dimension

50 100 200 300

AP 0.2455 0.26041 0.26481 0.2717123

Robust 0.2305 0.2321 0.235112 0.236412

GOV2 0.2751 0.2762 0.278612 0.279812

Table 4: The corpora used for training the embedding vec-
tors.

ID Corpus #tokens #vocab.

Wiki
Wikipedia 2004
& Gigawords 5

6b 400k

Web 42b Web crawl 42b 1.9m
Web 840b Web crawl 840b 2.2m

ding vectors. We first train embedding vectors with differ-
ent dimensions on the same corpus (Wikipedia 2004 & Giga-
words 5). The achieved MAP values are reported in Table 3.
According to this table, increasing the dimension of embed-
ding vectors improves the retrieval performance. The MAP
differences are statistically significant in many cases. This
shows that the embedding vectors with very dense represen-
tations cannot be optimal for capturing semantic similarities
in the proposed PQV+Sigmoid method.

To analyze the robustness of the proposed methods to the
choices made in training the word embedding vectors, we
consider three different corpora: Wiki, Web 42b, and Web
840b. The statistics of these corpora are reported in Ta-
ble 4.6 The dimension of embedding vectors is set to 300.
The MAP values achieved by employing each of the embed-
ding vectors trained on different corpora are reported in Ta-
ble 5. Note that to have fair comparisons, we only consider
the queries that the embedding vectors of all their query
terms are available in all the embedding vector sets. The
number of queries that are used for evaluation is mentioned
in Table 5. Interestingly, although both web crawl corpora
are much larger than the Wiki corpus, the PQV+Sigmoid
method achieves its best performance in the newswire col-
lections when the embedding vectors are extracted from the

6The embedding vectors are freely available at http://nlp.
stanford.edu/projects/glove/.
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Table 5: Sensitivity of PQV+Sigmoid to the embedding cor-
pus in query expansion, in terms of MAP. The superscripts
1/2/3 denote that the MAP improvements over Wiki/Web
42b/Web 840b are statistically significant.

Collection Wiki Web 42b Web 840b

AP (146 queries) 0.27173 0.2644 0.2602

Robust (240 queries) 0.23652 0.2329 0.2347
GOV2 (146 queries) 0.2788 0.2765 0.2795

Wiki corpus. Conversely, for the GOV2 collection, employ-
ing the embedding vectors trained on the Web 840b corpus
leads to the best performance. The reason is that the con-
tent of documents in the Wiki corpus is more similar to the
news articles, compared to web corpora. Therefore, the type
of documents used for training embedding vectors is an im-
portant factor which should be taken into account.

5.2 Evaluation via Query Classification
In this subsection, we extrinsically evaluate the estimated

query embedding vectors in the query classification task.
The task is to assign each query a number of labels (cate-
gories). Labels are pre-defined and some training data are
available for each label.

To classify each query, we consider a very simple approach
based on query embedding vectors. We first compute the
probability of each category/label given each query q and
then select the top t categories with highest probabilities.
In fact, this method is based on k-nearest neighbors clas-
sification. The probability p(Ci|q) can be easily computed
using the following formula:

p(Ci|q) =
δ( ~Ci, ~q)

∑

j δ(
~Cj , ~q)

∝ δ( ~Ci, ~q) (17)

where Ci denotes the ith category. ~Ci is the centroid vector
of all query embedding vectors with the label of Ci. In the
above equation, we drop the normalization factor, since it is
the same for all categories. For PQV methods, we linearly
interpolate the above probability with those computed using
the MLE methods with the interpolation of α.

5.2.1 Experimental Setup

We consider the dataset that was previously employed to
evaluate the query classification approaches submitted to the
KDD Cup 2005: Internet user search query categorization
[26]. This evaluation set contains 800 web queries that were
issued by real users. These queries were randomly selected
and do not contain junk and non-English words/phrases.
The queries were tagged by three individual human editors.
The KDD Cup 2005 organizers pre-defined 67 categories (la-
bels) and each editor selected up to 5 labels among them for
each query. The embedding vectors of all query terms of 700
out of 800 queries are available in our embedding collection.
We only consider these 700 queries in our evaluations. The
spelling errors in queries are corrected in a pre-processing
phase.

In our evaluations, we consider 5-fold cross-validation over
the queries and the reported results are the average of all
results obtained over the test folds. In each step we have
560 and 140 training and test queries, respectively.

In the experiments related to PQV, we use the Robust col-
lection (see Table 1 for details) to retrieve pseudo-relevant
documents. The retrieval details are exactly similar to what

Table 6: Comparing query embedding vectors via query clas-
sification. The superscripts 1/2 denote that the improve-
ments over MLE+Softmax/MLE+Sigmoid are significant.
The best result for each evaluation metric is marked by *.

t Metric
MLE+
Softmax
(AWE)

MLE+
Sigmoid

PQV+
Softmax

PQV+
Sigmoid

1
F1 0.2675 0.2657 0.280212 0.278412

Prec. 0.5738 0.5700 0.600912* 0.597112

2
F1 0.3617 0.3590 0.374112 0.375212

Prec. 0.4783 0.4747 0.494712 0.496112

3
F1 0.3916 0.3859 0.406912 0.407312

Prec. 0.4106 0.4046 0.426612 0.427112

4
F1 0.3938 0.3930 0.414212 0.414412*

Prec. 0.3589 0.3582 0.377412 0.377712

5
F1 0.3904 0.3892 0.409512 0.408212

Prec. 0.3237 0.3227 0.339512 0.338412

were considered in the query expansion experiments (see
Subsection 5.1.2). In all experiments, stopwords are re-
moved from queries and no stemming was performed. We
employed the INQUERY stopword list.

Parameters Setting. In all experiments unless explic-
itly mentioned, the parameters α (the linear interpolation
coefficient), and n (the number of feedback terms considered
in the PQV methods) were tuned on the training data. We
sweeped the parameter α between {0.1, . . . , 0.9}. The values
of parameter n were also selected from {10, 20, ..., 100}.

Evaluation Metrics. We consider two widely used eval-
uation metrics that were also used in KDD Cup 2005 [26]:
precision and F1-measure. Since the labels assigned by the
three human editors differ in some cases, all the label sets
should be taken into account. We compute these two metrics
in the same way as was used to evaluate the KDD Cup 2005
submissions [26]. Statistically significant differences are de-
termined using the two-tailed paired t-test computed at a
95% confidence level.

5.2.2 Results and Discussion

In this subsection, we first evaluate the proposed query
embedding vectors. We further study the parameters sen-
sitivity of the proposed methods. Finally, we discuss the
results obtained by a number of different word embeddings.
Similar to the query expansion experiments, we consider all
combinations of softmax vs. sigmoid and MLE vs. PQV
for the query classification experiments. As explained ear-
lier, the purpose of this paper is to propose a theoretical
framework for estimating query embedding vectors. Thus,
we want to extrinsically evaluate different query embedding
vectors. Therefore, we do not consider any other baselines.

The results achieved by the proposed methods are re-
ported in Table 6. According to this table, by increasing the
number of labels assigned to each query (i.e., t), the preci-
sion values decrease in all the methods, which is expected.
In other words, assigning only one tag with highest proba-
bility achieves the best precision value. Therefore, as shown
in Table 6, the best precision is achieved by PQV+Softmax
when t = 1. Furthermore, the results indicate that PQV
methods outperform MLE methods in all cases, in terms of
both precision and F1-measure. The F1-measure improve-
ments are always statistically significant. It is an interesting
observation that while the PRF distributions in PQV meth-
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Figure 2: Sensitivity of PQV methods to the feedback term
count used to estimate query embedding vectors (n) and the
interpolation coefficient (α), in terms of F1-measure.

ods are estimated using the Robust collection (a newswire
collection) and the queries in the KDD Cup 2005 dataset
contains general web queries, the pseudo query vectors per-
form better than the MLE estimations.

In all the proposed methods, the best F1-measure value
is achieved when t is equal to 4. The highest F1-measure is
obtained by the PQV+Sigmoid method. Although our ex-
perimental setup differs from those considered by the KDD
Cup 2005 submissions and it is not fair to compare our re-
sults with theirs, the best precision and F1-measure values
achieved by the proposed method are relatively high and this
is a good evidence of the effectiveness of employing word em-
bedding vectors for the query classification task.

Parameters Sensitivity. To study the parameters sen-
sitivity of the proposed PQV methods, we set the number
of categories assigned to each query (i.e., t) to 4, where the
methods achieve their best F1-measure. In this set of exper-
iments, we set n (the number of feedback terms considered
to estimate PQVs) and α (the interpolation coefficient in-
troduced earlier) to 10 and 0.5, respectively. We sweep each
parameter and plot the performance of the PQV methods,
in terms of F1-measure (the MLE methods do not have these
parameters). The results are plotted in Figure 2.

As shown in Figure 2a, by increasing the number of feed-
back terms for estimating query embedding vectors using
PQV, the performance of methods generally decreases. In
other words, the best F1-measure is achieved when n is equal
to 10. Figure 2b demonstrates that the best performance is
achieved when the parameter α is set to 0.4. In fact, when
α = 0 (the probability of each category is just computed
based on the PQV method and it is not interpolated with
the one computed based on MLE), the performance is rela-
tively low. The reason could be related to the characteristics
of the documents that are used to estimate the PRF dis-
tributions (because queries are general web queries, while
documents are news articles). However, when this proba-
bility is linearly interpolated with the probability obtained
based on MLE, the performance increases and the best per-
formance is significantly higher than those obtained by the
MLE methods.
Sensitivity to the Embedding Vectors. In this set

of experiments, we study the sensitivity of PQV+Sigmoid
to the embedding vectors.7 Similar to the query expansion
experiments, we first consider embedding vectors with dif-
ferent dimensions trained on the same corpus (Wikipedia

7For the sake of space, we only consider the method with
the best F1-measure (see Table 6).

Table 7: Sensitivity of PQV+Sigmoid to the dimension of
embedding vectors in query classification. The superscripts
1/2/3 denote that the improvements over the dimension of
50/100/200 are statistically significant.

Method Metric
Dimension

50 100 200 300

PQV+
Sigmoid

F1 0.3541 0.38861 0.412312 0.414412

Prec. 0.3227 0.35411 0.375712 0.377712

Table 8: Sensitivity of PQV+Sigmoid to the embedding cor-
pus in query classification. The superscripts 1/2 denote that
the improvements over Wiki/Web 42b are significant.

Method Metric Wiki Web 42b Web 840b

PQV+
Sigmoid

F1 0.4144 0.42841 0.435912

Prec. 0.3777 0.38461 0.397212

2004 & Gigawords 5). We set the number of categories per
query (t) to 4, where the methods achieve their best F1-
measure. The achieved F1-measure values are reported in
Table 7. According to this table, increasing the dimension
of embedding vectors improves the query classification per-
formance. Similar behaviour can be observed in the query
expansion experiments (see Table 3).

We further evaluate the proposed methods using the em-
bedding vectors trained on different corpora. The details of
these corpora are reported in the query expansion experi-
ments (see Table 4). The results are reported in Table 8.
According to this table, the results achieved by the embed-
ding vectors trained on the largest web corpus are higher
than those achieved by other embedding vectors. The rea-
son is that the queries were issued by web users and the
vectors trained on web collections could provide better se-
mantic representations for this type of queries.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the problem of estimating

dense vector representations for search queries in the embed-
ding semantic space. To this end, we proposed a probabilis-
tic framework to estimate query embedding vectors based on
the individual embedding vectors of vocabulary terms. This
framework consists of two major components: the similarity
function and the query language model. We further devel-
oped our framework using two different similarity functions
(the softmax and the sigmoid transformations of the cosine
similarity) and two well-known query language models (the
maximum likelihood estimation and the pseudo-relevance
feedback). The proposed framework also provides a theoret-
ical justification for the method that has been heuristically
used in previous work: averaging the embedding vectors of
all query terms. We extrinsically evaluated the proposed
query vectors using two well-known IR tasks: query expan-
sion and query classification. Our extensive query expansion
experiments on three newswire and web collections indicate
that employing the sigmoid function can consistently out-
perform the softmax function, although these improvements
are not statistically significant. In addition, the embed-
ding vectors estimated using a pseudo-relevance feedback
model (called pseudo query vectors) in general improve the
other embedding estimations, significantly. This finding was
also verified by the query classification experiments over the
KDD Cup 2005 test set.

Estimating query embedding vectors can open up many
future directions. In this paper, we show that these vectors
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can be simply applied in two well-known IR tasks. Em-
ploying query vectors in other IR tasks can be studied in
future. In addition, we only considered basic query ex-
pansion and query classification methods to compare dif-
ferent query embedding vectors. Developing more complex
embedding-based approaches to improve the state-of-the-art
query expansion and query classification methods is also left
for future work. Furthermore, different developments for the
components of the proposed framework can be studied in fu-
ture. For instance, estimating query language models based
on mutual-information and more complex language models
(bigram, trigram, etc.) can be considered in future studies.
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