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ABSTRACT
We present a flexible new optimization framework for find-
ing effective, reliable pseudo-relevance feedback models that
unifies existing complementary approaches in a principled
way. The result is an algorithmic approach that not only
brings together different benefits of previous methods, such
as parameter self-tuning and risk reduction from term de-
pendency modeling, but also allows a rich new space of
model search strategies to be investigated. We compare the
effectiveness of a unified algorithm to existing methods by
examining iterative performance and risk-reward tradeoffs.
We also discuss extensions for generating new algorithms
within our framework.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Retrieval]: Retrieval Models
General Terms: Algorithms, Experimentation
Keywords: Query expansion, optimization

1 Introduction
A relatively new advance in IR is the development of risk-
aware algorithms that not only attempt to perform well on
average across queries, but which seek to dynamically adjust
their behavior from query to query to reduce their variance
or instability – especially to avoid serious errors. As one
example of such a task, it is well known that the effective-
ness of pseudo-relevance feedback can be highly sensitive to
a number of parameters, such as the number of terms, or
number of top-ranked documents chosen. Thus, robust al-
gorithms seek to reduce instability by finding reliable values
for these parameters automatically, removing the need to
commit to a single operational setting for all queries.

In one example, Collins-Thompson [4] introduced a novel
view of query expansion as a portfolio optimization problem,
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resulting in a constrained quadratic program (which we call
the CT algorithm) that finds a reliable, effective set of feed-
back terms by combining term covariance information with a
set of task-specific constraints that prune out bad expansion
models. Their approach operates as a post-process on a set
of candidate terms and assumes little about the underlying
retrieval model. It operates only in the space of expansion
terms and and may return the empty set of expansion terms
if expansion is deemed too risky for a particular query.

On the other hand, Tao and Zhai [20] introduced a robust
pseudo-relevance model (which we call the TZ algorithm)
based on the language modeling approach that jointly solves
for both term and document weights. Unlike the CT algo-
rithm, it includes document weights in the model, but does
not model term dependencies or have the ability to prune
a sparse subset of expansion terms. While the CT objec-
tive is convex and uses ‘hard’ constraints, the TZ algorithm
uses a non-convex likelihood objective, finding local maxima
with regularized EM, with a soft, successively relaxed initial
penalty on models far from the initial query.

In this work we unify these two seemingly unrelated ap-
proaches in a principled way to produce a pseudo-relevance
feedback algorithm that jointly determines both the optimal
term subset and the optimal document subset to use for a
given query, while also allowing a rich set of new potential
constraints and improved objective structure, so that term
and document dependencies, sparsity, and so on, is easily
added. Our evaluation includes standard evaluation met-
rics, iterative analysis, and a parameter space visualization
computed on a high-performance computing cluster show-
ing regimes of mean and variance of performance attained
across parameter sweeps.

Making progress on the robust pseudo-relevance feedback
problem is important not only for potentially improved re-
sult quality, but also because increasingly available context
data in Web search engines need a principled framework for
exploiting them to model the underlying information need.
In addition, improving a query representation has other ap-
plications, such as broad matching of search advertisements
with web pages. Finally, pseudo-relevance feedback can be
seen as an instance of a broader feature selection problem
under uncertainty, so better techniques for pseudo-relevance
feedback may lead to better, more generally applicable fea-
ture selection methods in other areas of information retrieval
or machine learning that must deal with limited, noisy train-
ing examples and uncertainty in parameter estimation.
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2 Optimization framework
We derive our optimization model in three steps. First, we
describe a generative model introduced by Tao and Zhai
that conditions queries and documents on latent variables.
Second, we give some background on the TZ algorithm for
estimating the parameters of the model using EM and a
regularized maximum likelihood objective. Third, we show
how to merge the non-convex likelihood of the Tao-Zhai
(TZ) algorithm with the convex risk-reward optimization of
the Collins-Thompson (CT) algorithm in a principled way
by invoking a general optimization family called a Convex-
Concave (CCCP) program. Finally, we discuss how our
CCCP analysis gives an easy way to generate new algorithms
that fix limitations of the TZ algorithm while also allowing
new domain-specific constraints and objectives. The overall
result is an extremely flexible optimization framework for
constructing effective searches for high-quality query repre-
sentations that can account for problem structure.

2.1 A basic generative model of queries and
documents

Generate-Random-Document(L, α; θT , θB)
1 c← Zeros(1, K) // observed rv
2 z ← Zeros(1, K) // latent rv
3 for j ← 1 to L
4 do f ← Flip-Heads-Biased-Coin(α)
5 if f is HEADS
6 then w ← Roll-Biased-Die(θT )
7 z[w]← z[w] + 1
8 else w ← Roll-Biased-Die(θB)
9 c[w]← c[w] + 1

10 return c

Figure 1: The Tao-Zhai (TZ) generative procedure for a sin-
gle document in the feedback set. This model posits docu-
ments are a two-part mixture of multinomials (on a per-word
basis). L denotes the length of the document, i.e., number
of multinomial samplings, and α its relevant/nonrelevant
mixture. Documents are assumed independent, given the
parameters.

αd

zdw

cdw

θTθB

θq

w ∈ {1, .., Ld}
d ∈ {1, .., n}

Figure 2: Graphical model depiction of (above) generative
procedure (for n documents). Nodes are random variables,
with shaded nodes being observed (user’s query θq, fixed
corpus background model θB , word counts cdw). Plates in-
dicate conditionally independent replications.

Tao & Zhai [20] introduced the simple generative model

Cdw Multinomial random variable indicating number
of occurrences of term w in doc d and instantiated
as cdw (lower case). The complete matrix is C.

Zdw Binomial random variable indicating term w of
doc d is relevant to query and instantiated as zdw

(lower case). The complete matrix is Z.
θT Parameters for K-dimensional topic model T (im-

plicitly dependent on q) which correspond to C.
αd Document relevance parameters (F -dimensional)

which correspond to Zd.
Fk(q) Top-k feedback documents associated with q from

corpus C, Fk(q) ⊆ C; F for brevity.
V Vocabulary; with a slight abuse in notation, words

are assumed to have values in V = {1, 2, . . . , V }.
θq Multinomial parameters for query q, i.e. θqw =

cqw/
∑

w cqw.
θB Multinomial parameters for background model B,

ie, θBw =
∑

d∈C cdw/
∑

d∈C
∑

w cqw.
Δ Vector of parameters, typically Δ = [α θT ].
μ Effective sampling size for query, i.e. θT ∼ Dir(1+

μθq).

Figure 3: Guide to notation used in this paper.

and optimization algorithm for pseudo-relevance feedback1

shown in Figures 1 and 2, in which feedback documents
Fk(q) are generated from a mixture of two multinomial lan-
guage models: a background model θB and a ‘relevant topic’
model θT . We assume these models use a vocabulary V of
dimension K. The TZ model assumes that the topic model
θT has a fixed Dirichlet prior, Dir(1 + μθq). One distinctive
feature of their model is that it jointly optimizes both query
and document weights simultaneously: the feedback docu-
ments are endowed with ‘relevance’ weights αd which are to
be learned jointly with the word probabilities of θT .

From this assumed generative algorithm, we note that the
complete-data log-likelihood (for a single document) is

log Pr(cd, zd|Δ) =
V∑

w=1

[
zdw log

(
θTwαd

)
+(cdw − zdw) log

(
θBw(1− αd)

)]
(1)

with model prior,

log Pr(Δ|μ, θq) ∝ log Pr(θT |μ, θq) = μ
V∑

w=1

θqw log θTw. (2)

where we have disregarded all normalization terms as they
are constant in Δ.

We note the similarity of this model to LDA, viz., a two
topic LDA with one topic held fixed, and non-informative
or constant priors. Since this is a two-topic model, the con-
ditional Pr(zdw|cdw, Δ) is binomial, leaving the incomplete-
data log-likelihood as a multinomial with parameters αθT +
(1−α)θB . Learning this model is made difficult by the fact
that this log-sum is not linear.

1Our notation mostly follows that used in Tao & Zhai, with
some extensions. Omitting the subscript indicates the ma-
trix/vector, as opposed to the specific element, e.g. α is a
vector of αi and [θB ]w = θBw. Also, the value of a variable,

e.g. α, after k iterations is denoted by α(k).
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Several approaches exist to cope with this problem. Tao
& Zhai employ standard EM manipulations which yield the
following two-step iterative procedure:
E-step:

z
(k)
dw ← cdw

α
(k)
d θ

(k)
Tw

θ
(k)
Twα

(k)
d + θ

(k)
Bw(1− α

(k)
d )

(3)

M-step:

α
(k+1)
d ←

∑V
j=1 z

(k)
dj∑V

j=1 cdj

(4)

θ
(k+1)
Tw ← 1

λ

(
μθqw +

n∑
i=1

z
(k)
iw

)
(5)

with Lagrangian λ the appropriate normalization of θ
(k+1)
Tw .

Typically the E- and M-steps are repeated until conver-
gence, however TZ deviate from this practice by imposing
a schedule of decay on parameter μ, i.e., μ ← μδk where
δ ∈ (0, 1). Convergence is heuristically defined by the cross-
over point between the current value of μ and the expected
number of relevant words in the feedback set using the model
at iteration k. By forcing the training procedure to pursue
only the most significant parameter updates, this approach
is intended to cope with high term variance without incur-
ring additional modeling overhead. It plays a role somewhat
analogous to a prior and helps to prevent overfitting.

However, this approach lacks a certain flexibility. The
ability to access fine control over the query prior is inextrica-
bly coupled to the rate of convergence of the EM algorithm.
This convergence is in turn tied to complicated term-term
covariances and document length variability. By reformulat-
ing the updates in such a way that accounts for the rate of
change in updates, we obtain both a clearer interpretation
of μ as well as finer control across iterations and within (by
accounting for parameter covariation).

2.2 Rewriting the TZ algorithm as a
Convex-Concave Program

The above EM algorithm seeks a parametrization that maxi-
mizes the posterior likelihood under the query-driven Dirich-
let prior. Here, we seek an alternative procedure based on
the same generative model, but in which we may gain addi-
tional flexibility: first by exploring alterative regularizations
to improve stability, and secondly by formulating additional
objectives or constraints in the space of latent variables, in-
stead of parameter space. The motivation for the latter is
that task-specific knowledge can often be expressed by func-
tions of expectations over the latent variables that have an
intuitive interpretation and give more control over the pa-
rameter estimation process. For example, if we have feed-
back observations about the utility of specific words or doc-
uments, or even specific words in specific documents, we can
easily incorporate these as constraints in the latent variable
space. To do this, we study generalizations of EM in which
the basic closed-form E-step on latent variables is replaced
by a more general convex optimization problem.

2.2.1 Background
The general idea of EM is to increase the incomplete-data
likelihood �(Δ; C) through maximizing some function of the
complete-data likelihood; it is assumed that this object,
�(Δ; C, Z), is easier to manipulate. Such a formulation can

easily be understood through developing a lower bound us-
ing the information theoretic functionals, cross-entropy H(p, q),
entropy H(p) = H(p, p), and KL-divergence D(p||q) = H(p, q)−
H(p). For details, see chapter 2 of [7].

�(Δ; C) =
n∑

i=1

log pΔ(X(i), Z(i))

=

n∑
i=1

∑
z∈Z

q(z) log

(
pΔ(X(i), z

pΔ(z|X(i))

)
+ nH(q(Z))

= −
n∑

i=1

D
(
q(Z)||pΔ(X(i), Z)

)
+

n∑
i=1

D
(
q(Z)||pΔ(Z|X(i))

)

≥ −
n∑

i=1

D
(
q(Z)||pΔ(X(i), Z)

)
� −Fn(q, Δ) (6)

The last inequality follows from the non-negativity of KL-
divergence, a result commonly known as Gibbs’ inequality.
We note that this bound is valid for any distribution q(Z).

Standard EM derivations typically choose

q(Z) ≡ Pr(Z|C, Δ′) (7)

to exploit the (assumed) simplicity of the conditional and
the fact that the entropy portion of F becomes constant for
Δ. Hence, maximizing (6) reduces to minimization of cross-
entropies,

∑
i H
(
PrΔ′(Zi|Ci), PrΔ(Ci, Zi)

)
. By parameter-

izing q in this way, the search path taken toward the MLE is
dictated by the precise characteristics of the complete-data
model. If we were to allow the minimization to converge,
this fact would be of lesser concern and it would be prudent
to let computational efficiency constrain the choice of dis-
tribution family for q. However, since the TZ likelihood has
an adaptive component, i.e., “decaying prior,” the precise
nature of the search path becomes more important. Ac-
cordingly, we aim to recast the optimization in a way that
allows a larger space of potential distributions over Z, and
thus, a richer set of search path strategies.

We begin by restating arguments of [16, 24] who note that
an equivalent formulation of EM is,

E-step: q(t+1) ← argmin
q
{Fn(q, Δ(t))} (8)

M-step: Δ(t+1) ← argmin
Δ
{Fn(q(t+1), Δ)− log Pr(Δ)}.

(9)

Ignoring issues like local extrema, this formulation reveals
that EM is equivalent to the joint minimizing of Fn(q, Δ)
with respect to q and Δ. Hence

q∗ = argmin
q
{Fn(q, Δ∗(q))− log Pr(Δ∗(q))} (10)

where

Δ∗(q) = argmin
Δ
{Fn(q, Δ)− log Pr(Δ)} (11)

also yields MLE solutions for the incomplete-data likelihood.
To simplify computation of (10) we treat all Zij as in-

dependent binomials with parameters (pij , cij). Although
simple, this class is still a richer set of distributions than
Pr(Zij |cij , Δ). The entropy of q(Z|p) conveniently decom-
poses into a term-count weighted combination of binary en-
tropies, namely H(q) =

∑n
i=1

∑V
j=1 cijH(pij) where pij rep-

resents the probability that word j of document i is relevant,
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i.e., Pr(Zij = 1). Similar results apply to the cross-entropy
term as well. The revised objective

p∗ = argmin
p
{J(p) = u(p)− v(p)} , where,

u(p) = −
n∑

i=1

V∑
j=1

cijH
(
pij

)
(12)

v(p) = log Pr(Δ∗(p))

+

n∑
i=1

V∑
j=1

H
(
q(Zij |pij , cij), Pr(Zij , cij |Δ∗(p))

)
,

(13)

enjoys several properties which we develop subsequently.
Most notably, J(p) is a difference of convex functions, i.e.,
negative entropy (u) plus the sum of a log-prior and nega-
tive cross-entropy as a function of Δ∗(q) (v) [24]. This is the
final ingredient which allows us to recast the TZ likelihood
into the more general optimization framework of Convex-
Concave programs, which we now describe.

2.2.2 The Convex-Concave Procedure

Now that we have J written as the difference of convex func-
tions u and v, we can minimize J using a generalization of
EM known as the Convex-Concave Procedure. Yuille and
Rangarajan [24] describe the Convex-Concave optimization
procedure (CCCP) with the following recurrence:

x(k+1) ← argmin
x

{
u(x)− xT∇v(x(k))

}
(14)

such that
ci(x) ≤ 0, i ∈ {1, . . . , m}
dj(x) = 0, j ∈ {1, . . . , p}

where u, v, and ci are real-valued convex functions, dj is
an affine function, v is differentiable, and all are defined on
R

n. More information on the convergence properties of the
CCCP optimization family are given by Sriperumbudur and
Lanckriet [18].

The advantage of the CCCP framework is that it is very
general, and in fact includes all EM algorithms and some
variational algorithms as special cases [24]. While other EM
generalizations exist, CCCP also provides a recipe for de-
riving new algorithms for a very wide class of optimization
problems, since almost any function can be expressed as a
sum of convex and concave functions. Other techniques are
not usually so broadly applicable.

The term xT∇v(x(k)) is a linear approximation to v at

x(k) and is known as a majorizor of v(x) since it a tight

upper bound for v at the point x(k). Substituting u from
Eq. 12 and the derivative ∇v of Eq. 13 into Eq. 14 gives the
convex optimization problem

p(k+1) ← argmin
p

{
− wTp−H(p)

}
(15)

where w = ∇v(p(k)). This is an unconstrained maximum en-
tropy problem that has a simple analytical solution, namely
the matrix p̂ with individual sigmoid entries

p̂ij = gij(W )/(1 + gij(W )) (16)

where gij(X) = exp(−Xij/Cij). Deriving the specific form
of w = ∇v(·) involves only basic calculus but due to space
constraints we do not derive it here.

2.3 Unifying with the Collins-Thompson model
We now have a unifying view of the TZ and CT algorithms
in one framework. Recall that the CT algorithm’s objective2

is a mean-variance tradeoff inspired by portfolio theory:

p̂← argmin
p

{
− cTp +

κ

2
pTΣp

}
. (17)

Comparing this to the CCCP objective for the TZ likeli-
hood in Eq. 15, both algorithms use the same bi-criterion
form of objective with a linear function of p and a regular-
ization function R(p), which is an entropy term RTZ(p) =
−H(p) for TZ and a quadratic term RCT (p) = xTΣx for the
CT algorithm. Both algorithms estimate expected values
pij ∈ [0, 1] of latent variables: in the CT case p is a single
V × 1 vector, and in the TZ-CCCP case is a V ×N matrix
with one column for each document. Unlike TZ, the CT
algorithm was run as a single-step post-process on an initial
p0 produced by a black-box feedback algorithm. Also, the
CCCP prior term log Pr(Δ∗(p)) in v(p) (Eq. 13) can be seen
as a soft constraint corresponding to the CT algorithm’s
hard query support constraint forcing query term pi values
to stay close to 1 in the solution.

In the default TZ model, interactions between terms in θT

are not explicitly modeled, whereas the CT captures term
dependencies using the matrix Σ in the quadratic term. The
regularization term R(p) in the CCCP objective, however,
gives us a place to add dependencies between pij . We can
either use a single Σ for all documents, or estimate a matrix
Σd individually for each document. In the next section, we
describe how translation kernels can be used to effectively
estimate Σ.

2.4 Adding term dependency information via
translation kernels

One effective method of estimating semantic term depen-
dency is to define a statistical translation process between
terms using translation kernels [9]. We create a translation
kernel by first computing a similarity graph between all pairs
of terms. For vertices u and v, the edge weight e(u, v) is de-
fined as a function of fu(w), the co-occurrence frequency of
term u with term w in the top-ranked documents, giving a
matrix E with entries

euv = exp(− 1

σ2
arccos2

∑
w

√
fu(w)fv(w)) (18)

where the sum is taken over all words w in the vocabulary
V. The graph heat kernel is computed via the matrix expo-
nential of the normalized graph Laplacian

L = D−1/2(D − E)D−1/2 (19)

where D is a diagonal matrix with Dii =
∑

j eij . The matrix

exponential H = exp(−tL) models the flow of heat across
the graph as a function of time parameter t, which controls
the amount of translation. For small t, H ≈ I and for large
t, H is approximately uniform. Finally, we interpolate the
submatrix T of Σ by computing T̂ = (1− λ)T + λH.

2In the CT model, p is a 1xV vector with entries pi =
p(wi|θR) for each word wi in vocabulary V and relevance
model θR. Σ is a V × V positive definite term dependency
matrix. The parameter κ specifies the mean-variance trade-
off. The weights c were derived from a Relevance Model
estimated from top-ranked documents.
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Note that the matrix Σ is applied at each step and thus
affects the relative change in p. Thus, the role of a low weight
in entry Σvw is to penalize or restrict changes to the model
in directions where v and w covary. For example, terms
that have high translation probability from the query will
be treated almost as conservatively as the query itself: the
optimization is reluctant to make large-magnitude changes
away from not only query terms but closely related ones.
Thus, we retain the conservative strategy of staying close to
the initial query, but with the advantage of a flexible, more
semantically rich definition of distance.

2.5 Further extensions
Rather than modify the CCCP objective function of Eq. 15
directly to add additional factors like term dependency into
the objective, we can consider a modular approach that is
also applicable to standard EM formulations: solve for p̂
analytically (either from the CCCP step or the default EM

E-step), and then find the closest latent variable matrix X(k)

to p̂(k) but subject to additional conditions. By ‘closest’, for
this paper we use the Frobenius norm, a standard distance
measure for matrices. We refer to this as the constrained
E-step method. We now gives examples showing how new
constraints and objectives can be added to this framework.

Constraints can play an important role in helping to elim-
inate low-quality models from consideration by encoding
their properties (or rather, the opposite of them) to define a
‘hard’ feasible set of the problem. In many cases, linear con-
straints are sufficient to encode a rich variety of conditions.
Note that because these are iterative algorithms, the con-
straints can in theory also be dynamic, changing with each
iteration to reflect important local factors such as feature
confidence. We now give two examples of how extensions
can be fit into the constrained E-step framework.

Diversity constraints In the search for reliable solutions,
we may consider that relying too heavily on only a small
number of uncertain latent variables is too risky. Instead,
we could implement a diversity constraint over the words
in each document, so that no more than ηw-percent of the
total probability mass can be allocated to the top rw terms.
It turns out that this can be expressed as a linear con-
straint ([1], p.279) via auxiliary vectors uj of size |V | and a
scalar variable tj for each document dj , along the columns of

X(k). This diversity constraint appears superficially similar
to standard smoothing methods, in that it acts to redis-
tribute probability mass from higher-probability events to
lower-probability ones. However, unlike standard smooth-
ing, relative changes in latent variable mass can change sig-
nificantly from iteration to interation, due to the nature of
the top-k criterion and hard upper-bound on the mass3. We
also note that the aspect balance constraint over query mod-
els in the Collins-Thompson query expansion approach is a
type of linear diversity constraint [4].

Term dependencies We can also make use of the transla-
tion kernels described in Section 2.4. As before, we create

3We note that a similar form of diversity constraint could
be applied to documents by constraining the rows of X(k),
which hold the latent variables for occurrences of a single
word w across all documents. We might prefer states in
which there must be stronger evidence across multiple doc-
uments instead of relying on a single source. Variance-based
Markowitz-type diversity [4] is another possibility. These are
topics for future work.

argmin
X

‖X − (I + λΣT )p̂‖F E-step dist. (20)

subject to ΣiXij = Σip̂ij Doc mass invariant (21)

rW · tj + 1T uj ≤ ηW Diversity constr I (22)

tj + uj ≥ xj/cj Diversity constr II (23)

cj = ΣV
i=1p̂ij (24)

uj ≥ 0 (25)

0 ≥ X ≥ 1 Label consistency (26)

Figure 4: The basic constrained E-step for finding the closest
matrix X to the default E-step matrix p̂, while respecting
diversity constraints over a document’s latent variables for
words, and using a translation kernel ΣT in the objective.
Here, j = 1 . . . F over the set of F feedback documents.

a translation kernel ΣT = exp(−tL) with time parameter t,
which controls the amount of translation. We use a trans-
lation strength parameter λ to combine ΣT with p using
(I + λΣT ).

An optimization step that brings all these together is
shown in Figure 4. To use it in a standard EM algorithm,
we simply replace the normal E-step with our convex pro-
gram, and use the optimal solution matrix X̂ instead of the
default matrix p̂. To use it with the CCCP program, we can
apply it to the p̂ solution from Eq. 15. In Section 4.5 we
do a basic evaluation of the effects of these generalizations
on the risk-reward tradeoff of the query model estimation
algorithm. We leave further exploration of objectives and
constraints for future work.

3 Related work
The most relevant previous studies are of the two algorithms
by Collins-Thompson [3] and Tao & Zhai [20] described ear-
lier. Xu and Akella [22] replaced the TZ two-mixture genera-
tive model with a Dirichlet Compound Multinomial, using a
different latent variable model and closed-form E-step based
on simulated annealing. It would be interesting to explore
the use of the latter’s more sophisticated generative model
within our CCCP optimization framework.

CCCP and related algorithms have seen increased use re-
cently for machine learning problems. For example, Yu and
Joachims gave a CCCP for learning structural Support Vec-
tor Machines with latent variables [23]. CCCPs themselves
are connected to a broad class of majorization-minorization
algorithms, in which EM is a special case. Such frameworks
have been introduced and motivated by problems in areas
like image restoration [10], but we have not seen much ap-
plication yet to information retrieval problems.

Previous work on regularization schemes can be divided
into two types: term score smoothing, and document score
smoothing. In the document score domain, Diaz [8] intro-
duced the use of regularization that smoothed over the graph
of document-document similarities. It would be interesting
to investigate this type of smoothing in the parameter ma-
trix of our model, in addition to the term-term smoothing
that our translation model does. In the term domain, Mei
and Zhai [15] described smoothing language models over
graph structures. Unlike these previous approaches, our
framework can model structure between terms and docu-

1073



ments, not just between entities of the same type. In mo-
tivating the importance of modeling term dependencies, we
note a recent study by Udapa et al. [21] that confirmed
the importance of accounting for term dependencies and
set-level properties in finding higher-quality expansion sets,
compared to searching for expansion terms individually.

The use of heat-transfer kernels for query expansion is an-
other contribution of this paper. The closest previous work
on random walk models for query expansion [6] also used
a term dependency graph in which word co-occurrence was
one of several dependency types, with combined transition
edge weights estimated using logistic regression. The heat-
transfer approach has the advantage of giving a more inter-
pretable, statistically principled derivation of term transi-
tion probabilities.

Finally, we have drawn inspiration from a key reference
work by Graca et al. [11], who proposed modifying EM using
a constrained E-step in order to model posterior constraints.
They also gave theoretical results that give a penalized maxi-
mum likelihood interpretations to their framework, and gave
examples of several natural-language applications, including
statistical translation.

4 Evaluation
Here we confirm the utility of the basic CCCP formulation
and include preliminary analysis of the effect of term depen-
dency and diversity constraints in latent variable space on
performance.

We use two standard test collections: TREC 1&2 (topics
51-200, TREC disks 1&2) and Robust 2004 (topics 301–
450 and 601–700, TREC disks 4&5). We chose these partly
because topics 301–450 (the TREC678 topic set) overlap
with those used in the TZ study, while also adding 100 new
queries that typically are more challenging for query expan-
sion. Also, the RIA workshop [12] made available an ex-
tensive failure analysis over the TREC678 topic set. Index-
ing and retrieval were performed using the Indri 2.8 system
in the Lemur toolkit [14]. We used the title fields of the
TREC topics and phrases were not used. We also did not
use stopping or stemming since we believe this removes po-
tentially valuable word evidence, and that a principled ap-
proach should be able to make stopword and stemming deci-
sions automatically as part of the estimation process. Doc-
ument scoring was performed using query likelihood with
the top 1000 documents retrieved and using Dirichlet query
smoothing with μ = 2000.

We also compute a Relevance Model expansion baseline [13]
by first selecting, using the top 50 ranked documents, the
top 1000 terms based on their Ponte [17] log-odds score for
use as the vocabulary space V for θT . The top 20 expan-
sion terms based on their Relevance Model probability were
then selected as expansion terms. Note that the TZ study
performed expansion by computing an EM solution over a
large vocabulary and then truncating at the top 100 expan-
sion terms.

4.1 Comparison of iterative gains
We first give a basic comparison between the basic CCCP
iterative algorithm of Eq. 15 and the TZ algorithm. Fig-
ure 5 compares the gains that the CCCP and TZ algorithms
achieve on the TREC 1&2 and Robust 2004 topics and
collections, for both Mean Average Precision (MAP) and
Precision-at-20 (P20). Each curve captures the gain or loss,

compared to the initial (unexpanded) query, of a particular
topic model θT model computed at each iteration and used
as the query model for retrieval. In general, the range of the
performance statistics is in accord with previous studies on
the same topics and collections (e.g., in [5]).

Both the TZ and CCCP algorithms achieved their peak
performance at around 40 to 50 iterations for both MAP and
P20. Not coincidentally, this is the point at which the influ-
ence of the query prior starts to disappear when μ = 30000
and δ = 0.9. The CCCP algorithm achieved significantly
higher peak MAP gain of 41.4% for TREC 1& 2, compared
to the TZ peak MAP of 31.4%. Both algorithms outper-
formed the Relevance Model baseline gain of 29.1%. The
relative performance of the algorithms was the same for the
Robust 2004 collection, with the CCCP peak MAP gain of
13.3% being slightly better than the TZ peak MAP gain of
12.9%. For comparison, the Relevance Model MAP gain was
only 1.6% on this collection.

Beyond 50 iterations, the two algorithms behaved very
differently. As the TZ algorithm ran toward convergence, it
suffered from serious overfitting, resulting in rapidly dete-
riorating retrieval performance with each step. The CCCP
algorithm, on the other hand, never experienced such a de-
cline from the peak performance value and converged to a
reasonable stable point within another 20 to 30 iterations.
In practice, the TZ algorithm requires the use of an early
stopping heuristic to avoid this overfitting problem, while
the stability of the CCCP algorithm makes early stopping
much less critical. Overall, the CCCP performance curves
consistently dominated those of the TZ algorithm.

Table 1 summarizes performance using standard retrieval
measures for the algorithms over both collections.

4.2 Sensitivity to initial parameters

The key parameters to be initialized are α0, the starting
weight of αi for all documents, and μ0 and δ for the query
prior. The choice of α0 can be seen as representing our
initial belief in the likely quality of the feedback set for a
typical query. Our experience with setting μ and δ matches
that found by Tao & Zhai: as long as μ0 is ‘large’ and δ is
close to 1.0, the feedback performance is not much affected
by varying those parameters.

The choice of α0 had some effect on the overall perfor-
mance of the CCCP algorithm, although peak improvements
to MAP were strong across a fairly wide range of initial val-
ues. In particular, we found that a single operational setting
of α0 = 0.15 worked well and gave close to optimal perfor-
mance for both collections. Figure 6 shows the effect on
Robust 2004 topics of varying α0 for the CCCP algorithm,
as a function of the number of iterations. For the curve with
α0 = 0.05, the peak MAP value is 8.5%; this increases to
13.3% for α0 = 0.10, remains stable at 13.6% for α0 = 0.15,
and then declines to 9.9% for α = 0.20. In all cases, how-
ever, peak MAP occurs after approximately 50 iterations. In
the long term, when the CCCP algorithm is allowed to run
to convergence (roughly 100 iterations or more), the differ-
ences are more dramatic, ranging from a MAP gain of 6.2%
at α0 = 0.05%, to a small MAP loss -1.8% for α0 = 0.20.
We also observed that the TZ algorithm was somewhat sen-
sitive to the choice of α0, within a much smaller operational
range, i.e. between 1e−5 and 1e−7, with values closer to zero
typically giving slightly better performance.
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Figure 5: Comparison showing how the CCCP algorithm (thick solid line) achieves much more reliable gains (y-axis) compared
to the TZ algorithm (dashed line) as iterations progress (x-axis). Shown are percentage gain/loss compared to using no
expansion for MAP (top) and P20 (bottom) for TREC 1&2 and Robust 2004. In addition to being based on the same
generative model, both TZ and CCCP use the same initial values of μ0 = 30000 and δ = 0.9. The non-iterative Relevance
Model expansion (Ponte-Lavrenko) is also shown for comparison (thin flat line).

Collection NoExp RM TZ-FB CCCP-FB

Robust
2004
(n=250)

MAP 19.91 20.23 (+1.61%) 22.48 (+12.91%) 22.56 (+13.31%)
P5 41.76 41.92 (+0.38%) 42.64 (+2.11%) 42.40 (+1.53%)
P20 30.52 30.62 (+0.33%) 31.64 (+3.67%) 31.42 (+2.95%)

TREC
1&2
(n=150)

MAP 15.62 20.17 (+29.13%) 20.52 (+31.37%) 22.08 (+41.36%)
P5 39.73 39.73 (0.00%) 45.20 (+13.77%) 46.80 (+17.80%)
P20 36.13 36.13 (0.00%) 41.73 (+15.50%) 43.20 (+19.57%)

Table 1: Comparison of MAP between Relevance Model (RM) baseline, Tao-Zhai (TZ-FB) and Unified (CCCP-FB) feedback
methods. The best MAP for any iteration is shown. Precision improvement shown for all methods is relative to unexpanded
query performance. (All numbers multiplied by 100.)
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Figure 6: Sensitivity of CCCP algorithm performance to initial choice of α0 for Robust 2004 topics.

TZ
p(w|θT )

Word w CCCP
p(w|θT )

Word w

0.401 stirling 0.250 engine
0.096 cfc 0.207 stirling
0.087 kronor 0.047 cfc
0.053 134a 0.041 substitute
0.051 sdg 0.039 energy
0.049 chillers 0.036 containment
0.042 vattenfall 0.034 hfc
0.039 bleaching 0.033 sup
0.035 pfbc 0.024 hcfc
0.035 biofuels 0.023 pulp
AP 0.799 AP 0.979

Figure 7: Sample query models for Tao-Zhai expansion (left)
and CCCP method (right) for the TREC topic 447, ‘stirling
engine’. The top 10 expansion terms are shown for the op-
timal model found by each method.

4.3 Individual query analysis

We looked at the expansion terms and convergence of a par-
ticular query: TREC topic 447 ‘stirling engine’. We chose
this topic because it was featured in the individual analysis
of the original Tao-Zhai paper [20]. Note that our com-
puted TZ term weights may be slightly different from those
reported by [20]. We were careful to use the same EM pa-
rameters such as μ and δ. However, for efficiency the CCCP
method works with a vocabulary of 100 candidate expansion
terms. For this query, we experimented with limiting the TZ
algorithm to the same 100-word candidate vocabulary, and
performance dropped slightly to an AP of 0.3424, versus AP
of 0.3549 for a full 50,000 word vocabulary.

After expansion, the TZ method obtained a maximum
performance of AP 0.7989 after 28 iterations, with P5 of
1.0 and P20 of 0.60. Our CCCP unified method obtained
an optimal AP of 0.9786 after 14 iterations, with P5 of 1.0
and P20 of 0.80. Both methods assign roughly equal total
mass to the original query terms (49.6% for TZ vs 45.3% for
CCCP), but assign it very differently: TZ gave most mass to

the rarer term ‘stirling’ and had rapidly diminishing, almost
sparse expansion weights, while the CCCP framework main-
tained a more even distribution over terms. We attribute
this partly to the introduction of the maximum entropy term
in the objective. For TREC query 312 (‘hydroponics’) also
given in the Tao-Zhai paper, performance of TZ was slightly
better, with an AP of 0.206 vs 0.1909 for CCCP.

4.4 Large-scale parameter space exploration
We also compared the TZ, CT, and hybrid algorithms in the
space of achievable risk-reward tradeoffs [2] over a range of
possible parameters, by using a massive parameter sweep on
a large-scale computing cluster. For this experiment we used
a proprietary internal Web corpus of 1.2 million documents
and 400 queries with in-house relevance judgments. We used
the Indri engine [19] in the Lemur toolkit [14] to retrieve the
initial top-ranked documents for each query. Then for each
query expansion algorithm, we sampled 5000 different com-
binations of parameters in that algorithm’s high-dimensional
‘box’ of potential settings. Figure 8 shows the results as a
risk-reward plot [3]. Here, the x-axis (risk) represents the
percentage MAP loss averaged over queries that were hurt
by expansion; the reward y-axis gives the percentage MAP
gain/loss over all queries. Each of the 5000 points in the
figure represents an experiment over 400 queries for a par-
ticular operational setting. Not surprisingly, since the TZ
method has few parameters and does not model term co-
variance, it is able to achieve a restricted subset of potential
risk-reward tradeoffs. Similarly, for this corpus the Jaccard-
based CT expansion method has limited losses, but no real
gains. However, the unified method with heat-kernel trans-
lation exhibits a broad regime of potential tradeoffs, includ-
ing a range of gains superior to either baseline algorithm.

4.5 Analysis of additional latent variable
conditions

We provide a brief analysis of the example latent variable
optimization program described in Sec. 2.5. We evaluated
the effect of adding a translation kernel to the objective, and
the effect of the linear diversity constraints.

For this summary evaluation, we present results for wt10g
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Figure 8: Massive parameter space exploration of the
risk-reward tradeoffs achievable in the parameter space of
three different query expansion methods: TZ (dense green,
left), TZ+CT hybrid with Jaccard translation model (dense
red, right) and TZ+CT hybrid with heat-kernel translation
model (large scattered blue).

(TREC topics 451-550), using the same setup described in
Section 4. We limited the maximum number of iterations
for both TZ and Constrained EM to 50, since both algo-
rithms have generally converged by then. We used the 50
top-ranked documents and 20 expansion terms.

Again, we use risk-reward curves to show an algorithm’s
achievable tradeoff between average precision gain and the
loss due to expansion failures. One important difference is
that our risk-reward curves are generated as a function of the
number of iterations of each algorithm instead of functions
of a feedback interpolation parameter α.

We set the dilation factor σ2 and time parameter t of the
translation kernel to 0.75 and 5 respectively. In practice,
because the initial zdw are very close to zero, for numerical
reasons we first run a small number L of iterations (in these
experiments L = 3) of the standard EM algorithm before
switching to the Constrained EM version. Because the di-
versity constraint is a hard constraint, the convex program
is occasionally infeasible at some iteration4. When this hap-
pens, we simply terminate the search and use the last known
good solution.

Figure 9 shows two effects. In a), increasing the amount
of translation from λ = 0 to λ = 5 gives a dramatic im-
provement in the risk-reward tradeoff: with the translation
kernel on this collection, the algorithm never hurts query
performance on average, giving its maximum MAP at con-
vergence. The baseline TZ algorithm, on the other hand,
deteriorates quickly after about 20 iterations. In b), making
the diversity constraint more strict by decreasing the allow-
able η percentage available to the top-ranked words acts to
flatten the risk-reward curve slightly. Future analysis work
includes sensitivity of the results to parameter changes, and

4Problems such as infeasibility and failure to converge are
detected automatically by the solver and reported with a
status code.
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Figure 9: Risk-reward tradeoff curves show the effect of in-
creasing the word translation factor λ with fixed diversity
constraint ηW = 0.90, compared to Tao-Zhai baseline (TZ).
Curves are a function of iteration, with each iteration as a
dot and every 10th iteration numbered. Because the ini-
tial query is the starting point and the y-axis shows relative
MAP gain, curves will start at the origin and trace out a risk-
reward tradeoff with each iteration. Tradeoff curves that are
higher and to the left are better.

measuring interaction effects between diversity and transla-
tion or other components. The expansions found by the TZ
and constrained EM are quite different, so improved per-
formance is not due to simply slower convergence toward a
similar solution.
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5 Discussion and Future Directions
The superior performance of the CCCP algorithm compared
to its EM counterpart is interesting considering that both
methods are based on the same generative model and are
designed to compute a Maximum A Posteriori likelihood so-
lution. Unlike most learning scenarios, however, it appears
that for the problem of query expansion, the nature of the
path on the way to the likelihood objective is much more
important than the goal itself. The slow, coordinate-wise
ascent approach of EM, and more controlled search path of
CCCP approaches, turn into an advantage in such cases.
Our CCCP method generalizes the EM approach so that we
have finer control over the nature of the steps. It also uses
a tighter lower bound than the closed-form EM version that
includes an extra entropy term to be maximized. While a bit
more involved to optimize, this extra regularization penalty
over the distribution of Z appears to help stabilize the so-
lution. We did not do extensive parameter tuning in our
model, so further gains may be possible.

While most computational effort for modeling query in-
tent is appropriately spent training large-scale models of-
fline, Web search engines must operate an increasingly com-
plex decision environment in which some evidence, such as
user interaction feedback, is only visible at query time. Thus,
we forsee that an on-line learning component that solves
query-specific optimization problems in real time will be a
powerful complement to off-line training. Applications in-
clude time- or context-sensitive noise reduction, real-time
feature selection on predictor inputs, and ‘course correction’
via posterior constraints on predictor outputs. Because of
their generality and simplicity we believe that CCCP-type
frameworks are a good starting point for future exploration
of useful constraints and objectives in such problems. In gen-
eral, we believe that the exploration of effective optimization
frameworks opens up a new area of research in information
retrieval in which tradeoffs and principled decision-making
under uncertainty can be greatly improved.

6 Conclusions
We have made both algorithmic and empirical contributions
to the problem of searching for an optimal query model that
is both effective and reliable. We used the Convex-Concave
procedure as a way to reveal more of the implicit structure,
objectives and constraints of an existing feedback algorithm,
to unify two complementary approaches, and to generate
new algorithms in a principled way. On the empirical side,
we performed an iterative performance analysis as well as a
risk-reward parameter-space analysis on a high-performance
computing cluster to gain new insights into the space of
computational tradeoffs achievable with different types of
algorithms. A general trend in software systems is that sim-
pler or more powerful algorithms are eventually preferred
over methods designed for efficiency in special cases. We
believe the advantages of effective optimization frameworks
for use in information retrieval systems will soon outweigh
their moderate computational costs.
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