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This Week

Now: Orchestrator
DAGs, ML pipelines, Airflow, etc.

Next: Data Management in Production
Data Governance, Metadata, Feature Stores



Build a useful product

analyze user behavior 

to extract insights

transform insights 

into actions

$
(hopefully)

The Data Flywheel
(a virtuous cycle)



What’s this course about?
The infrastructure that supports the data flywheel.

data platforms + data engineering



What problems do data platforms solve?
Ingesting, storing, manipulating, maintaining, serving… 

the data that supports the data flywheel.
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ETL everywhere; 

How to run them?
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Creating Spark jobs is not enough!
How are you going to run it?



Creating Spark jobs is not enough!
How are you going to run it?

Script Cron Jobs

Scheduled to run automatically

Run multiple ETLs Run multiple ETLs

Manual retry No retry

Wake up in mid-night to run it

Multiple scripts are not easy to 

handle!

Multiple jobs can run over each 

other



Workflow orchestrators

Declare a set of tasks, specify dependencies, retry policies, schedules, 

triggers, and monitor the whole pipeline.

Run multiple ETLs

Scheduled to run automatically – not only based on time but also using triggers!

Flexible retry policies

Clear dependencies between jobs



What is Workflow orchestration?

It is the process of managing the execution of independent tasks (e.g. 

Spark jobs) across multiple systems and time.

Common features:
• Dependency management: specify that task B depends on task A’s success.

• Scheduling: specify when a task can run and how often

• Retry policies: specify how many times to retry a failed job, any delay policies.

• Backfills / catchup: specify how to handle missed past intervals.

• Monitoring & Alerting: view the overall status of the system including failures 

and latency.



Airflow DAG Example

Retry policy

Stateless DAG

Define DAG details

Define Extract step

Define Transform step

Define Load step

Order to run these steps



Airflow DAG Example

Live Demo

http://localhost:8080/












Retry policy







Airflow Recent release: 3.1.0

https://airflow.apache.org/blog/airflow-3.1.0/



State of Airflow in 2025

Thousands of DAGs 
are running daily.

Airflow remains the 
scheduler and 
dependency 

manager, not the 
compute engine.

Orchestrate jobs 
across heterogenous 

systems.

DAGs often have 
data quality and 
validation steps.

External data 
availability often 

start DAGs in 
integration use 

cases.

Some teams use 
DAGs beyond data 
and ML, including 
sending emails, 

moving files, etc.



Limitation of Airflow

DAGs are defined when the 
DAG file is parsed, but 
complex workflows are data-
dependent!

Example: One task discover 20 tables in 
an S3 path, then need to create 20 
different tasks with different schema 
definition. Everything is doable with 
code, but it gets messy!

Airflow is fundamentally a 
batch scheduler; one task 
needs to finish for another to 
start! 

Example: Executing a long running 
(streaming) task like Kafka consumer 
that continuously consume data and 
generate results cause the DAG to 
stuck!



Modern Orchestrators

Tool Strengths Challenges

Airflow Very mature, strong for batch ETL 

/ Python orchestration

Static DAGs, no streaming support

Prefect Supports dynamic workflow Limited non-Python support, can 

support data flows but not optimized

dbt Excellent for SQL and data 

lineage

SQL-only, and no streaming support

Kubeflow Specialize in ML pipelines on K8; 

native TensorFlow/PyTorch 

integration

Requires K8 expertise, limited 

outside ML, heavy for small projects 

– no general support for streaming

It is not uncommon to use multiple orchestrators in the same enterprise



Challenge with streaming workflows

A B C

A

B

C

A task can start processing the output before its predecessor finishes!

Batch

Pipeline 

/ Stream



Streaming Orchestration

Ingest data 
stream

Publish to Kafka

Flink/Spark 
Streaming to 
process and 
enrich data

In-memory model 
score each event

Results are 
written into 
Lakehouse

Airflow Jobs:

•Backfills

•Data Quality
•Model training

Ingestion: Kafka

Stream computing: Flink | Spark Streaming 

Model serving: Flink operator

Output: Kafka | S3 | Lakehouse

Batch orchestration: Airflow | Prefect



ML workflow

Ingest Data
Feature 

Engineering
Training 
Model

Deploy Monitor

Errors in data ingestion, stop the 

whole workflow from running!



ML workflow

Ingest Data
Feature 

Engineering
Training 
Model

Deploy Monitor

When data become available, 

“Backfill” is needed for delayed data!

e.g. weekly aggregation should be 

recomputed.



ML workflow

Ingest Data
Feature 

Engineering
Training 
Model

Deploy Monitor

Failures in model training block new 

deployments. 

In practice, expensive training could 

be avoided if not enough new data is 

available?



Data Science Setup in Enterprises:
Medallion Architecture

Source: https://www.databricks.com/glossary/medallion-architecture



Data Science Setup in Enterprises:
Innovation Area



When not to use Orchestrator?



Is orchestrator 
enough for 

data pipeline?
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