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ABSTRACT
�e KL divergence is the most commonly used measure for com-
paring query and document language models in the language mod-
eling framework to ad hoc retrieval. Since KL is rank equivalent
to a speci�c weighted geometric mean, we examine alternative
weighted means for language-model comparison, as well as alter-
native divergence measures. �e study includes analysis of the
inverse document frequency (IDF) e�ect of the language-model
comparison methods. Empirical evaluation, performed with di�er-
ent types of queries (short and verbose) and query-model induction
approaches, shows that there are methods that o�en outperform
the KL divergence in some se�ings.
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1 INTRODUCTION
Comparing a language model induced from the query with that
induced from the document is a standard ranking approach in the
language modeling framework to ad hoc document retrieval [20].
�e Kullback-Leibler (KL) divergence has been the most commonly
used measure for language-model comparison, as it is a natural
choice for comparing probability distributions.

�e KL divergence is rank equivalent to the cross entropy mea-
sure [20] which is in turn rank equivalent to a speci�c weighted geo-
metric mean [19, 20]: that of the probabilities assigned to terms in
the support of the query model1 by the document language model;
the probabilities assigned to these terms by the query language
model serve as weights in the mean. Given the rank equivalence
between the KL divergence and this weighted geometric mean, we
study alternative weighted means for comparing the query and
document language models; namely, the arithmetic and harmonic
means, integrations of these with the geometric mean, and gen-
eralized versions of the means. In addition, we study alternative
divergence measures.

Since using the KL divergence for ranking has an IDF (inverse
document frequency) e�ect, we study this e�ect for the alternative
language-model-comparison methods that we consider. �e IDF
e�ect holds if the impact of a term on the retrieval score becomes
smaller when its corpus frequency increases.
1�e support is the set of terms assigned a non-zero probability by the language model.
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We perform extensive empirical evaluation of the various mea-
sures for comparing query and document language models using
�ve TREC datasets. We vary the types of queries used (short ti-
tles vs. verbose descriptions+titles) and the query-model induction
approach: unsmoothed maximum likelihood estimate (MLE) vs.
pseudo-feedback-based query-model induction; speci�cally, we use
the relevance model [21] and the mixture model [31].

We found that there are measures that can o�en outperform
the KL divergence for certain types of queries and query-model
induction methods. For example, the Power mean [6], which gener-
alizes the harmonic and arithmetic means, and which under certain
conditions converges to the geometric mean, outperforms the KL
divergence when using MLEs induced from short title queries or
pseudo-feedback-based query models. When using MLEs induced
from verbose queries, KL is the best performing.

Our key contributions can be summarized as follows:

• We study various weighted means and divergence mea-
sures for comparing query and document language models;
our study includes analysis of the IDF e�ect.

• We perform an extensive empirical evaluation and demon-
strate that in some se�ings there are measures that o�en
outperform the commonly used KL divergence.

2 RELATEDWORK
Most work on using language models for ad hoc retrieval has fo-
cused on improving the language models induced from the query
and a document rather than on the measure used to compare
them [30]. �ere are studies of using various divergence measures
to compare language models in natural-language-processing tasks;
e.g. [23]. However, we are not aware of such in-depth studies for
the ad hoc retrieval task. In contrast, document-query similarity
estimates were compared in the vector space model [33].

�e use of KL divergence for ad hoc retrieval was formally sup-
ported in [25]. KL was also shown to outperform a document
likelihood approach for relevance-model-based ranking [21]. We
show that there are measures more e�ective than KL for that end.

Axiomatic analysis of retrieval methods in the language model-
ing framework focused on the query likelihood model [14], trans-
lation models [18] and pseudo-feedback-based query models and
their smoothing [9, 15]. For example, term frequency, document
frequency and document length axioms have been devised and
their empirical merits were demonstrated. In contrast, we evaluate
di�erent measures for comparing a query model with a document
model and analyze whether they have an IDF e�ect.

3 COMPARING QUERY AND DOCUMENT
LANGUAGE MODELS

We address the ad hoc retrieval task: ranking documents d in cor-
pus D in response to query q. Let θq and θd denote the unigram
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language models induced from q and d , respectively. Henceforth,
these are referred to as query and document (language) models,
respectively. Various language-model induction methods have been
used in work on ad hoc retrieval [30].

To rank documents in the corpus, the document and query lan-
guage models can be compared [20]. Since the language models
are probability distributions de�ned over the vocabulary, a natu-
ral similarity measure, which is the most commonly used in work
on ad hoc retrieval, is the Kullback-Leibler (KL) divergence. As
higher KL values correspond to decreased similarity, the negative
KL divergence is used:

−KL(θq ,θd )
def
= −

∑
w

p(w |θq ) log
p(w |θq )
p(w |θd )

= H (θq )−CE(θq ,θd ) .

(1)
H (θq )

def
= −∑

w p(w |θq ) logp(w |θq ) is the entropy of the query

language model and CE(θq ,θd )
def
= −∑

w p(w |θq ) logp(w |θd ) is
the cross entropy between the query and document models. (As
is the case for KL, higher values of CE correspond to decreased
similarity.) Hereina�er, summations as that in Eq. 1 are applied
only over terms w for which p(w |θq ) > 0 [21]; i.e., terms in the
support of the query language model. Since the entropy of the
query model does not a�ect ranking, KL and CE are rank equivalent:
KL(θq ,θd )

rank
= CE(θq ,θd ) .

If an unsmoothed maximum likelihood estimate (MLE) is used for
the query language model, then ranking produced using -CE (and
therefore using -KL) is equivalent to that produced using the query
likelihood method [20, 29]. Formally, p(w |θMLE

x ) def= tf(w ∈x )
|x | is

the MLE of term w with respect to the text (or text collection) x
where tf(w ∈ x) is the number of occurrences of w in x ; |x | def=∑
w ∈x tf(w ∈ x) is x ’s length. �en, the following holds:

−CE(θMLE
q ,θd ) =

∑
w

p(w |θMLE
q ) logp(w |θd ) (2)

=
1
|q | log

∏
w

p(w |θd )tf(w ∈q) ;∏
wp(w |θd )tf(w ∈q) is q’s likelihood with respect to d .

3.1 �e IDF E�ect
An important implication of the rank equivalence between (nega-
tive) cross entropy used with a query MLE and the query likelihood
method is the IDF e�ect. �at is, Zhai and La�erty [32] showed
that for query likelihood, the e�ect of query terms on ranking is
inversely related to their corpus frequency. Hence, this IDF (in-
verse document frequency) e�ect also governs ranking using cross
entropy (and KL) with a query MLE.

An interesting question which was somewhat overlooked in past
literature is whether using KL or CE with query models which are
not maximum likelihood estimates results in an IDF e�ect.2 Indeed,
while MLE is the standard choice for inducing a query model using
only the query terms, there are query models with a much broader
support, e.g., pseudo-feedback-based query models [21, 31].

2In contrast, there has been work on the importance of selecting and increasing the
probability in the query language model of terms with high IDF values (e.g., [9, 15]).

We now show that regardless of the query model utilized, using
CE (and hence KL) for ranking results in an IDF e�ect. �e formal
argument is similar to that used to demonstrate the IDF e�ect for
the query likelihood model [32]. We provide the details so as to
later on contrast the IDF e�ect entailed by using KL and CE with
that entailed by using alternative measures studied below.

We assume a standard smoothed unigram document language
model θd . For the two most commonly used smoothing methods
in work on ad hoc retrieval, Dirichlet and Jelinek-Mercer [32], the
document language model is θd

def
= (1 − αd )θMLE

d + αdθ
MLE
D ;

for Dirichlet, αd =
µ
|d |+µ where µ is a parameter; for Jelinek-

Mercer, αd is simply a constant. For w ∈ d we de�ne ps (w |θd )
def
=

p(w |θd ) = (1−αd )p(w |θMLE
d )+αdp(w |θMLE

D ). Forw < d , we de�ne

pu (w |θd )
def
= p(w |θd ) = αdp(w |θMLE

D ); ‘s’ and ‘u’ stand for “seen”
and “unseen”, respectively [32]. �e negative CE is then:

−CE(θq ,θd ) =
∑
w

p(w |θq ) logp(w |θd ) (3a)

=
∑
w ∈d

p(w |θq ) logps (w |θd ) +
∑
w<d

p(w |θq ) logpu (w |θd ) (3b)

=
∑
w ∈d

p(w |θq ) log ps (w |θd )
pu (w |θd )

+
∑
w

p(w |θq ) logpu (w |θd ) (3c)

=
∑
w ∈d

p(w |θq ) log ps (w |θd )
αdp(w |θMLE

D )
+ logαd −CE(θq ,θMLE

D ) (3d)

rank
=

∑
w ∈d

p(w |θq ) log
(
1 + 1 − αd

αd

p(w |θMLE
d )

p(w |θMLE
D )

)
+ logαd (3e)

�e transitions are based on separating groups of indices (Eq. 3b),
ignoring document independent factors for ranking (Eq. 3e) and
using de�nitions and arithmetic manipulations.

�e summation in Eq. 3e is over terms in the query-model sup-
port that appear in d . It constitutes the “document-query match”
which is based on the probability of query terms in the query
(p(w |θq )), document (p(w |θMLE

d )) and corpus (p(w |θMLE
D )) models.

�e la�er yields the “IDF e�ect” as it regularizes the impact of term
occurrence in the document by occurrence in the corpus. Document
length is used as a normalizer in p(w |θMLE

d ). If Dirichlet smoothing
is applied, then αd also (inversely) depends on document length.

3.2 Weighted Means
�e negative cross entropy amounts to (cf. [19, 20]):

−CE(θq ,θd ) =
∑
w

p(w |θq ) logp(w |θd )
rank
=

∏
w

p(w |θd )p(w |θq ) .

�at is, negative CE is rank equivalent to a weighted geometric
mean (henceforth Geo),Geo(θd ;θq ), of the probabilities assigned to
terms in θq ’s support by the document model θd ; the probabilities
assigned by θq serve as weights whose sum is 1.

�e view of (negative) CE as a weighted geometric mean gives
rise to the question, which to the best of our knowledge this paper
is the �rst to explore, of whether using other means to compare
the query and document language models can improve retrieval
e�ectiveness. �ere are numerous weighted means (e.g., [4, 6]). In
what follows we mainly focus on the three classical and most widely
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used means: arithmetic, geometric and harmonic, their integrations
and generalizations. Table 1 presents the weighted means we study.

All these means, as well as the divergence measures we discuss in
Section 3.3, include a “query-document match” component3 which
relies on occurrence of terms from the query model support in
the document; document length normalizes this occurrence since
MLE-based estimates are used. Hence, in addition to discussing
general properties of the means and divergence measures, we study
whether their query-document match component has an IDF ef-
fect. Analyzing more complicated connections between document
length, IDF and term frequency (cf. [14]) is le� for future work.

�e weighted arithmetic mean (Ari) is less “conservative” than
the weighted geometric mean applied by CE; i.e., it is less a�ected
by outliers. Speci�cally, a low probability assigned by a document
model to one of the terms in the query model support incurs higher
penalty in Geo than in Ari. Using manipulations similar to those in
Eq. 3, Ari amounts to:

Ari(θd ;θq )
rank
= (1 − αd )

∑
w ∈d

p(w |θq )p(w |θMLE
d )+

αd
∑
w

p(w |θq )p(w |θMLE
D ) .

�e document-query match (the �rst summation) has no IDF e�ect.
�e weighted harmonic mean (Har), which is more conservative

than Geo, is the third classical mean. Using manipulations similar
to those in Eq. 3, we arrive at:

Har (θd ;θq )
rank
=

( ∑
w ∈d

(αd − 1)p(w |θq )p(w |θMLE
d )

αdps (w |θd )p(w |θMLE
D )

+
1
αd

∑
w

p(w |θq )
p(w |θMLE

D )

)−1
.

�e document-query match (�rst summation) has an IDF e�ect
since αd < 1 and ps (w |θd ) increases with increasing values of cor-
pus frequency. Note that the second summation has an “inverse”
IDF e�ect (i.e., DF e�ect) which can be considered a drawback of
Har: the more frequent a query term in the corpus, the higher the
retrieval score.4 However, if αd is the same for all documents, then
the second summation has no e�ect on ranking, and the entire
retrieval score (used to rank documents) exhibits an IDF e�ect as
was the case for the KL divergence in the transition from Eq. 3d to
Eq. 3e . Indeed, using Jelinek-Mercer smoothing or assuming equal
document lengths in analyzing the IDF e�ect yields a constant αd .
Using the equal document lengths assumption is in line with Fang
and Zhai’s methodology of analyzing the IDF e�ect [13]: assuming
two documents of the same length, the document with more occur-
rences of query terms that are less frequent in the corpus should
receive a higher retrieval score. Accordingly, hereina�er, and as
mentioned above, our analysis of means and divergence measures
will focus on whether the query-document match has an IDF e�ect.

�e next two means integrate the geometric mean employed by
negative CE with the arithmetic mean (GeoAri) and the harmonic
mean (GeoHar). �ese means are computed in iterations that are
guaranteed to converge. In the �rst iteration, i = 1, we initialize
д1 = Geo(θd ;θq ), a1 = Ari(θd ;θq ) and h1 = Har (θd ;θq ). �en, for
3Other components are document-independent or αd ; sometimes, these two interact.
4�is is also the case for the second summation in Ari.

Table 1: Weighted means. β and γ are free parameters.

M M (θd ; θq ) IDF E�ect

Ari
∑
w p(w |θq )p(w |θd ) 7

Har
(∑

w
p(w |θq )
p(w |θd )

)−1
3

GeoAri Integration of Geo(θd ; θq ) and Ari(θd ; θq ) 3

GeoHar Integration of Geo(θd ; θq ) and Har (θd ; θq ) 3

Power
(∑

w p(w |θq )p(w |θd )β
) 1
β β < 1

Lehmer
∑
w p(w |θq )p(w |θd )γ∑
w p(w |θq )p(w |θd )γ −1 0 ≤ γ < 1

GeoAri, in iteration i + 1 we set дi+1 =
√
aiдi and ai+1 = 1

2 (ai +дi )
until дi+1 and ai+1 converge to the same value.5 Similarly, for
GeoHar, we compute дi+1 =

√
hiдi and hi+1 = 2(h−1

i +д
−1
i )
−1 until

convergence.6 Since Geo and Har have the IDF e�ect, and Ari does
not, GeoHar has the e�ect while GeoAri has it to a somewhat limited
extent. �e following inequality holds for the means considered
thus far:

Ari(θd ;θq ) ≥ GeoAri(θd ;θq ) ≥ Geo(θd ;θq )
≥ GeoHar (θd ;θq ) ≥ Har (θd ;θq ) .

�e weighted Power mean is essentially a family of means that
covers a wide range of aggregates bounded by the minimal and max-
imal values aggregated: limβ→−∞ Power (θd ;θq ) = minw p(w |θd )
and limβ→∞ Power (θd ;θq ) = maxw p(w |θd ). For β = 1 and β = −1
Power amounts to the arithmetic and harmonic means, respec-
tively. Furthermore, limβ→0 Power (θd ;θq ) = Geo(θd ;θq ). (Recall
that Geo and negative CE are rank equivalent.) Using a similar
transition to that from Eq. 3b to Eq. 3c it can be shown that the
query-document match component in Power has an IDF e�ect for
β < 1. In Section 4.2 we show that β close to 0 yields the best
retrieval performance which also o�en transcends that of using
Geo (CE).

As additional reference comparison we consider Lehmer, which
is a special case of the Gini family of means [4]. For γ = 1 and
γ = 0, Lehmer amounts to the arithmetic and harmonic means,
respectively. It can be shown that the query-document match com-
ponent in Lehmer has an IDF e�ect for 0 ≤ γ < 1, but not for
1 ≤ γ ≤ 2. �e analysis for γ < 0 and γ > 2 is quite involved and
might require numerical simulation as the query-document match
component and document-independent factor have mutual e�ects.

3.3 Divergence Measures
KL is a measure of the divergence between two probability distri-
butions — query and document language models in our case. We
therefore now turn to examine alternative divergence measures.
�ese measures, presented in Table 2, were used in a variety of tasks,
including term co-occurrence estimation [23], topic-based docu-
ment segmentation [5], story link detection [7], query performance
prediction [3] and static index pruning [8]. We rank documents by
ascending values of the divergence measures.

5дi+1 is the geometric mean of дi and ai , while ai+1 is their arithmetic mean.
6дi+1 is the geometric mean of дi and hi , while hi+1 is their harmonic mean.
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Table 2: Divergence measures. p(w |θ [η]qd )
def
= ηp(w |θq ) + (1 −

η)p(w |θd ); η is a free parameter.

D D(θq, θd ) IDF E�ect

Hellinger
√∑

w
(√
p(w |θq ) −

√
p(w |θd )

)2
3

TotalVariation
∑
w |p(w |θq ) − p(w |θd ) | 7

JensenShannon KL(θq, θ [η]qd ) + KL(θd , θ
[η]
qd ); η =

1
2 3

J KL(θq, θd ) + KL(θd , θq ) 3

ResistorAverage
(
KL(θq, θd )−1 + KL(θd , θq )−1)−1

3

χ 2Neyman
∑
w
(p(w |θq )−p(w |θd ))2

p(w |θd )
3

χ 2Pearson
∑
w
(p(w |θq )−p(w |θd ))2

p(w |θq ) 3

χ 2Symmetric
∑
w
(p(w |θq ))−p(w |θd ))2
p(w |θq )+p(w |θd )

3

Skew KL(θq, θ [η]qd ) 3

Most of the measures we consider are special cases of the f-
divergence [11]7. Given a convex function f de�ned over (0,∞)
such that f (1) = 0, the f-divergence between θq and θd is:∑

w
p(w |θd )f

(
p(w |θq )
p(w |θd )

)
.

Di�erent choices of f result in di�erent divergence measures. For
example, se�ing f (x) = x logx results in the KL divergence, se�ing
f (x) = (1 −

√
x)2 yields the Hellinger divergence, and se�ing

f (x) = |x − 1| results in the TotalVariation distance.
Some of the measures we consider are not metrics as they do

not satisfy at least one of the following properties: non-negativity,
identity of indiscernibles8, symmetry and triangle inequality. KL
divergence, for example, is not a metric since symmetry and triangle
inequality do not hold. TotalVariation, on the other hand, is a metric
satisfying all four properties.

Numerous symmetric versions of the KL divergence were pro-
posed. �ese include JensenShannon [24] (de�ned using the mean
language model of θq and θd ), J [16] and ResistorAverage [17].
�e J divergence is not a metric despite being symmetric since the
triangle inequality does not hold. �e square root of the Jensen-
Shannon divergence is a metric.9

�ree additional instances of the f-divergence are the asymmetric
χ2Neyman [26] and χ2Pearson [27] , where χ2Pearson(θq ,θd ) =
χ2Neyman(θd ,θq ), and their symmetric version χ2Symmetric.
�e functions f in f-divergence that yield these three measures are
f (x) = (x−1)2

x , f (x) = (1 − x)2 and f (x) = (x−1)2
x+1 , respectively.

�e Skew divergence [22, 23] was proposed to address cases
where KL(θx ,θy ) is not de�ned because the support of θx is not a
subset of the support of θy . In our case, KL(θq ,θd ) is de�ned since
smoothed document language models are used.

We next make a few observations about the IDF e�ect in the
query-document match components of the divergence measures. It
can be shown that Hellinger, χ2Neyman, χ2Pearson and χ2Symmetric

7Also know as the Ali-Silvey distance [2].
8For metric D and a pair of models θx and θy , D(θx , θy ) = 0 i� θx = θy .
9�e f functions in f-divergence that yield the J and JensenShannon divergence are
f (x ) = (x − 1) log x and f (x ) = 1

2 log 2
1+x +

1
2 x log 2x

1+x , respectively.

exhibit the IDF e�ect. (More precisely, since we rank by ascend-
ing order of divergence values, the negative divergence measures
exhibit, or not, the IDF e�ect.) In contrast, it is easy to verify that
TotalVariation does not have an IDF e�ect.

For the negative J divergence, the negative KL(θq ,θd ) employs
an IDF e�ect since it is rank equivalent to -CE(θq ,θd ) (see Eq. 1) and
negative CE employs an IDF e�ect as shown in Eq. 3e. To estimate
−KL(θd ,θq ), we use an unsmoothed MLE for the document model
and a query model smoothed via Jelinek-Mercer with the corpus
(with parameterαq ), denoted θsq . (See Section 4.1 for further details.)
Using the fact thatKL(θMLE

d ,θsq ) = −H (θMLE
d )+CE(θMLE

d ,θsq ), and
applying manipulations as in Eq. 3, we get:

−KL(θMLE
d ,θsq )

rank
=

∑
w

p(w |θMLE
d ) log

(
1 +

1 − αq
αq

p(w |θq )
p(w |θMLE

D )
)

+ logαq − KL(θMLE
d ,θMLE

D ) ;

the summation is over w that are in both d and θq ’s support. High
values ofp(w |θMLE

D ) reduce the value of the document-query match
(the summation), and hence there is an IDF e�ect. �is e�ect is
somewhat counter balanced by the fact that documents with models
similar to that of the corpus, i.e., with low KL(θMLE

d ,θMLE
D ), are

rewarded. Overall, since −KL(θq ,θd ) and −KL(θd ,θq ) have an
IDF e�ect in their query-document match components, so does
(negative) J divergence.

Using similar arguments to those used for the J divergence, we
can show that ResistorAverage has an IDF e�ect. Along the same
lines, the KL divergence factors that constitute JensenShannon and
Skew have an IDF e�ect. However, in both measures, higher values
of η make θ [η]qd more similar to θq . �is causes loss of information
about the original di�erences between θq and θd .

4 EMPIRICAL EXPLORATION
Our next goal is studying the retrieval e�ectiveness of using the
di�erent measures discussed above for comparing document and
query language models.

4.1 Experimental Setup
�e �ve datasets used for experiments are speci�ed in Table 3.
AP and ROBUST are small, mostly newswire, collections; GOV2
is a crawl of the .gov domain and CW09B is the Category B of
the ClueWeb09 collection. An additional dataset, CW09BF, was
created for ClueWeb09 Category B by �ltering out from the initial
document ranking documents assigned with a score below 50 by
Waterloo’s spam classi�er [10]. Further details about the initial
ranking are provided below. Unless stated otherwise, topic titles,
which are short, served for queries. In Section 4.2.3 we also present
evaluation when using verbose queries composed of both the title
and description. We applied Krovetz stemming to documents and
queries and removed stopwords on the INQUERY list only from
queries. �e Indri toolkit10 was used for experiments.

We used a two-phase retrieval approach to compare the e�ec-
tiveness of the di�erent measures discussed in Section 3. In the
�rst phase, an initial list of documents is retrieved using KL(θq ,θd ),

10www.lemurproject.org/indri
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Table 3: TREC data used for experiments.

corpus # documents data queries

AP 242,918 Disks 1 − 3 51 − 150
ROBUST 528,155 Disks 4 − 5 (–CR) 301 − 450, 600 − 700
GOV2 25,205,179 GOV2 701 − 850
CW09B 50,220,423 ClueWeb09 Category B 1 − 200CW09BF

where an unsmoothed unigram language model, speci�cally, a max-
imum likelihood estimate (MLE), is used to induce θq as is stan-
dard [20]. In the second phase, M(θd ;θq ) or D(θq ,θd ) is used to re-
rank the 10000 most highly ranked documents in the initial ranking,
where M and D are the weighted mean and divergence measures
presented in Section 3, respectively. We take a re-ranking approach
since applying numerous con�gurations of query expansion upon
large-scale corpora is computationally expensive. For a uniform
experimental se�ing, this approach is used in all cases even if query
expansion is not employed. It is important to note that re-ranking
an initial list of documents was shown to yield similar performance
to ranking the entire corpus for pseudo-feedback query expansion
which we use here, especially for precision-oriented evaluation
metrics [12]. We further note that performance pa�erns similar
to those reported here were also observed in experiments with
re-ranking a shorter list of 1000 documents. (Actual numbers are
omi�ed as they convey no additional insight.)

We use three query-model induction methods in the second
phase. �e �rst utilizes unsmoothed MLE induced from the original
query as was the case in the �rst phase.11 �e additional two
models are relevance model #3 (RM3 [1, 21]) and the mixture model
(MM [31]). For these two models, θq is induced from the top 50
ranked documents in the initial list. �e resultant query language
models are (much) richer than— i.e., their support is much larger
than that of — the one induced using MLE from a short query; these
query models represent expanded queries of the short title query.

�e document model θd is in both phases a Dirichlet-smoothed
unigram language model with the smoothing parameter µ=1000 [32].
Since the document model is smoothed, KL(θq ,θd ) is always well
de�ned (i.e., the support of θq is a subset of the support of θd ). In
contrast, KL(θd ,θq ), which is used in J and ResistorAverage, might
be unde�ned if the support of θd is not a subset of the support of
θq . We took the following two approaches to address this issue: (i)
applied Jelinek-Mercer smoothing [32] with λ = 0.1 to θq , or (ii)
considered only terms that appear in the support of both θq and
θd . �e document model is unsmoothed in both cases, i.e., θMLE

d
is used.12 For the J divergence, the �rst approach was found in
our experiments to be more e�ective for short title queries and is
therefore used in Section 4.2.1, while the second was found to be
more e�ective for longer queries with a larger support and is used
in Sections 4.2.2 and 4.2.3. For ResistorAverage, the �rst approach
resulted in be�er performance in all cases. We note that the �rst
approach entails an IDF e�ect for −KL(θMLE

d ,θq ) (see Section 3.3)
while the second does not.
11Note that the document ranking produced using KL(θq, θd ) in the second phase is
in this case the same as the initial ranking.
12�is is also the case for KL(θd , θ [η]qd ) in JensenShannon. We note that JensenShan-

non is always well de�ned since θq is smoothed with θd in θ [η]qd .

To estimate retrieval e�ectiveness, we use mean average pre-
cision (MAP), precision of the top 5 ranked documents (p@5),
normalized discounted cumulative gain of the top 20 ranked docu-
ments (NDCG20) and reliability of improvement (RI) [28]. RI is the
di�erence between the number of queries whose AP performance
is improved and the number of queries whose AP performance is
hurt compared to the initial ranking divided by the total number
of queries. Ten-fold cross validation is used to set free-parameter
values where MAP serves for optimization in the training phase.
Folds are determined based on query IDs. �e reported perfor-
mance is the average over all queries in a dataset when these serve
for testing. (Each query belongs to a single test fold.) Statistically
signi�cant di�erences of retrieval performance between two meth-
ods are computed over all the queries in a dataset when these serve
for testing. �e two-tailed paired t-test with p ≤ 0.05 is used.

To construct RM3 and MM, the number of terms and the weight
of the original query are set to values in {25, 50} and {0.1, 0.2, . . . . ,
0.9}, respectively. Unsmoothed document language models (MLE)
are used to induce RM3. �e mixture weight of the corpus in MM is
in {0.1, 0.3, 0.5, 0.7, 0.9}. �e values of η (in Skew), β (in Power) and
γ (in Lehmer) are selected from {0.1, 0.2, . . . , 0.9}, {±0.05,±0.15,
±0.25,±0.5,±1,±2,±3,±10}, and {0,±0.05,±0.15,±0.25,±0.5,±1,
± 2,±3,±10}, respectively.

4.2 Experimental Results
4.2.1 Short �eries. Table 4 presents the results of using the

unsmoothed MLE query language model θMLE
q — i.e., only the

terms in the original short query are assigned with a non-zero
probability. We see that in most cases Power is the best perform-
ing measure. Power outperforms KL in 12 out of the 15 relevant
comparisons for the MAP, p@5 and NDCG20 evaluation metrics
(5 datasets × 3 evaluation metrics) and in 5 of these the improve-
ment is statistically signi�cant; Power is outperformed (but not
statistically signi�cantly) by KL in a single case (NDCG20 for RO-
BUST). Power is the only measure among those considered that
is never statistically signi�cantly outperformed by KL. It is also
the only measure with positive RI values across all �ve datasets,
indicating that the number of queries for which average precision
performance is improved compared to the initial ranking (KL) is
higher than the number of queries for which performance is hurt.

Two additional measures outperforming KL in the majority of
the relevant comparisons are GeoHar (in 8 relevant comparisons; 4
are statistically signi�cant) and Lehmer (in 9 relevant comparisons;
5 are statistically signi�cant). All other measures are outperformed
by KL in most relevant comparisons and many of the di�erences
are statistically signi�cant.

�e descending order of the seven weighted means according to
a pairwise comparison of retrieval e�ectiveness13 is Power, Lehmer,
GeoHar, KL (Geo), Har, GeoAri and Ari. �e poor performance
of Ari could be explained by the fact that it has no IDF e�ect as
shown in Section 3.2. Har is worse than Geo potentially due to
being too conservative. GeoAri improves over Ari but not over Geo
while GeoHar improves over both Geo and Har, which a�ests to
the merits of integrating these two means. Power and Lehmer rely

13�e order is determined by counting the number of relevant comparisons (out of the
15) in which a method outperforms another method.
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Table 4: Short title queries. Using unsmoothed MLE to induce query models. Because the KL divergence is used to produce
the initial ranking, its RI is unde�ned. ‘Init’: initial ranking. ‘k’: statistically signi�cant di�erence of retrieval e�ectiveness
(MAP, p@5 and NDCG20) with the KL divergence. �e best result in a column is highlighted.

AP ROBUST GOV2 CW09B CW09BF

MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI

KL (=Init) 21.1 43.6 42.6 − 25.4 48.7 43.9 − 29.2 55.5 44.5 − 17.9 22.7 20.1 − 18.7 34.7 25.8 −
Ari 10.5k 24.6k 24.4k −69.7 6.4k 14.5k 12.7k −83.5 7.0k 9.6k 9.1k −93.2 6.6k 5.8k 6.0k −66.7 7.3k 13.2k 9.7k −67.2
Har 15.5k 39.4k 35.8k −55.6 22.7k 47.1 41.3k −36.5 26.5k 57.0 44.4 −24.3 19.5k 28.6k 23.8k 27.3 19.1 35.5 26.7 8.6
GeoAri 18.0k 41.4 39.1k −35.4 16.0k 37.8k 32.4k −70.7 17.1k 34.5k 27.4k −87.8 10.0k 8.6k 9.2k −66.7 12.4k 23.9k 16.9k −63.1
GeoHar 17.2k 41.0 37.7k −47.5 24.0k 47.7 42.1k −24.1 28.0k 57.2 45.3 −8.1 19.6k 27.6k 23.3k 35.4 19.4 35.9 26.8k 19.7
Power 21.2 45.1 42.6 19.2 25.5 48.9 43.8 5.2 29.2 55.8 44.9k 23.0 19.8k 27.9k 23.6k 37.4 19.2 35.6 26.7k 19.7
Lehmer 20.8 44.2 41.6k −9.1 25.0k 48.8 43.7 −7.6 29.0 55.4 44.7 10.8 19.5k 28.0k 23.4k 31.8 19.4 36.0 26.8k 20.7
Hellinger 17.7k 41.8 39.3k −30.3 14.2k 34.1k 28.9k −73.5 14.3k 29.7k 23.1k −89.2 9.9k 10.8k 10.0k −66.7 11.9k 23.6k 16.3k −65.2
TotalVariation 10.5k 24.6k 24.4k −70.7 6.4k 14.5k 12.7k −83.1 7.0k 9.6k 9.1k −92.6 6.6k 5.8k 6.0k −66.2 7.3k 13.2k 9.7k −67.2
JensenShannon 10.6k 32.3k 28.1k −74.7 8.3k 22.9k 18.9k −80.3 4.3k 10.0k 8.3k −94.6 4.4k 10.1k 7.3k −88.4 3.9k 13.4k 8.3k −85.9
J 19.0k 41.0 40.7k −40.4 23.0k 47.9 42.0k −30.9 28.5 60.4k 46.3 −12.2 17.9 23.9 21.6 5.6 19.4 39.1k 28.4k 2.5
ResistorAverage 14.7k 40.0 36.6k −66.7 15.5k 40.2k 33.7k −74.3 23.1k 56.4 42.6 −51.4 16.8 21.5 19.6 4.0 18.2 37.2 26.7 −4.5
χ 2Neyman 15.5k 39.4k 35.8k −55.6 22.7k 47.1 41.3k −36.5 26.5k 56.9 44.4 −24.3 19.5k 28.6k 23.8k 27.3 19.1 35.5 26.7 8.6
χ 2Pearson 10.6k 25.3k 24.6k −69.7 6.5k 14.9k 13.0k −83.9 7.1k 10.1k 9.4k −92.6 6.6k 6.1k 6.2k −66.2 7.4k 13.5k 9.8k −66.7
χ 2Symmetric 10.7k 26.7k 25.4k −67.7 6.6k 15.3k 13.3k −82.7 7.3k 11.1k 10.2k −92.6 6.8k 6.5k 6.4k −66.7 7.5k 13.9k 10.1k −67.2
Skew 9.1k 22.4k 21.3k −84.8 6.4k 15.7k 13.6k −87.6 3.1k 6.2k 4.5k −95.9 4.1k 8.8k 6.5k −86.4 3.8k 10.7k 7.6k −89.4
Cosine 7.5k 21.8k 19.4k −83.8 10.1k 19.2k 18.1k −89.6 4.1k 13.4k 8.7k −95.9 1.5k 5.6k 3.5k −88.9 1.4k 5.8k 3.1k −88.9

on a free parameter in contrast to the other means — some of which
they generalize as noted in Section 3.2. We further study the e�ect
of β on the retrieval performance of Power in Section 4.2.5.

�e descending order of the ten divergence measures according
to a pairwise performance comparison is KL, χ2Neyman, J, Resis-
torAverage, Hellinger, χ2Symmetric, JensenShannon, χ2Pearson,
TotalVariation and Skew. TotalVariation is low ranked potentially
because it does not have an IDF e�ect. Skew is low ranked (and
to some extent also JensenShannon) potentially due to smoothing
the document model with the query model. KL, χ2Neyman, J and
ResistorAverage are presumably among the top 4 as they all have
an IDF e�ect.

4.2.2 Pseudo-Feedback-Based�ery Models. Table 5 presents
the results of using RM3 and MM as the query language models.
(�e initial ranking was a�ained, as described in Section 4.1, using
an unsmoothed MLE induced from the title queries.) �ese query
language models are much richer than the unsmoothed MLE query
models explored in Section 4.2.1 ; i.e., their support is much larger.
Two measures that stand out are the J divergence and Power. �e
former outperforms KL in 8 relevant comparisons for RM3 and in
13 for MM, while the la�er outperforms KL in 12 relevant compar-
isons for RM3 and 10 for MM; some of these improvements are
statistically signi�cant. Both measures are statistically signi�cantly
outperformed by KL in at most two cases for RM3 and never for
MM. �e RI of both measures is always positive, whereas for the
KL divergence it is positive in all but a single case: MM for CW09B.

Apart from Geo (KL), which is promoted to the second posi-
tion a�er Power, the performance order of the weighted means
remains the same as in Section 4.2.1. �e top 4 divergence mea-
sures in descending order of pairwise comparisons for RM3 are
J, KL, ResistorAverage and χ2Neyman. For MM, χ2Neyman and
ResistorAverage switch places. �ese measures were also the top
4 in Section 4.2.1. �e bo�om 4 measures for both RM3 and MM
are χ2Pearson, JensenShannon, Skew and TotalVariation. �ese
measures also appeared at the bo�om of the list in Section 4.2.1.

4.2.3 Verbose �eries. To further study the e�ect of the query-
model support size on retrieval performance, we repeated the exper-
iment from Section 4.2.1 but now using verbose queries composed
of the topic’s title and description. As a result, the support of the
query model is (much) larger than that used in Section 4.2.1 where
MLE of short title queries is used. �e results are presented in
Table 6. As was the case thus far, the two measures outperforming
the KL divergence are the J divergence and Power. However, unlike
the case in Sections 4.2.1 and 4.2.2, both measures are outperformed
by KL in at least the same number of relevant comparisons in which
they outperform it. Most performance di�erences between these
measures and KL are not statistically signi�cant. �e performance-
based ordering of the weighted means is as in Section 4.2.1, except
that now Geo (KL) is promoted to the �rst rank. �e top 4 diver-
gence measures are KL, J, ResistorAverage and Hellinger, while the
bo�om 4 are JensenShannon, Skew, χ2Pearson and TotalVariation
as was the case in Sections 4.2.1 and 4.2.2.

4.2.4 Power vs. J divergence. We saw that Power is the most
e�ective weighted mean while J is the most e�ective divergence
measure among the alternatives we considered. Table 7 contrasts
their performance for: MLE query models induced from short (title)
or verbose (title+description) queries, and pseudo-feedback-based
query models (RM3 or MM). Evidently, Power is more e�ective
than J for short title queries and for RM3, while the reverse holds
for verbose queries and MM.

4.2.5 Further Analysis. We showed that Power o�en outper-
forms KL for query models induced from short titles using un-
smoothed MLE and those induced using pseudo feedback. In Fig-
ure 1 we study the e�ect of β on the MAP performance of Power.
Short title queries and the MLE query model are used. We note
that similar trends were also observed for RM3, MM and verbose
queries. �ese results are omi�ed due to space considerations and
as they convey no further insight. We see that the performance
of Power is the highest for values of β close to 0. (Recall from
Section 3.2 that Power converges to Geo as β approaches zero and
that it has an IDF e�ect for β < 1.) A case in point, we found that
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Table 5: Using RM3 and MM to induce query models. ‘Init’: initial ranking. ‘i’ and ‘k’ mark statistically signi�cant di�erences
of retrieval e�ectiveness (MAP, p@5 and NDCG20) with Init and KL divergence, respectively. �e best result in a column per
query model is highlighted.

AP ROBUST GOV2 CW09B CW09BF

MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI

Init 21.1 43.6 42.6 − 25.4 48.7 43.9 − 29.2 55.5 44.5 − 17.9 22.7 20.1 − 18.7 34.7 25.8 −

RM3

KL 27.1i 48.7i 46.5i 43.4 28.8i 48.8 44.6 23.7 32.8i 58.0 47.3i 43.9 19.0i 26.1i 22.5i 11.6 19.9i 37.2 27.1i 13.6
Ari 11.0ik 27.5ik 26.1ik −64.6 6.4ik 14.6ik 13.1ik −84.3 8.2ik 15.7ik 13.7ik −91.9 6.6ik 5.7ik 6.1ik −63.1 7.9ik 15.3ik 11.3ik −63.1
Har 17.8ik 40.8k 40.0k −41.4 22.3ik 47.2 40.6ik −37.3 23.8ik 53.5k 42.3k −47.3 14.0ik 28.0i 19.8k −28.8 14.9ik 32.2k 22.3ik −43.4
GeoAri 24.1ik 45.1k 45.0k 20.2 24.0ik 45.1ik 41.1ik −24.9 25.7ik 50.3ik 40.6ik −35.1 12.3ik 14.4ik 13.6ik −48.5 14.8ik 30.8ik 20.5ik −42.4
GeoHar 18.7ik 41.0k 41.0k −26.3 23.9ik 47.6 42.3ik −28.1 26.0ik 54.1k 43.6k −32.4 15.7ik 29.0i 20.9 −21.2 16.7ik 34.8 24.2k −25.3
Power 26.8ik 48.9i 46.5i 42.4 28.9i 49.3 44.7 24.1 33.2ik 58.8 47.5i 39.9 19.4i 28.3ik 23.3ik 21.2 19.9i 37.4 27.2i 6.6
Lehmer 24.4ik 46.5 46.0i 32.3 26.4ik 49.0 43.9 2.4 30.2k 57.2 46.0 10.1 17.9k 22.9k 20.8k −5.1 19.0k 35.8 26.1k −3.0
Hellinger 25.1ik 47.1 46.0i 22.2 22.8ik 46.1ik 40.8ik −24.9 23.8ik 54.1k 42.0k −39.2 15.5ik 27.0i 20.1k −35.9 16.7ik 36.2 24.5k −28.8
TotalVariation 13.8ik 43.2k 36.6ik −60.6 11.3ik 33.8ik 26.3ik −82.7 11.7ik 41.1ik 30.3ik −86.5 7.7ik 19.2k 13.2ik −78.8 8.8ik 26.3ik 16.7ik −76.3
JensenShannon 18.3ik 43.6 40.2k −34.3 13.9ik 36.5ik 30.6ik −75.9 12.7ik 41.8ik 31.0ik −85.1 9.8ik 23.5 16.1ik −71.7 10.1ik 26.8ik 17.6ik −69.7
J 26.3ik 47.7 46.5i 42.4 28.1ik 50.4k 45.2i 29.7 33.2ik 60.7ik 48.6ik 40.5 18.7 27.0i 21.8i 13.6 19.9i 39.9ik 27.4i 8.1
ResistorAverage 23.5ik 47.5 45.1 10.1 22.0ik 44.8ik 40.0ik −41.4 26.6ik 58.0 44.5k −29.7 18.5 28.3i 21.9i 9.1 19.1 40.0i 26.7 6.1
χ 2Neyman 19.3ik 41.8k 40.9k −16.2 23.5ik 47.6 41.8ik −30.5 26.0ik 56.1 44.1k −35.1 18.7 29.0i 23.2i 13.6 18.6k 35.5 26.4 −7.6
χ 2Pearson 19.4k 44.4k 42.1k −14.1 15.9ik 39.4ik 33.2ik −64.3 15.5ik 46.2ik 34.3ik −74.3 9.7ik 21.9k 15.7ik −72.7 11.1ik 30.6k 19.6ik −69.7
χ 2Symmetric 21.2k 45.5 43.5k 0.0 16.8ik 40.6ik 33.9ik −60.6 17.4ik 47.4ik 35.4ik −67.6 11.7ik 23.6 17.5ik −58.1 12.8ik 32.9k 21.2ik −60.6
Skew 17.4ik 42.4k 39.3k −42.4 14.1ik 35.3ik 30.0ik −75.5 12.3ik 41.1ik 29.8ik −87.8 9.1ik 21.4k 14.3ik −76.3 9.7ik 25.2ik 16.8ik −72.2

MM

KL 27.8i 50.1i 46.9i 22.2 27.1i 47.5 43.2 24.1 32.1i 58.0 45.4 31.1 18.9 24.8 21.8 −5.1 20.4i 38.7i 27.4 10.6
Ari 18.7k 38.0k 36.6ik −24.2 10.8ik 22.0ik 19.9ik −68.7 10.7ik 21.1ik 16.5ik −89.2 6.8ik 5.4ik 6.2ik −65.7 8.0ik 14.7ik 11.9ik −76.3
Har 19.4k 44.8k 41.0k −23.2 22.5ik 46.4i 40.5ik −32.5 24.9ik 54.7 42.1k −44.6 13.5ik 26.0 18.1k −42.9 16.0ik 34.4k 24.0k −33.3
GeoAri 25.2ik 49.1i 45.5 16.2 22.8ik 42.7ik 39.3ik −28.5 24.8ik 47.4ik 39.0ik −33.8 12.4ik 13.0ik 13.7ik −53.5 15.4ik 31.7k 21.9ik −36.9
GeoHar 22.1k 43.8k 41.4k −11.1 23.6ik 47.2 41.8i −30.1 26.9ik 56.6 43.7 −20.9 15.6ik 27.3i 19.9 −27.3 17.6k 36.6 25.4k −18.7
Power 27.9i 49.3i 46.7i 20.2 27.3i 47.6 43.5 24.9 32.1i 58.1 45.6 27.0 20.1ik 29.9ik 24.1ik 27.8 20.3i 38.6i 27.7i 17.2
Lehmer 27.6i 49.9i 46.9i 22.2 26.0k 45.8i 42.5 8.8 30.1k 57.3 46.4 21.6 17.8k 23.3 20.3k −21.2 19.5k 38.8i 26.9 −6.6
Hellinger 26.4ik 47.3 46.4 22.2 20.3ik 40.5ik 36.2ik −24.1 23.2ik 50.7k 37.8ik −40.5 15.6ik 24.0 19.4k −40.9 17.0ik 37.4 24.2k −34.3
TotalVariation 22.1k 45.1k 43.2k 0.0 14.2ik 33.3ik 28.1ik −54.2 15.2ik 38.4ik 28.0ik −79.7 7.5ik 12.0ik 11.0ik −78.8 10.0ik 24.5ik 17.3ik −69.2
JensenShannon 24.5ik 46.7 44.5 14.1 16.9ik 34.7ik 31.3ik −47.8 13.2ik 32.4ik 25.0ik −86.5 10.2ik 21.4 14.9ik −74.7 10.7ik 25.6ik 16.8ik −72.2
J 28.2ik 49.7i 47.3i 21.2 27.3i 48.5k 43.8k 24.9 32.2i 58.2 46.5k 39.2 19.2i 26.1i 21.8i 12.6 20.8i 41.8ik 29.0ik 27.8
ResistorAverage 25.1ik 47.3 45.3 8.1 20.7ik 42.7ik 38.7ik −32.5 26.9ik 54.7 42.5k −20.3 18.4 23.3 21.0 8.1 19.6 38.8 26.6 −1.0
χ 2Neyman 21.6k 46.5 43.4k −6.1 22.8ik 44.7ik 40.3ik −31.3 26.3ik 56.2 44.3 −27.0 18.5 29.5ik 23.0i 4.0 18.7k 36.9 26.1 −8.1
χ 2Pearson 22.9k 46.3k 43.5k 4.0 14.6ik 33.7ik 28.5ik −51.0 15.8ik 40.7ik 29.2ik −71.6 10.5ik 22.9 16.7ik −64.6 11.6ik 33.4k 20.6ik −58.1
χ 2Symmetric 24.0k 47.5 45.0 8.1 15.2ik 33.6ik 29.1ik −45.4 16.6ik 43.0ik 31.1ik −70.3 12.3ik 23.5 17.8k −55.6 13.1ik 34.4k 21.7ik −48.0
Skew 23.8k 46.7 43.7k 14.1 16.8ik 32.6ik 29.1ik −47.8 14.2ik 33.5ik 25.6ik −86.5 9.5ik 18.2ik 13.3ik −78.8 11.0ik 26.0ik 17.3ik −73.7

Table 6: Verbose (title+description) queries. Using unsmoothed MLE to induce query models. Because the KL divergence is
used to produce the initial ranking, its RI is unde�ned. ‘Init’: initial ranking. ‘k’: statistically signi�cant di�erence of retrieval
e�ectiveness (MAP, p@5 and NDCG20) with the KL divergence. �e best result in a column is highlighted.

AP ROBUST GOV2 CW09B CW09BF

MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI MAP p@5 NDCG20 RI

KL (=Init) 23.8 49.1 46.0 − 28.4 54.8 47.3 − 30.0 61.4 47.1 − 18.1 29.2 24.2 − 18.1 36.1 26.6 −
Ari 9.8k 29.3k 26.6k −77.8 5.6k 13.3k 12.5k −93.6 7.2k 10.9k 9.8k −91.9 4.8k 3.1k 4.2k −63.1 6.2k 12.0k 8.7k −50.0
Har 10.2k 25.5k 24.2k −87.9 17.6k 36.9k 32.0k −82.7 15.5k 45.5k 31.9k −78.4 9.2k 19.3k 14.4k −66.7 8.8k 20.4k 14.1k −74.2
GeoAri 17.3k 43.0k 40.4k −57.6 14.8k 35.9k 29.7k −82.3 16.5k 33.5k 27.3k −83.8 8.6k 7.3k 8.6k −51.0 12.0k 25.2k 17.7k −30.8
GeoHar 15.3k 33.5k 32.2k −75.8 22.1k 42.2k 37.9k −69.9 20.0k 51.1k 36.7k −71.6 12.0k 24.1k 17.9k −59.6 11.4k 25.1k 17.9k −66.2
Power 23.8 48.7 46.7k 9.1 28.0k 53.9 47.2 −6.0 29.9 60.1 47.0 11.5 17.2k 29.1 23.3k −35.4 17.8 37.0 26.5 20.7
Lehmer 23.2k 48.1 45.4 −13.1 27.0k 51.4k 45.2k −34.1 27.3k 57.8k 44.6k −49.3 15.1k 24.2k 20.5k −51.0 15.8k 32.5k 24.0k −44.4
Hellinger 18.1k 45.1 42.5k −43.4 16.6k 39.4k 32.7k −71.1 16.7k 33.9k 28.4k −85.1 11.5k 18.7k 15.0k −42.9 13.1k 30.6k 20.8k −30.8
TotalVariation 7.9k 25.1k 23.3k −73.7 5.0k 12.9k 11.5k −92.8 6.5k 10.4k 8.7k −95.9 3.6k 3.0k 3.3k −70.2 4.5k 9.3k 6.5k −67.2
JensenShannon 9.7k 34.5k 30.2k −83.8 9.0k 26.9k 22.0k −88.0 4.5k 13.2k 10.4k −97.3 4.3k 12.1k 8.5k −78.3 3.8k 13.7k 8.9k −75.8
J 23.8 49.7 46.0 −11.1 28.4 54.5 47.3 −3.2 29.8k 59.6k 47.0 −29.7 18.3k 30.4 24.3 10.1 18.1 36.3 26.4 −3.5
ResistorAverage 12.7k 42.0k 36.2k −83.8 13.3k 35.8k 30.1k −86.7 19.9k 53.5k 39.6k −68.9 15.8k 26.8 22.3 −10.1 16.3k 36.1 25.5 −10.6
χ 2Neyman 12.1k 30.9k 28.0k −85.9 19.1k 39.2k 34.7k −78.7 17.8k 49.3k 35.2k −75.7 10.9k 22.2k 16.7k −60.6 10.4k 23.4k 16.9k −68.2
χ 2Pearson 8.2k 26.9k 24.7k −74.7 5.3k 14.1k 12.4k −92.0 6.8k 10.8k 9.9k −95.3 4.0k 4.8k 4.2k −67.2 5.1k 10.8k 8.1k −62.1
χ 2Symmetric 8.8k 29.5k 26.4k −75.8 5.8k 16.1k 13.6k −92.8 7.3k 12.7k 11.5k −94.6 4.7k 6.8k 5.5k −64.1 5.9k 13.9k 9.9k −58.1
Skew 8.3k 29.3k 24.6k −85.9 6.9k 20.0k 16.7k −88.8 3.4k 8.9k 6.4k −97.3 4.0k 10.5k 7.5k −77.3 3.6k 11.6k 8.0k −74.7

for β = −0.05 Power outperforms KL in terms of MAP for all �ve
datasets. �e performance for β = −1 (which amounts to Har),
β = 1 (Ari) and especially for β = 2 (weighted quadratic mean) and

β = 3 (weighted cubic mean) is o�en much lower than that a�ained
for β = −0.05. �e highest improvement over KL is a�ained for
CW09B, the noisiest Web collection among those considered.
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Figure 1: �e e�ect of β on the MAP performance of Power. Short title queries and the MLE query model are used.

Table 7: Power vs. J divergence. �enumber of relevant com-
parisons out of 15 (5 datasets × 3 evaluation measures: MAP,
p@5 and NDCG20) in which the method in the row (statisti-
cally signi�cantly) outperforms the method in the column.

Short �ery MLE RM3 MM Verbose �ery MLE

KL Power J KL Power J KL Power J KL Power J

KL 0 (0) 1 (0) 7 (4) 0 (0) 1 (1) 5 (2) 0 (0) 4 (0) 1 (0) 0 (0) 12 (3) 5 (2)
Power 12 (5) 0 (0) 10 (6) 12 (3) 0 (0) 6 (4) 10 (3) 0 (0) 3 (3) 2 (1) 0 (0) 5 (1)
J 7 (3) 5 (1) 0 (0) 8 (5) 6 (2) 0 (0) 13 (6) 11 (4) 0 (0) 5 (1) 8 (3) 0 (0)

5 CONCLUSIONS
Motivated by the fact that comparing query and document lan-
guage models using the KL divergence is rank equivalent to using a
speci�c weighted geometric mean, we studied alternative weighted
means as well as divergence measures; speci�cally, we analyzed the
inverse document frequency (IDF) e�ect of the methods. Empirical
evaluation showed that KL can be o�en outperformed in several
se�ings by some alternatives.
Acknowledgments We thank the reviewers for their helpful com-
ments. �is paper is based upon work supported in part by the
Israel Science Foundation under grant no. 433/12.
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