
Data-Intensive Distributed Computing

Data Infrastructure for Machine Learning

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

CS 451/651 (Fall 2025)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

Week 6: October 9

These slides are available at http://lintool.github.io/bigdata-2025f/

(v1.01)



Key Questions

What are the key components of an ML solution?

How is the supervised machine learning problem formulated?

What roles do data platforms and data engineering play?



Model

👍

amazing spot for good 
food & a fun time 🍕🍝 
they offer a super unique 
dine-in experience with 
their interactive tables! 
also love that they have 
innovative weekly feature 
dishes 😋

Instance

Prediction



Model

👍

amazing spot for good 
food & a fun time 🍕🍝 
they offer a super unique 
dine-in experience with 
their interactive tables! 
also love that they have 
innovative weekly feature 
dishes 😋

Instance

Prediction

xi = [x1, x2, x3, . . . , xd]

y 2 {0, 1}Feature Vector

f : X ! Y



Model

Input Output
👍

👎

Model learns from the data

(review, 
👍

 )
(review, 

👎
 )

(review, 
👍

 )
(review, 

👍
 )

(review, 
👎

 )
(review, 

👎
 )

Machine learning algorithm 
adjusts the model parameters

f : X ! Y

Components of 
an ML solution

(data, features, model, optimization)



Model

Input Output
👍

👎

(review, 
👍

 )
(review, 

👎
 )

(review, 
👍

 )
(review, 

👍
 )

(review, 
👎

 )
(review, 

👎
 )

Trained

ModelTrained

Deployment

Inference / Prediction

A group of us stopped by 
yesterday afternoon to 
enjoy an outdoor lunch. 
The food was da bomb. 👍



Gather training data
Train model

Deploy model

Goal for today: Dispel the myth of what a 
data scientist actually does.

Applied {ML, AI} Researcher, etc.

Got it!



Applied ML in Academia

Download interesting dataset (comes with the problem)

Run baseline model
Train/Test

Build better model
Train/Test

Does new model beat baseline?
Yes: publish a paper!

No: try again!

Origins:



Cool, you do that in industry, 
except you get paid a lot more!



Goal for today: Dispel the myth of what a 
data scientist actually does.

Applied {ML, AI} Researcher, etc.

<pause/>



It’s impossible to overstress this: 80% of 
the work in any data project is in cleaning 

the data. – DJ Patil “Data Jujitsu”

Source: Wikipedia (Jujitsu)





Gather training data
Train model

Deploy model

Raw data 
(e.g., from ELT)

High-quality training data

GI/GO



Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 
Governance Layer

“traditional”
Data Warehouse



Where’s the data?
Who owns that data?

Can I have access to it?
What does this field mean?

Why does it have this value?
What’s all this $#@%&?

Wait, this isn’t actually what I need.



Source: Wikipedia (Plumbing)



On finding things…



CamelCase

smallCamelCase

snake_case

camel_Snake

dunder__snake

uid UserId

userId
userid

user_id user_Id

On naming things…



Gather training data
Train model

Deploy model

Raw data 
(e.g., from ELT)

High-quality training data

Assume you’ve got a high-quality labeled dataset…



Gather training data
Train model

Deploy model



The Task

Given: D = {(xi, yi)}ni
feature vector

label

xi = [x1, x2, x3, . . . , xd]

y 2 {0, 1}

Induce:
Such that loss is minimized

f : X ! Y

1

n

nX

i=0

`(f(xi), yi)

loss function

Typically, we consider functions of a parametric form:

argmin
✓

1

n

nX

i=0

`(f(xi; ✓), yi)

model parameters



How do you do it?
Use sklearn: model.fit(X, y)

Didn’t work? use pkg1: model1.fit(X, y)
Didn’t work? use pkg1: model2.fit(X, y)
Didn’t work? use pkg2: modelA.fit(X, y)



Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 
Governance Layer

Model
Trainer



(Batch) Gradient Descent

Stochastic Gradient Descent (SGD)

✓(t+1)  ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

✓(t+1)  ✓(t) � �(t)r`(f(x; ✓(t)), y)

Gradient Descent

“batch” learning: update model after considering
 all training instances

“online” learning: update model after considering
 each (randomly selected) training instance



(Batch) Gradient Descent

Source: Wikipedia (Hills)



Stochastic Gradient Descent

Source: Wikipedia (Water Slide)



worker worker worker worker

Coordinator

compute partial gradients in parallel

update model 

✓(t+1)  ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

(Batch) Gradient Descent

worker worker worker worker

Coordinator

compute partial gradients in parallel

update model 

worker worker worker worker

Coordinator

compute partial gradients in parallel

update model 
What’s the 
issue here?



worker
single worker streams 
through instances and 
performs model updates

Stochastic Gradient Descent
✓(t+1)  ✓(t) � �(t)r`(f(x; ✓(t)), y)

Important: Model update after every instance

How do you parallelize?

worker worker worker worker

Coordinator
worker streams through instances and 
perform model updates (uncoordinated) update all models 

Model update after every instance



worker
single worker streams 
through instances and 
performs model updates

Stochastic Gradient Descent w/ Mini-Batches
✓(t+1)  ✓(t) � �(t)r`(f(x; ✓(t)), y)

Important: Model update after every instance
Problem: updates are very noisy

Solution: mini-batches
Divide dataset into small batches (e.g., 64)

Perform gradient descent on each mini-batch
Update model after processing each mini-batch

worker worker worker worker

Coordinator
worker streams through instances and 
perform model updates (uncoordinated) update all models 

Model update after every instance
mini-batch



Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 
Governance Layer

Model
Trainer



Gather training data
Train model

Deploy model

How do you know if it’s better?
(Better than what?)



How do you know it’s better?

If you can’t measure it, 
you can’t improve it…



Define “better”

“Performance”
Faster: latency, throughput, etc.

Cheaper: cost per query, watt per query, etc.
More scalable: server load, memory usage, etc.

Higher-quality output



Define “higher quality”

Things you can measure but don’t have ground truth
Clickthrough rates

Time on site
…

Things you can measure but may have “ground truth”
Accuracy

Precision, recall
nDCG

…

Things that are difficult to measure
Quality of a summary

Quality of an answer to a question
Quality of an LLM response

…



Avoid post hoc justifications

tl;dr – evaluation is really hard
What are you trying to accomplish?

Tension between user and business goals



Okay, we know what to measure

When the data and the anecdotes disagree, 
the anecdotes are usually right. 

                                          – Jeff Bezos

Okay, we can measure it

assume
^ assume

^

Benchmark datasets
Static, can be internal or external

Batch evaluations
“Prospective”, internal data – but on the data platform

A/B tests
Prospective, internal data – but “in the wild”



The Task

Given: D = {(xi, yi)}ni
feature vector

label

xi = [x1, x2, x3, . . . , xd]

y 2 {0, 1}

Induce:
Such that loss is minimized

f : X ! Y

1

n

nX

i=0

`(f(xi), yi)

loss function

Typically, we consider functions of a parametric form:

argmin
✓

1

n

nX

i=0

`(f(xi; ✓), yi)

model parameters

Why isn’t this enough?



Metrics

True Positive 
(TP)

True Negative 
(TN)

False Positive 
(FP)

= Type 1 Error

False Negative
(FN)

= Type 1I Error

Actual

Pr
ed

ic
te

d
Positive Negative

Po
si

tiv
e

N
eg

at
iv

e

Precision 
= TP/(TP + FP)

Miss rate
= FN/(FN + TN)

Recall or TPR
= TP/(TP + FN)

Fall-Out or FPR
= FP/(FP + TN)



ROC and PR Curves
The Relationship Between Precision-Recall and ROC Curves

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
r
u
e
 
P
o
s
i
t
i
v
e
 
R
a
t
e

False Positive Rate

Algorithm 1
Algorithm 2

(a) Comparison in ROC space

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
P
r
e
c
i
s
i
o
n

Recall

Algorithm 1
Algorithm 2

(b) Comparison in PR space

Figure 1. The difference between comparing algorithms in ROC vs PR space

tween these two spaces, and whether some of the in-
teresting properties of ROC space also hold for PR
space. We show that for any dataset, and hence a
fixed number of positive and negative examples, the
ROC curve and PR curve for a given algorithm con-
tain the “same points.” Therefore the PR curves for
Algorithm I and Algorithm II in Figure 1(b) are, in a
sense that we formally define, equivalent to the ROC
curves for Algorithm I and Algorithm II, respectively
in Figure 1(a). Based on this equivalence for ROC and
PR curves, we show that a curve dominates in ROC
space if and only if it dominates in PR space. Sec-
ond, we introduce the PR space analog to the convex
hull in ROC space, which we call the achievable PR
curve. We show that due to the equivalence of these
two spaces we can efficiently compute the achievable
PR curve. Third we demonstrate that in PR space
it is insufficient to linearly interpolate between points.
Finally, we show that an algorithm that optimizes the
area under the ROC curve is not guaranteed to opti-
mize the area under the PR curve.

2. Review of ROC and Precision-Recall

In a binary decision problem, a classifier labels ex-
amples as either positive or negative. The decision
made by the classifier can be represented in a struc-
ture known as a confusion matrix or contingency ta-
ble. The confusion matrix has four categories: True
positives (TP) are examples correctly labeled as posi-
tives. False positives (FP) refer to negative examples
incorrectly labeled as positive. True negatives (TN)
correspond to negatives correctly labeled as negative.
Finally, false negatives (FN) refer to positive examples
incorrectly labeled as negative.

A confusion matrix is shown in Figure 2(a). The con-
fusion matrix can be used to construct a point in either
ROC space or PR space. Given the confusion matrix,
we are able to define the metrics used in each space
as in Figure 2(b). In ROC space, one plots the False
Positive Rate (FPR) on the x-axis and the True Pos-
itive Rate (TPR) on the y-axis. The FPR measures
the fraction of negative examples that are misclassi-
fied as positive. The TPR measures the fraction of
positive examples that are correctly labeled. In PR
space, one plots Recall on the x-axis and Precision on
the y-axis. Recall is the same as TPR, whereas Pre-
cision measures that fraction of examples classified as
positive that are truly positive. Figure 2(b) gives the
definitions for each metric. We will treat the metrics
as functions that act on the underlying confusion ma-
trix which defines a point in either ROC space or PR
space. Thus, given a confusion matrix A, RECALL(A)
returns the Recall associated with A.

3. Relationship between ROC Space
and PR Space

ROC and PR curves are typically generated to evalu-
ate the performance of a machine learning algorithm
on a given dataset. Each dataset contains a fixed num-
ber of positive and negative examples. We show here
that there exists a deep relationship between ROC and
PR spaces.

Theorem 3.1. For a given dataset of positive and
negative examples, there exists a one-to-one correspon-
dence between a curve in ROC space and a curve in PR
space, such that the curves contain exactly the same
confusion matrices, if Recall ̸= 0.

Source: Davis and Goadrich. (2006) The Relationship Between Precision-Recall and ROC curves

AUC



Training

Test

What happens if you need more? Cross-Validation

Training/Testing Splits

argmin
✓

1

n

nX

i=0

`(f(xi; ✓),
yi)

Precision, Recall, 

etc.

Often, benchmark datasets



“Prospective” Evaluations

Training Test

Why is this better?

time

Often, internal batch evaluations

Where does this happen?



A/B Testing

Control

Gather metrics, compare alternatives

X %

Treatment

100 - X %

(Not ready for this yet…)



Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 
Governance Layer

Model
Trainer



Gather training data
Train model

Deploy model

How do you know if it’s better?
But if it’s not?





Components of a ML Solution

Data
Features
Model

Optimization



Gather training data
Train model

Deploy model

Okay, I really think it’s better!



Gather training data
Train model

Deploy model



Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 
Governance Layer

Model
Trainer



How do you do it?
model.deploy()



Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Frontend

Backend

users

OLTP 
RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 
Governance Layer

Model
Trainer

What about 
the features?



Source: Wikipedia (Plumbing)



A/B Testing

Control

Gather metrics, compare alternatives

X %

Treatment

100 - X %



Gather training data
Train model

Deploy model

Wait, you’re not done yet!
Deployment is not a one-time thing…



How frequently is the model retrained?
What are its upstream dependencies?

What if training fails?
How frequently is the model deployed?

What if the deployment fails?
After deployment, what if the service stops working?

What if the quality degrades over time?



Gather training data
Train model

Deploy model

Goal for today: Dispel the myth of what a 
data scientist actually does.

Applied {ML, AI} Researcher, etc.



Source: Wikipedia (Hills)



Source: Wikipedia (Plumbing)


