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ABSTRACT
Our goal in this study is to compare several widely used
pseudo-relevance feedback (PRF) models and understand
what explains their respective behavior. To do so, we first
analyze how di↵erent PRF models behave through the char-
acteristics of the terms they select and through their per-
formance on two widely used test collections. This analysis
reveals that several well-known models surprisingly tend to
select very common terms, with low IDF (inverse document
frequency). We then introduce several conditions PRF mod-
els should satisfy regarding both the terms they select and
the way they weigh them, prior to study whether standard
PRF models satisfy these conditions or not. This study re-
veals that most models are deficient with respect to at least
one condition, and that this deficiency explains the results
of our analysis of the behavior of the models, as well as
some of the results reported on the respective performance
of PRF models. Based on the PRF conditions, we finally
propose possible corrections for the simple mixture model.
The PRF models obtained after these corrections outper-
form their standard version and yield state-of-the-art PRF
models which confirms the validity of our theoretical analy-
sis.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
IR Theory, Pseudo Relevance Feedback, Axiomatic Theory

1. INTRODUCTION
Pseudo-relevance feedback (PRF) has been studied for

several decades, and a lot of di↵erent models have been
proposed, in all the main families of information retrieval
(IR) models. In the language modeling approach to IR, for
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example, the mixture model for PRF is considered state-of-
the-art, and numerous studies use it as a baseline. It has
indeed been shown to be one of the most e↵ective models in
terms of performance and stability with respect to parame-
ter values in [16]. However, several recently proposed PRF
models[6, 21, 2] seem to outperform the mixture model. It
is nevertheless di�cult to compare PRF models and to draw
conclusions on the sole basis of studies making use of di↵er-
ent collections and di↵erent ways of tuning model parame-
ters.

We first analyze in this paper several well-established or
recently proposed PRF models and show that they behave
di↵erently with respect to the terms they select. We then
propose a characterization of PRF models that allow an as-
sessment of their general behavior. In particular, we estab-
lish a series of conditions PRF models should satisfy, and re-
view di↵erent PRF models according to their behavior with
respect to these conditions. This analysis provides explana-
tions on experimental findings reported in di↵erent studies
of PRF models. From this characterization, we finally in-
troduce variants of the mixture models that both comply
with the above-mentioned conditions and outperform their
original version.

The notations we use throughout the paper are summa-
rized in table 1, where w represents a term. We note n the
number of pseudo-relevant documents used, F the feedback
set and tc the number of terms used for pseudo-relevance
feedback. An important change of notations concerns TF

and DF which are in this paper related to the feedback set

F .
The remainder of the paper is organized as follows. We

give in Section 2 some basic statistics on several PRF mod-
els, which reveal significant di↵erences in the way PRF mod-
els behave. We then introduce in section 3 general conditions
for PRF functions, prior to reviewing standard PRF models
according to their behavior with respect to these conditions
in section 4. From this analysis, we propose variants of the
mixture and geometric relevance models in section 5 that
outperform the standard versions of these models. Finally,
we discuss some related work in section 6. Throughout this
study, we use two standard IR collections: the ROBUST
collection, with 250 queries, and the TREC 1&2 collection,
with 150 queries corresponding to topics 51 to 200. We
only make use of query titles, as this is a common setting
when studying PRF [9]. All documents are preprocessed
with standard Porter stemming and stopword removal.
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Notation Description

General
q, d Original query, document

RSV (q, d) Retrieval status value of d for q
c(w, d) # of occurrences of w in doc d

ld Length of doc d

t(w, d) normalized # of occurrences (e.g. c(w,d)
ld

)
avgl Average document length in collection
N # of docs in collection
Nw # of documents containing w

IDF (w) IDF of a term (e.g. � log(Nw/N))
p(w|C) Corpus language model

PRF specific
n # of docs retained for PRF
F Set of documents retained for PRF:

F = (d1, . . . , dn)
tc TermCount: # of terms in F added to q

TF (w) =
P

d2F c(w, d)
DF (w) =

P
d2F I(c(w, d) > 0)

Table 1: Notations

2. DO PRF MODELS BEHAVE SIMILARLY?
In order to compare PRF models, our first experiments

consists in comparing standard, state-of-the-art PRF mod-
els1, namely (a) the mixture and divergence minimization
models presented in [22], (c) the log-logistic feedback model
presented in [2], and (d) the Geometric Relevance Model
(GRM) presented in [19]. The exact formulation of these
models, as well as others, is given in section 4; we just want
to illustrate here main di↵erences in the way these stan-
dard models behave. For all models, 5-fold cross-validation
is used to optimize the di↵erent parameters (including the
interpolation weight). The parameter ranges are standard
and are defined by: n 2 {10, 20}, tc 2 {10, 20, 50, 75, 100},
↵ 2 {0.1, ..., 0.9}, � 2 {0.1, ..., 0.9} (parameters of PRF lan-
guage models), � 2 {0.01, 0.1, 0.25, 0.5, 0.8, 1, 1.2} (parame-
ter for the log-logistic model).

Figure 1 plots the performance of these four di↵erent mod-
els when the number of feedback terms, tc, varies. As one
can see, the log-logistic model only needs 20 terms on both
collections to reach its best performance, whereas other mod-
els need 100 terms on ROBUST and 150 terms on TREC to
attain their best performance. Furthermore, the best per-
formance of the log-logistic model is above the one of the
other models, despite the small number of feedback terms it
relies on. What does explain this di↵erence?

To answer this question, we used the same IR engine for
the retrieval step (thus ensuring that all PRF algorithms
are computed on the same set of documents) and analyzed
the terms chosen by the previously mentioned models. We
first computed, for each query and for each word, the to-
tal number of occurrences of this word in the feedback set
(i.e. TF (w)), its document frequency in the feedback set
(i.e. DF (w)) and its inverse document frequency in the col-
lection (IDF (w)). We then averaged these quantities over-
all feedback terms and queries. For instance, the mean idf

1By “standard” we mean here models that aim at select-
ing feedback terms, irrespective of such dimensions as query
aspects.

Table 2: Statistics of terms extracted by di↵erent
models, on two collections. Su�x A means n = 10
and tc = 10 while su�x B means n = 20 and tc = 20

Settings Statistics MIX LL DIV GRM

robust-A
µ(tf) 62.9 46.7 53.9 52.3
µ(df) 6.4 7.21 8.6 8.4
µ(idf) 4.3 5.1 2.2 2.4

trec-1&2-A
µ(tf) 114 .0 79.1 92.6 92.3
µ(df) 7.1 7.8 8.8 8.7
µ(idf) 3.8 4.8 2.5 2.5

robust-B
µ(tf) 68.6 59.9 65.3 64.6
µ(df) 9.9 11.9 14.7 14.4
µ(idf) 4.4 4.4 1.7 1.9

trec-1&2-B
µ(tf) 137.8 100.0 114.9 114.8
µ(df) 12.0 13. 15.2 15.2
µ(idf) 3.8 4.3 2.1 2.2

µ(idf) is computed as

µ(idf) =
1
|Q|

X

q

tcX

i=1

IDF (wi)
tc

where |Q| represents the number of queries used (the for-
mulas for µ(tf), µ(df) are identical).

Many studies choose a fixed parameter strategy either to
compare PRF models or when submitting runs to evaluation
campaigns [16, 17]. The choice of the settings we use in this
study is dictated by the typical behavior of the log-logistic
model. As the log-logistic feedback model outperforms the
other feedback models with fewer feedback terms, we focus
here on two settings with few feedback terms: setting A,
with n = 10 and tc = 10, and setting B, with n = 20 and
tc = 20. Table 2 displays the above statistics for the four
feedback models: mixture model (MIX), log-logistic model
(LL), divergence minimization model (DIV) and geomet-
ric relevance model (GRM). Our experimental results show
that: (a) The log-logistic model, which is the best perform-
ing model in Figure 1, selects feedback terms that have high
IDF , small TF and a medium DF ; (b) The mixture model
selects terms with small DF and high TF ; (c) The GRM
and divergence models select terms with small IDF , and rel-
atively high TF and DF . It thus appears that these models
focus on terms with di↵erent characteristics to enrich the
original query. A first explanation of the better behavior of
the log-logistic model thus lies in its capacity to focus on
words that are not too common (high IDF and small TF )
but that still occur in a su�cient number of feedback docu-
ments (average DF ). We turn now to a theoretical analysis
of these aspects.

3. A CHARACTERIZATION OF PRF
We introduce in this section general characterizations of

PRF models that will help us understand the behavior of
these models from a theoretical point of view. Our approach
is reminiscent of the axiomatic approach adopted Fang et
al [11] and followed in many studies including [12, 8, 2].
However, whereas the axiomatic approach aims at describing
IR functions by constraints they should satisfy, we rather
view here these constraints as general properties that can
help us understand, from a theoretical point of view, the
behavior of PRF functions.
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Figure 1: MAP on all queries with tc 2 {10, 20, 50, 75, 100, 150, 200} with best parameters, ROBUST n = 10 left,
TREC-1&2 n = 20 right

The four main conditions on IR functions considered in the
axiomatic theory of IR are: the weighting function should
(a) be increasing and (b) concave wrt term frequencies, (c)
be increasing wrt IDF and (d) penalize long documents. In
the context of PRF, the first two properties relate to the
fact that terms frequent in the feedback set are more likely
to be e↵ective for feedback (which we refer to as the TF

e↵ect), but that the di↵erence in frequencies should be less
important in high frequency ranges (which we refer to as the
Concavity e↵ect). The IDF e↵ect is also relevant in feedback,
as one generally avoids selecting terms with a low IDF. The
property regarding document length is not as clear as the
others in the context of PRF, as one (generally) considers
sets of documents. What seems important however is the
fact that occurrence counts are normalized by the length of
the documents they appear in (referred as the Document

length e↵ect).
Let FW (w;F,Pw) denote the feedback weight for term

w, with Pw a set of parameters dependent on w

2. For sim-
plicity, we use the notation FW (w), but it is important to
bear in mind that this function depends on a feedback set
and some parameters. One can formalize the above consid-
erations as follows:

[TF e↵ect] FW should increase with the term frequency

c(w, d); in analytical terms, this gives:

@FW (w)
@c(w, d)

> 0

[Concavity e↵ect] The above increase should be less marked

in high frequency ranges, which can be formulated as:

8d 2 F,
@

2
FW (w)

@c(w, d)2
< 0

[IDF e↵ect] Let wa and wb two words such that IDF (wb) >
IDF (wa) and 8d 2 F, t(wa, d) = t(wb, d).Then

FW (wb) > FW (wa).
2The definition of Pw depends on the PRF model consid-
ered. It minimally contains TF (w), but other elements, as
IDF(w), are also usually present. We use here this notation
for convenience.

We want to study the increase of the feedback weight
wrt IDF , all other things being equal. This forces the
introduction of the condition on the distribution of fre-
quencies over the feedback documents.

[Document length e↵ect] The number of occurrences of

feedback terms should be normalized by the length of

documents they appear in:

@FW (w)
@ld

< 0

Lastly, an additional characterization, related to the be-
havior of PRF models with respect to DF and introduced
in [3], can be considered. It stipulates that, all other things

being equal, terms with a higher DF (i.e. terms occurring
in more feedback documents) should receive a higher score:

[DF e↵ect] Let ✏ > 0, and wa and wb two words such that:

(i) IDF(a) = IDF(b)
(ii) The distribution of the frequencies of wa and wb

in the feedback set are given by:

T (wa) = (t1, t2, ..., tj , 0, ..., 0)

T (wb) = (t1, t2, ..., tj � ✏, ✏, ..., 0)

with 8i, ti > 0 and tj � ✏ > 0 (hence, TF (wa) =
TF (wb) and DF (wb) = DF (wa) + 1).

Then: FW (wa;F,Pwa) < FW (wb;F,Pwb)

The following theorem can help establish whether a PRF
model enforces the DF e↵ect. This theorem is a slight ex-
tension of the one introduced in [3] and its proof is similar.

Theorem 1. Suppose FW can be written as:

FW (w;F,Pw) =
nX

d=1

f(c(w, d);P0
w) (1)

with P0
w = Pw \ {c(w, d)} and f(0;P0

w) � 0. If the func-

tion f is strictly concave in c(w, d) or linear, f(c(w, d)) =
ac(w, d) + b, with a 2 R and b > 0, then FW enforces the

DF e↵ect. If the function f is strictly convex in c(w, d) or

linear, f(c(w, d)) = ac(w, d)+ b, with a 2 R and b  0, then
FW does not enforce the DF e↵ect.
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We now assess how di↵erent PRF models behave with re-
spect to these conditions.

4. REVIEW OF PRF MODELS
We review in this section di↵erent PRF models accord-

ing to their behavior wrt the characterizations we have de-
fined. We start with language models, then review the recent
model introduced in [21] which is related to both generative
methods and to the Probability Ranking Principle (PRP),
prior to review Divergence from Randomness (DFR) and
Information models.

4.1 PRF for Language Models
PRF models within the language modeling (LM) approach

to information retrieval assume that words in the feedback
document set are distributed according to a multinomial dis-
tribution, ✓F (the notation ✓F summarizes the set of param-
eters P (w|✓F )). Once the parameters have been estimated,
PRF models in the LM approach proceed by interpolating
the (original) query language model with the feedback query
model ✓F :

✓q
0 = ↵✓q + (1� ↵)✓F

In practice, one restricts ✓F to the top tc words, setting all
other values to 0. The di↵erent feedback models then di↵er
in the way ✓F is estimated. We review the main LM based
feedback models below.

Mixture Model

Zhai and La↵erty [22] propose a generative model for the
set F. All documents are i.i.d and each document is gener-
ated from a mixture of the feedback query model and the
corpus language model:

P (F|✓F ,�) =
VY

w=1

((1� �)P (w|✓F ) + �P (w|C))TF (w) (2)

where � is a “background” noise set to some constant. Fi-
nally ✓F is learned by optimizing the data log-likelihood with
an Expectation-Maximization (EM) algorithm, leading to
the following E and M steps at iteration (i):

E � step E(w)(i) = (1��)P (i(w|✓F )

(1��)P (i)(w|✓F )+�P (i)(w|C)

M � step P

(i+1)(w|✓F ) =
P

d2F c(w,d)E(w)(i)
P

w
P

d2F c(w,d)E(w)(i)
(3)

where E(w)(i) denotes the expectation of observing w in the
feedback set; furthermore, FW (w) = P (w|✓F ). As one can
note, none of the above formulas involve DF (w), neither
directly nor indirectly. The mixture model is thus agnostic
wrt to DF, and thus does not enforce the DF e↵ect. Re-
garding the other properties, one can note that the weight of
the feedback terms (P (w|✓F )) increases with TF (w) (which
is

P
d2F c(w, d)), decreases with IDF(w) (the argument for

this is the same as the one developed in [11], a study to
which we refer readers). Thus, both TF and IDF e↵ects are
enforced. Furthermore, even though counts are normalized
by the length (in fact an approximation of it) of the feed-
back documents, all these documents are merged together,
so that the Document length e↵ect is not fully enforced. The
situation wrt the Concavity e↵ect is even less clear. In par-
ticular, if one approximates the denominator with the total
length of the feedback documents (such an approximation

being based on the fact that E(w)(i) corresponds to the ex-
pectation of w in the feedback set), then the second partial
derivative of P (w|✓F ) wrt to c(w, d) is 0. This suggests that
this model does not fully enforce the Concavity e↵ect, and
thus that it gives too much weight to high frequency words.
This is indeed what we have observed in table 2: the mixture
model selects terms with a mean TF which is significantly
higher than the mean TF of the other models.

Divergence Minimization

In addition to the mixture model, a divergence minimiza-
tion model:

D(✓q|RF ) =
1
|n|

nX

i=1

D(✓F k ✓di)� �D(✓F ||p(. k C))

is also proposed in [22], where ✓di denotes the empirical
distribution of words in document di. Minimizing this di-
vergence gives the following solution:

P (w|✓F ) / exp
⇣ 1
(1� �)

1
n

X

d2F

log(p(w|✓d))

� �

1� �

log(p(w|C)
⌘

Here again, FW (w) = P (w|✓F ). As p(w|✓d) = c(w,d)
ld

, this
equation corresponds to the form given in equation 1 with
a strictly concave function (log). Thus, by Theorem 1, this
model enforces the DF e↵ect3. Being based on standard
language models, it also enforces the TF , Concavity and
Document length e↵ects. Our experiment results, as well as
those reported in [16], however show that this model does
not perform as well as other ones. Indeed, as shown in ta-
ble 2, this model selects terms with small IDF and fails
to downweight common words. We explain here this phe-
nomenon by examining how this model behaves with respect
to the IDF e↵ect.

Let us consider two terms wa and wb such that 8d 2
F t(wa, d) = t(wb, d) = td, and let p(wb|C) and p(wa|C)
such that p(wa|C) < p(wb|C) (i.e. IDF (wa) > IDF (wb)).
The IDF e↵ect stipulates that, in this case, FW (a) should
be greater than FW (b). Using Jelinek Mercer smoothing,
log(FW (wa)) � log(FW (wb)) is equal to (we skip here the
derivation which is purely technical):

X

d2F

{

<0z }| {

log(
(1� �)t(d) + �p(wa|C)
(1� �)t(d) + �p(wb|C)

)��

<0z }| {

log(
p(wa|C)
p(wb|C)

)} (4)

As 0 < �, �  1, we have:

8(x, y, z) 2 R+⇤
s.t. y > x, log(

z + �x

z + �y

) > log(
x

y

) > � log(
x

y

)

Thus log(FW (wa)) � log(FW (wb)) > 0 and FW (wa) >

FW (wb). The divergence minimization model is thus com-
pliant with the IDF e↵ect. However, this e↵ect is in fact
poorly enforced in this model. To see that, let us assume
that P (wb|C) is K times (K > 1) larger than P (wa|C):
P (wb|C) = KP (wa|C). Then:

log
FW (wa)
FW (wb)

< �� log
1
K

= logK�

3This was already noted in [3].
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and:

FW (wb) < FW (wa) < K

�
FW (wb)

The original factor K di↵erence thus amounts, for the PRF
weighting of terms, to K

�. In practice, typical values of �
are close to 0.1; in this case, K� is close to 1 (it is 1.07 for
K = 2, 1.17 for K = 5 and 1.58 for K = 100) and there is
almost no di↵erence between FW (wa) and FW (wb). This
explains the small values displayed in table 2 for the IDF
statistics.

Geometric Relevance Models

(1) A regularized version of the mixture model, known as the
regularized mixture model (RMM) and making use of latent
topics, is proposed in [20] to correct some of the deficien-
cies of the simple mixture model. RMM has the advantage
of providing a joint estimation of the document relevance
weights and the topic conditional word probabilities, yield-
ing a robust setting of the feedback parameters. However,
the experiments reported in [16] show that this model is less
e↵ective than the simple mixture model in terms of retrieval
performance.
(2) Another PRF model proposed in the framework of the
language modeling approach is the relevance model, pro-
posed by Lavrenko et al. [13], and defined by:

FW (w) /
X

d2F

PLM (w|✓d)P (d|q)

where PLM denotes the standard language model. This
model is directly based on the standard language models
and thus enforces, as its standard counterpart, the TF, Con-
cavity and Document length e↵ect. Furthermore, it corre-
sponds to the form of equation 1 of Theorem 1, with a linear
function of the form f(x) = ↵x. This model thus does not
enforce the DF e↵ect. Lastly, as for the following model,
it fails to enforce the IDF e↵ect, as we will see below (the
proof for that is identical to the one for the following model,
given below).

The relevance model has recently been refined in the study
presented in [19] through a geometric variant, referred to as
GRM, and defined by:

FW (w) /
Y

d2F

PLM (w|✓d)P (d|q)

As one can note, the product in the relevance model has
now been replaced by a power function. The GRM model
enforces the TF, Concavity and Document Length e↵ect (the
argument is the same as for the relevance model). We now
examine its behavior with respect to the DF and IDF e↵ects.

Let us consider this model with Jelinek-Mercer smoothing
[23]: PLM (w|✓d) = (1 � �) c(w,d)

ld
+ �

c(w,C)
lC

, where c(w,C)
denotes the number of occurrences of w in the collection
C and lC the length of the collection. Let wa and wb be
two words as defined in the DF e↵ect, and let us further
assume that feedback documents are of the same length l

and equiprobable given q. Let A, B and ✏

0 be defined as:

A = (1� �)
c(wa, dj)

l
+ �

c(wa, C)

lC
, B = �

c(wb, C)

lC
, ✏0 = (1� �)

✏

l

where dj is the document defined in the DF e↵ect. Then:

FW (wa)
FW (wb)

=
AB

(A� ✏

0)(B + ✏

0)

And: (A� ✏

0)(B+ ✏

0) = AB+ ✏

0[(A�B)� ✏

0]. But A�B =

(1 � �)
c(wa,dj)

l , a quantity which is strictly greater than
(1��) ✏l = ✏

0 by the assumptions of the DF e↵ect. Thus, the
GRM model enforces the DF e↵ect when Jelinek-Mercer is
used. A similar development can be obtained for Dirichlet
smoothing. However, this model fails to enforce the IDF
e↵ect.

Let wa and wb two words such that p(wa|C) < p(wb|C)
and 8d 2 F t(wa, d) = t(wb, d) = td. Indeed (skipping again
the derivation details), log(FW (wa)) � log(FW (wb)) (and
hence FW (wa)� FW (wb)) has the sign of:

X

d

P (d|q) log �td + (1� �)p(wa|C)
�td + (1� �)p(wb|C)

a quantity which is strictly negative as p(wb|C) > p(wa|C).
This explains the results displayed in table 2, showing that
the GRM model selects terms with low IDF.

4.2 PRF under the PRP
Xu and Akella [21] propose an instantiation of the Proba-

bility Ranking Principle (PRP) in which relevant documents
are assumed to be generated from a Dirichlet Compound
Multinomial (DCM) distribution, or an approximation of it,
called eDCM and introduced in [10]. The PRF version of
this model simply assumes that the feedback documents are
relevant. Terms are then generated according to two latent
generative models based on the (e)DCM distribution and as-
sociated with two variables, relevant, zFR, and non-relevant,
zN . The variable zN is intended to capture general English
words occurring frequently in the whole collection, whereas
zFR is used to represent terms occurring in the feedback doc-
uments and pertinent to the user’s information need. The
parameters of the two components are estimated through
rather time-consuming and complex estimation procedures,
typically based on gradient descent or the EM algorithm.
[21] furthermore proposes two modifications of the EM algo-
rithm to estimate the parameters of the relevant component,
in a way similar to the one followed by [20]. Disregarding
the non-relevant component for the moment, the weight as-
signed to feedback terms by the relevant component is given
by (M-step of the EM algorithm):

P (w|zFR) /
X

d2F

I(c(w, d) > 0)P (zFR|d,w) + �c(w, q)

This formula, being based on the presence/absence of terms
in the feedback documents, enforces the DF e↵ect. However,
it does not rely on the number of occurrences and thus does
not enforce the TF e↵ect. That said, the higher the DF of
a term, the higher its TF is likely to be in average, so that
this model can nevertheless indirectly select high frequency
terms by selecting terms with high DF. We conjecture that
this is the case with the (e)DCM model, which seems to
behave well in practice. Finally, the EM steps also suggest
that this model satisfy the IDF condition, as the mixture
model does. We however have no theoretical proof for this.

4.3 PRF in DFR and Information Models
In DFR and information models, the original query is

modified to take into account the words appearing in F ac-
cording to the following scheme:

c(w, q

0) =
c(w, q)

maxw c(w, q)
+ �

Info(w,F)
maxw Info(w,F)
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PRF Model vs Conditions TF Concave IDF Doc Len DF
Mixture yes not su�ciently yes no no
Div Min yes yes not su�ciently yes yes

Geometric Relevance yes yes no yes yes
Bo yes no not systematically no no

Log-logistic yes yes yes yes yes

Table 3: Summary of main PRF models with respect to the conditions of Section 3

where � is a parameter controlling the modification brought
by F to the original query (c(w, q

0) denotes the updated
weight of w in the feedback query, whereas c(w, q) corre-
sponds to the weight in the original query). In this case:
FW (w) = Info(w,F).

Bo Model

Standard PRF models in the DFR family are the Bo mod-
els [1], which are defined by:

Info(w,F) = log2(1 + gw) + TF (w) log2(
1 + gw

gw
)

where gw = Nw
N in theBo1 model and gw = P (w|C)(

P
d2F ld)

in the Bo2 model. In other words, documents in F are
merged together and a geometric probability model (or a
di↵erent distribution, the choice of the distribution being
irrelevant for our argument) is used to measure the infor-
mative content of a word. As this model is DF agnostic,
it does not enforce the DF e↵ect. Furthermore, when us-
ing the geometric distribution, the Concavity e↵ect is not
enforced as the second derivative of FW (w) wrt to TF (w)
is null. Neither does it enforce the Document length e↵ect,
as feedback documents are merged together. Regarding the
IDF e↵ect, the derivative of Info(w,F) with respect to gw

can be positive or negative depending on the values of both
gw and TF (w). There is thus no guarantee that this model
is compliant with the IDF condition.

Log-logistic Model

In information-based models [2], the average information
brought by the feedback documents on a given term w is
used as a criterion to rank terms, which amounts to:

FW (w) = Info(w,F) =
1
n

X

d2F

� logP (Xw > t(w, d)|�w)

where t(w, d) is the normalized number of occurrences of w

in d (it is set to: c(w, d) log(1 + c

avgl
ld

)), and �w a param-

eter associated to w and set to: �w = Nw
N . Two instantia-

tions of the general information-based family are considered
in [2], respectively based on the log-logistic distribution and
a smoothed power law (SPL). We focus here on the log-
logistic model,which takes a simpler form and performs sim-
ilarly to the SPL model in PRF. The log-logistic model is
defined by:

FW (w) =
1
n

X

d2F

log(
t(w, d) + �w

�w
)

As the logarithm is a concave function, the log-logistic model
enforces the DF e↵ect by Theorem 1, as well as the Concav-
ity e↵ect. It is furthermore compliant with the DF and Doc-
ument length e↵ects as it based on the general information
formulation with a bursty distribution (as shown in [2]). Let
us take a closer look now at the IDF e↵ect.

Let wa and wb, two words such as in the IDF condition
(in particular, one has �b < �a), then:

FW (wa)� FW (wb) =
1
n

X

d2F

log
�a�b + �btd

�a�b + �atd

which is unconditionally negative. This model thus satisfies
the IDF condition.

4.4 Summary
The results we have obtained in this section provides a

clear explanation of the experimental results we have re-
ported in Section 2. We provide in Table 3 a summary of
the behavior of the main PRF models we have reviewed with
respect to the PRF conditions.

We now show that it is possible to exploit them further to
improve two well-known models: the mixture and geometric
relevance models.

5. IMPROVING MIX AND GRM
We now turn to the problem of improving existing models

so that they are compliant with the conditions developed
before. We focus here on two models, the mixture and geo-
metric relevance models, as they are the ones, just after the
log-logistic model, with the best performance in the experi-
ments reported in Section 2 (see Figure 1).

As noted before, the mixture model is deficient with re-
spect to the DF and Document Length e↵ects, and partly
with the Concavity e↵ect. This is due to the fact that the
M-step (equation 3, which defines the feedback weight) is
a linear function of c(w, d) (as before, one can approximate
the denominator of the M-step as the total length of the
feedback documents). One way to correct this is to replace
c(w, d) by a concave function (this will ensure both the Con-
cavity and DF e↵ects), and to normalize it by the document
length (so as to enforce the Document length e↵ect). To do
so, we consider a generalization of equation 2 defined by:

P

s(F|✓F ,�) =
VY

w=1

((1� �)P (w|✓F ) + �P (w|C))A(w) (5)

where A(w) replaces TF (w) and is defined by: A(w) =P
d2F f(c(w, d), ld) (TF (w) is the special case obtained when

f(c(w, d), ld) = c(w, d)).
We consider here two di↵erent forms for the function f :

f((c(w, d), ld) = int(Z
p

c(w, d))

f(c(w, d)) = int(Z
q

c(w,d)
ld

)

where Z is a large constant, here set to 10000, and where
int denotes the integer part. Both forms thus define integers
which are proportional to

p
c(w, d). Both forms are further-

more concave in c(w, d) (the second form additionally con-
tains a normalization by the document legnth). Equation 5
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Collection Settings MIX c1MIX c2MIX

ROBUST

n=10, tc=10 28.0 29.2† 29.4†

n=10, tc=20 28.7 29.8† 30.0†

n=20, tc=20 28.3 29.2† 29.5†

n=20, tc=50 28.5 29.1† 29.6†

TREC 1&2

n=10, tc=10 26.3 27.6† 28.3†

n=10, tc=20 27.0 28.1† 29.0†

n=20, tc=20 27.4 28.5† 29.2†

n=20, tc=50 28.0 28.8† 29.7†

Table 4: Results (MAP) for the corrected mixture
model. A † indicates that the di↵erence with the
standard mixture model (MIX) is significant (t-test
with p-value set to 0.05). Results in bold correspond
to the best results

thus corresponds to the likelihood of observations that are
no longer the number of occurrences of terms but the results
of the application of f on these numbers (hence the notation
Ps). The EM algorithm applied to this model leads to the
following update rules:

E(w)(i) =
(1� �)P (i(w|✓F )

(1� �)P (i)(w|✓F ) + �P

(i)(w|C)

P

(i+1)(w|✓F ) /
X

d2F

f(c(w, d), ld)E(w)(i) (6)

As before, FW (w) = P (w|✓F ). By theorem 1, as f(c(w, d), ld)
is strictly concave in c(w, d), the model satisfies the DF ef-
fect. Furthermore, it also satisfies the concavity e↵ect (as
the second derivative of FW with respect to c(w, d) has
the same sign of the second derivative of f with respect to
c(w, d), which is negative as f is strictly concave). In addi-
tion, if f integrates a normalization by the document length
ld, then the document length e↵ect is enforced, which is the
case for the second function we consider (but not the first
one).

Table 4 gives the MAP (mean average precision) results
obtained with this new model. The function f((c(w, d), ld) =p

c(w, d) corresponds to the model c1MIX, and the func-

tion f(c(w, d)) =
q

c(w,d)
ld

to the model c2MIX. As one can

note, both corrections significantly improve the performance
of the standard mixture model, the best results being pro-
vided by the corrected mixture model that enforces all the
conditions we have reviewed previously.

The modification of the geometric relevance model we pro-
pose makes use of a di↵erent approach. We follow here the
recommendation developed in [18] stating that the term se-
lection and term weighting functions for PRF should be dif-
ferent. As the GRM model does not satisfy the IDF e↵ect,
we make use here, for term selection, of models that strongly
enforce this e↵ect and behaves well, namely the corrected
mixture model (c2MIX) satisfying all PRF conditions (lead-
ing to the model c2+GRM).

Finally, table 5 compares the performance of the three
best PRF models considered and developed in this study:
the log-logistic model (LL), the corrected mixture model
(c2MIX) and the corrected geometric relevance model (c2
+GRM). As one can note, the log-logistic and corrected
mixture model behave similarly, the log-logistic model being
slightly better on TREC while the corrected mixture model
is better on ROBUST. Furthermore, the performance for the

Coll. Settings LL c2MIX c2+GRM

ROBUST

n=10,tc=10 29.4 29.4 28.9
n=10,tc=20 29.7 30 29.6
n=20,tc=20 28.7 29.5 29.0
n=20,tc=50 28.6† 29.6 29.5

TREC 1&2

n=10,tc=10 28.7 28.3 27.6
n=10,tc=20 29.6 29 28.2 †

n=20,tc=20 29.9 29.2 28.4†

n=20,tc=50 29.7 29.7 28.7†

Table 5: Overall results (MAP) for the three “best”
models. A † indicates that the di↵erence with the
best model (in bold) is significant (t-test with p-
value set to 0.05)

corrected geometric relevance model is similar to the other
ones on ROBUST, and slightly below the others on TREC.
However, the GRM weighting function does not bring im-
provements compared to the c2MIX model.

6. RELATED WORK
We have studied here the main characteristics of PRF

reweighting schemes through several constraints reweight-
ing functions should satisfy. This is to our knowledge the
first study to propose general theoretical characterizations
for PRF functions. There are however a certain number
of additional elements that can be used to improve perfor-
mance of PRF systems. The study presented in [15], for ex-
ample, proposes a learning approach to determine the value
of the parameter mixing the original query with the feedback
terms. Interestingly, such a parameter can be set on a query-
dependent manner for improved performance. The study
presented in [17] focuses on the use of positional and prox-
imity information in the relevance model for PRF, where
position and proximity are relative to query terms. Again,
this information leads to improved performance. It is not
clear yet how one can integrate such an information in the
other PRF models we have reviewed, in particular in the
LL and SPL models, and this is an aspect one will have to
investigate further. Another kind of information that can
successfully be exploited in PRF is the one related to query
aspects.

The study presented in [7] for example proposes an algo-
rithm to identify query aspects and automatically expand
queries in a way such that all aspects are well covered. A
similar strategy can be deployed on top of any PRF reweight-
ing function, so as to guarantee a certain aspect coverage in
the newly formed query. Another comprehensive, and re-
lated, study is the one presented in [5, 9]. In this study, a
unified optimization framework is retained for robust PRF.
The constraints considered however di↵er from the constraints
we have defined, as they aim at capturing diversity through
aspect coverage. The general framework of concave-convex
optimization (fully detailed in [4]) is nevertheless interest-
ing and bridges several di↵erent models [9]. Lastly, several
studies have recently put forward the problem of uncertainty
when estimating PRF weights [6, 14]. These studies show
that resampling feedback documents is beneficial as it allows
a better estimate of the weights of the terms to be consid-
ered for feedback. Interestingly, these approaches can be
deployed with any PRF reweighting model and allow a sim-
ple and neat integration of the DS constraint in any PRF
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model, as the resampling procedure is based on the score of
the document obtained in the first retrieval step.

Compared to [3] and [16], the study presented here goes
beyond these previous studies by considering a larger set
of properties (related to the classical IR conditions), and
by analyzing a large set of PRF models according to their
behavior wrt to all the properties considered. Only through
this complete theoretical study were we able to spot the IDF
deficiencies of both the Relevance Model (including its gen-
eralized version) and the Divergence Minimization model.
The development presented here provides a clear explana-
tion on why the log-logistic model outperforms the other
models in PRF settings. Lastly, the framework we have
developed here is consistent with di↵erent empirical obser-
vations.

7. CONCLUSION
We have analyzed in this paper how di↵erent PRF models

behave, through the characteristics of the terms they select
and through their performance on two widely used test col-
lections. We have then introduced conditions PRF models
should satisfy, namely the TF, Concavity, IDF, Document
length and DF e↵ects. We have then studied whether stan-
dard PRF models satisfy these conditions or not. In addition
to explaining the experimental analysis we have conducted,
the results of this study revealed that:

(a) the mixture model, from the language modeling family,
as well as the Bo model, from the DFR family, are de-
ficient with respect to the Concavity, Document length
and DF e↵ects;

(b) the divergence minimization and geometric relevance
models, also from the language modeling family, do
not su�ciently enforce the IDF e↵ect (the geometric
relevance model simply fails to enforce this e↵ect);

(c) the log-logistic model, from the information family, sat-
isfies all the PRF conditions.

In addition to explain the results reported here, these find-
ings also explain the results reported in other studies.

Lastly, we have proposed possible corrections of the mix-
ture model (certainly the most widely used PRF model) and
the geometric relevance model. The correction of the mix-
ture model, based on a generalization of the equation at he
basis of the model, satisfies all the PRF conditions and sig-
nificantly outperform the standard formulation. It yields a
model on par with the best PRF models we have reviewed.
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