
Data-Intensive Distributed Computing

Rubber, Meet Road: Orchestrators

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

CS 451/651 (Fall 2025)

Khaled Ammar
Rocket Innovation Studio

Week 5: September 30

(v1. 0)

These slides are available at https://lintool.github.io/cs451-2025f/

CS4312

2009 20162002

Khaled Ammar
Director of Data Science – Applied Research

Rocket Innovation Studio

This Week

Now: Orchestrator
DAGs, ML pipelines, Airflow, etc.

Next: Data Management in Production
Data Governance, Metadata, Feature Stores

Build a useful product

analyze user behavior

to extract insights

transform insights

into actions

$
(hopefully)

The Data Flywheel
(a virtuous cycle)

What’s this course about?
The infrastructure that supports the data flywheel.

data platforms + data engineering

What problems do data platforms solve?
Ingesting, storing, manipulating, maintaining, serving…

the data that supports the data flywheel.

Frontend

Backend

users

OLTP

RDBMS

Frontend

Backend

users

OLTP

RDBMS

Frontend

Backend

users

OLTP

RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata +

Governance Layer

“traditional”

Data Warehouse

ETL everywhere;

How to run them?

OLTP

RDBMS Data Lake
ETL

ETL

ETL

Creating Spark jobs is not enough!
How are you going to run it?

Creating Spark jobs is not enough!
How are you going to run it?

Script Cron Jobs

Scheduled to run automatically

Run multiple ETLs Run multiple ETLs

Manual retry No retry

Wake up in mid-night to run it

Multiple scripts are not easy to

handle!

Multiple jobs can run over each

other

Workflow orchestrators

Declare a set of tasks, specify dependencies, retry policies, schedules,

triggers, and monitor the whole pipeline.

Run multiple ETLs

Scheduled to run automatically – not only based on time but also using triggers!

Flexible retry policies

Clear dependencies between jobs

What is Workflow orchestration?

It is the process of managing the execution of independent tasks (e.g.

Spark jobs) across multiple systems and time.

Common features:
• Dependency management: specify that task B depends on task A’s success.

• Scheduling: specify when a task can run and how often

• Retry policies: specify how many times to retry a failed job, any delay policies.

• Backfills / catchup: specify how to handle missed past intervals.

• Monitoring & Alerting: view the overall status of the system including failures

and latency.

Airflow DAG Example

Retry policy

Stateless DAG

Define DAG details

Define Extract step

Define Transform step

Define Load step

Order to run these steps

Airflow DAG Example

Live Demo

http://localhost:8080/

Retry policy

Airflow Recent release: 3.1.0

https://airflow.apache.org/blog/airflow-3.1.0/

State of Airflow in 2025

Thousands of DAGs
are running daily.

Airflow remains the
scheduler and
dependency

manager, not the
compute engine.

Orchestrate jobs
across heterogenous

systems.

DAGs often have
data quality and
validation steps.

External data
availability often

start DAGs in
integration use

cases.

Some teams use
DAGs beyond data
and ML, including
sending emails,

moving files, etc.

Limitation of Airflow

DAGs are defined when the
DAG file is parsed, but
complex workflows are data-
dependent!

Example: One task discover 20 tables in
an S3 path, then need to create 20
different tasks with different schema
definition. Everything is doable with
code, but it gets messy!

Airflow is fundamentally a
batch scheduler; one task
needs to finish for another to
start!

Example: Executing a long running
(streaming) task like Kafka consumer
that continuously consume data and
generate results cause the DAG to
stuck!

Modern Orchestrators

Tool Strengths Challenges

Airflow Very mature, strong for batch ETL

/ Python orchestration

Static DAGs, no streaming support

Prefect Supports dynamic workflow Limited non-Python support, can

support data flows but not optimized

dbt Excellent for SQL and data

lineage

SQL-only, and no streaming support

Kubeflow Specialize in ML pipelines on K8;

native TensorFlow/PyTorch

integration

Requires K8 expertise, limited

outside ML, heavy for small projects

– no general support for streaming

It is not uncommon to use multiple orchestrators in the same enterprise

Challenge with streaming workflows

A B C

A

B

C

A task can start processing the output before its predecessor finishes!

Batch

Pipeline

/ Stream

Streaming Orchestration

Ingest data
stream

Publish to Kafka

Flink/Spark
Streaming to
process and
enrich data

In-memory model
score each event

Results are
written into
Lakehouse

Airflow Jobs:

•Backfills

•Data Quality
•Model training

Ingestion: Kafka

Stream computing: Flink | Spark Streaming

Model serving: Flink operator

Output: Kafka | S3 | Lakehouse

Batch orchestration: Airflow | Prefect

ML workflow

Ingest Data
Feature

Engineering
Training
Model

Deploy Monitor

Errors in data ingestion, stop the

whole workflow from running!

ML workflow

Ingest Data
Feature

Engineering
Training
Model

Deploy Monitor

When data become available,

“Backfill” is needed for delayed data!

e.g. weekly aggregation should be

recomputed.

ML workflow

Ingest Data
Feature

Engineering
Training
Model

Deploy Monitor

Failures in model training block new

deployments.

In practice, expensive training could

be avoided if not enough new data is

available?

Data Science Setup in Enterprises:
Medallion Architecture

Source: https://www.databricks.com/glossary/medallion-architecture

Data Science Setup in Enterprises:
Innovation Area

When not to use Orchestrator?

Is orchestrator
enough for

data pipeline?

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

