
Cassandra at eBay

August 8, 2012

Jay Patel
Architect, Platform Systems
@pateljay3001

Time left: 29m 59s

 eBay Marketplaces

 97 million active buyers and sellers

 200+ million items

 2 billion page views each day

 80 billion database calls each day

 5+ petabytes of site storage capacity

 80+ petabytes of analytics storage capacity

2

How do we scale databases?
 Shard

– Patterns: Modulus, lookup-based, range, etc.

– Application sees only logical shard/database

 Replicate

– Disaster recovery, read availability/scalability

 Big NOs

– No transactions

– No joins

– No referential integrity constraints

3

We like Cassandra

 Multi-datacenter (active-active)

 Availability - No SPOF

 Scalability

4

We also utilize MongoDB & HBase

 Write performance

 Distributed counters

 Hadoop support

Are we replacing RDBMS with NoSQL?

 Some use cases don’t fit well - sparse data, big data, schema
optional, real-time analytics, …

 Many use cases don’t need top-tier set-ups - logging, tracking, …

5

Not at all! But, complementing.

A glimpse on our Cassandra deployment

 Dozens of nodes across multiple clusters

 200 TB+ storage provisioned

 400M+ writes & 100M+ reads per day, and growing

 QA, LnP, and multiple Production clusters

6

Use Cases on Cassandra

Social Signals on eBay product & item pages

Hunch taste graph for eBay users & items

Time series use cases (many):

 Mobile notification logging and tracking

 Tracking for fraud detection

 SOA request/response payload logging

 RedLaser server logs and analytics

7

8

Served by
Cassandra

Manage signals via “Your Favorites”

9

Whole page is
served by
Cassandra

Why Cassandra for Social Signals?

 Need scalable counters

 Need real (or near) time analytics on collected social data

 Need good write performance

 Reads are not latency sensitive

10

Deployment

11

Topology - NTS
RF - 2:2
Read CL - ONE
Write CL – ONE

Data is backed up periodically
to protect against human or
software error

User request has no datacenter affinity

Non-sticky load balancing

Data Model

depends on query patterns

12

Data Model (simplified)

13

Wait…

14

Duplicates!

Oh, toggle button!
Signal --> De-signal --> Signal…

Yes, eventual consistency!

One scenario that produces duplicate signals in UserLike CF:

1. Signal

2. De-signal (1st operation is not propagated to all replica)

3. Signal, again (1st operation is not propagated yet!)

15

So, what’s the solution? Later…

Social Signals, next phase: Real-time Analytics

16

 Most signaled or popular items per affinity groups (category, etc.)

 Aggregated item count per affinity group

Example affinity group

Initial Data Model for real-time analytics

Update counters for both individual item
and all the affinity groups that item
belongs to

Items in an affinitygroup
is physically stored
sorted by their signal
count

Deployment, next phase

Topology - NTS
RF - 2:2:2

19

item1

user2

user1

item2

buy

bid

sell watch

Graph in Cassandra

Event consumers listen for site events (sell/bid/buy/watch) & populate graph in Cassandra

20

 30 million+ writes daily
 14 billion+ edges already

 Batch-oriented reads
 (for taste vector updates)

 Mobile notification logging and tracking

 Tracking for fraud detection

 SOA request/response payload logging

 RedLaser server logs and analytics

21

A glimpse on Data Model

RedLaser tracking & monitoring console

23

Remember the duplicate problem in Use Case #1?

24

Let’s see some options we considered to solve this…

That’s all about the use cases..

Option 1 – Make ‘Like’ idempotent for UserLike

 Remove time (timeuuid) from the composite column name:

 Multiple signal operations are now Idempotent

 No need to read before de-signaling (deleting)

25

 X Need timeuuid for ordering!
 Already have a user with more than 1300 signals

Option 2 – Use strong consistency

 Local Quorum

– Won’t help us. User requests are not geo-load balanced
(no DC affinity).

 Quorum

– Won’t survive during partition between DCs (or, one of the
DC is down). Also, adds additional latency.

26

 X Need to survive!

Option 3 – Adapt to eventual consistency

27

If desire survival!

http://www.strangecosmos.com/content/item/101254.html

Adjustments to eventual consistency

De-signal steps:

– Don’t check whether item is already signaled by a user, or not

– Read all (duplicate) signals from UserLike_unordered (new CF to avoid reading
whole row from UserLike)

– Delete those signals from UserLike_unordered and UserLike

28

Still, can get duplicate signals or false positives as there is a ‘read before delete’.

Not a full story! To shield further, do ‘repair on read’.

Lessons & Best Practices

• Choose proper Replication Factor and Consistency Level.

– They alter latency, availability, durability, consistency and cost.

– Cassandra supports tunable consistency, but remember strong consistency is not free.

• Consider all overheads in capacity planning.

– Replicas, compaction, secondary indexes, etc.

• De-normalize and duplicate for read performance.

– But don’t de-normalize if you don’t need to.

• Many ways to model data in Cassandra.

– The best way depends on your use case and query patterns.

More on http://ebaytechblog.com?p=1308

http://ebaytechblog.com?p=1308

30

@pateljay3001

#cassandra12

Thank You

