
Data-Intensive Distributed Computing

Batch Processing II

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

CS 451/651 (Fall 2025)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

Week 4: September 25, 2025

(v1.00)

These slides are available at https://lintool.github.io/cs451-2025f/

Key Questions

In what ways does Spark improve over MapReduce?

How is distributed group by implemented efficiently at scale?

How do commutative and associative operations

contribute to efficient distributed execution?

How does partitioning contribute to efficient distributed execution?

How do these concepts come together in efficient joins at scale?

Source: Google

The datacenter is the computer!
What’s the instruction set?

map / reduce

Source: Wikipedia (ENIAC)

So you like programming in assembly?

Source: Google

The datacenter is the computer!
What’s the instruction set?

map / filter / flatMap ...

groupByKey / reduceByKey / join / cogroup ...

That’s it.

MapReduce results = records.map(...)

 .reduce(...)

results2 = results1.map(...)

 .reduce(...)

Spark results = rdd.foo(...)

 .bar(...)

 .baz(...)

More? Why do you care?

1. All abstractions are leaky

2. Important to develop intuitions

3. What do you want to be?

4. Curiosity

The essence of abstraction is preserving information that is relevant in a

given context, and forgetting information that is irrelevant in that context.

 – computer scientist John V. Guttag

You don’t have to be an engineer to be be a racing driver,

but you do have to have mechanical sympathy

 – Formula One driver Jackie Stewart

Spark Stack

Physical Operators

RDDs

DataFrames / DataSets

Who lives where?

Implementation of distributed group by

… implications for algorithm design

Technical Deep Dives

The importance of partitioning

Case study in relational joins

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

Spark Execution Plan

We need communication

???

r'n-1 rnr’3 r’4r’1 r'2

rn-1 rnr3 r4r1 r2

mapmapmap …

…

…

…

How is this implemented?

Why do you care?

1. All abstractions are leaky

2. Important to develop intuitions

3. What do you want to be?

4. Curiosity

All abstractions are leaky
example: get(x)

Storage Hierarchy

Local Machine
cache, memory, SSD, magnetic disks

capacity, latency, bandwidth

Remote Machine

Same Rack

Remote Machine

Different Rack

Remote Machine

Different Datacenter

How fast is your get?

not all gets are

the same!

All abstractions are leaky
example: get(x)

You shouldn’t need to care about locality, but you kinda need to…

Here’s another one…

Seek vs. Scans

Consider a 1 TB database with 100 byte records
We want to update 1 percent of the records

Scenario 2: Rewrite all records
Assume 100 MB/s throughput

Time = 5.6 hours(!)

Scenario 1: Mutate each record
Each update takes ~30 ms (seek, read, write)

108 updates = ~35 days

Source: Ted Dunning, on Hadoop mailing list

Lesson? Random access is expensive!

What’s the point?

At scale, sorting is the most efficient implementation

of distributed group by!

Sort/Shuffle/Merge MapReduce

Map side
Map outputs are buffered in memory in a circular buffer

When buffer reaches threshold, contents are “spilled” to disk

Spills are merged into a single, partitioned file (sorted within each partition)

Combiner runs during the merges

Reduce side
Map outputs are copied over to the reducer machines

“Sort” is a multi-pass merge of map outputs (happens in memory and on disk)

Final merge pass goes directly into reducer

Mapper

Reducer

other mappers

other reducers

circular buffer

(in memory)

spills (on disk)

merged spills

(on disk)

intermediate files

(on disk)

Combiner

Sort/Shuffle/Merge MapReduce

Barrier between map and reduce phases
But runtime can begin copying intermediate data earlier

Sort/Shuffle/Merge MapReduce

Source: https://0x0fff.com/hadoop-mapreduce-comprehensive-description/

Spark Shuffle Implementations
Sort shuffle

Source: http://0x0fff.com/spark-architecture-shuffle/

Spark Shuffle Implementations
Hash shuffle

Source: http://0x0fff.com/spark-architecture-shuffle/

What’s the point?

Implementation of distributed group by

… implications for algorithm design

Technical Deep Dives

The importance of partitioning

Case study in relational joins

Super powers:

Associativity and Commutativity!

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9

The Power of Associativity

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9

You can put parentheses wherever you want!

Credit to Oscar Boykin for the idea behind these slides

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9

The Power of Commutativity

v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v8 ⊕ v9

v8 ⊕ v9 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v1 ⊕ v2 ⊕ v3

You can swap order of operands however you want!

Credit to Oscar Boykin for the idea behind these slides

Implications for distributed processing?

You don’t know when the tasks begin

You don’t know when the tasks end

You don’t know when the tasks interrupt each other

You don’t know when intermediate data arrive

…

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

reduceByKey

f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

RDD[(K, V)]

aggregateByKey

seqOp: (U, V) ⇒ U,
combOp: (U, U) ⇒ U

RDD[(K, U)]

Back to these…

Computing the Mean: Version 1

class Mapper {

 def map(key: String, value: Int) = {

 emit(key, value)

 }

}

class Reducer {

 def reduce(key: String, values: Iterable[Int]) {

 for (value <- values) {

 sum += value

 cnt += 1

 }

 emit(key, sum/cnt)

 }

}

Computing the Mean: Version 3
class Mapper {

 def map(key: String, value: Int) =

 context.write(key, (value, 1))

}

class Combiner {

 def reduce(key: String, values: Iterable[Pair]) = {

 for ((s, c) <- values) {

 sum += s

 cnt += c

 }

 emit(key, (sum, cnt))

 }

}

class Reducer {

 def reduce(key: String, values: Iterable[Pair]) = {

 for ((s, c) <- values) {

 sum += s

 cnt += c

 }

 emit(key, sum/cnt)

 }

}

reduceByKey

f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

Co-occurrence Matrix: Stripes

class Mapper {

 def map(key: Long, value: String) = {

 for (u <- tokenize(value)) {

 val map = new Map()

 for (v <- neighbors(u)) {

 map(v) += 1

 }

 emit(u, map)

 }

 }

}

class Reducer {

 def reduce(key: String, values: Iterable[Map]) = {

 val map = new Map()

 for (value <- values) {

 map += value

 }

 emit(key, map)

 }

}

reduceByKey

f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
+

Computing the Mean: Version 2

RDD[(K, V)]

aggregateByKey

seqOp: (U, V) ⇒ U,
combOp: (U, U) ⇒ U

RDD[(K, U)]

class Mapper {

 def map(key: String, value: Int) =

 context.write(key, value)

}

class Combiner {

 def reduce(key: String, values: Iterable[Int]) = {

 for (value <- values) {

 sum += value

 cnt += 1

 }

 emit(key, (sum, cnt))

 }

}

class Reducer {

 def reduce(key: String, values: Iterable[Pair]) = {

 for ((s, c) <- values) {

 sum += s

 cnt += c

 }

 emit(key, sum/cnt)

 }

}

Super powers:

Associativity and Commutativity!

(But what’s the fallback option?)

Implementation of distributed group by

… implications for algorithm design

Technical Deep Dives

The importance of partitioning

Case study in relational joins

Why does partitioning matter?

Ideal Scaling: Why not?

Communication is unavoidable
Workers need to share intermediate results…

Which requires communication across machines…

Which requires synchronization…

Which kills performance.

Skew creates idle workers
Tasks are never divided perfectly evenly…

And even if they are, processing times can be unpredictable…

Which leads to idle workers.

Why does partitioning matter?
Better partitioning remediates skew!

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

Spark Execution Plan

Partition challenges
Machines are heterogenous

Equal partitioning of inputs is hard…

Equal partitioning of intermediates is even harder…

Hash partitioning
Implementation?

Pairs: Pseudo-Code

class Mapper {

 def map(key: Long, value: String) = {

 for (u <- tokenize(value)) {

 for (v <- neighbors(u)) {

 emit((u, v), 1)

 }

 }

 }

}

class Reducer {

 def reduce(key: Pair, values: Iterable[Int]) = {

 for (value <- values) {

 sum += value

 }

 emit(key, sum)

 }

}

Pairs: Pseudo-Code

class Partitioner {

 def getPartition(key: Pair, value: Int, numTasks: Int): Int = {

 return key.left % numTasks

 }

}

One more thing…

Hash partitioning
Implementation?

Range partitioning
Implementation?

Implementation of distributed group by

… implications for algorithm design

Technical Deep Dives

The importance of partitioning

Case study in relational joins

R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

Relational Joins

(More precisely, an inner join)

Spark Stack

Physical Operators

RDDs

DataFrames / DataSets

What level are we operating in?

Join Algorithms in MapReduce / Spark

Reduce-side join
aka repartition join

aka shuffle join

Map-side join
aka sort-merge join

Hash join
aka broadcast join

aka replicated join

Reduce-side Join

Intuition: group by join key
Map over both datasets

Emit tuple as value with join key as the intermediate key

Execution framework brings together tuples sharing the same key

Perform join in reducer

aka repartition join, shuffle join

Reduce-side Join

Intuition: group by join key
Map over both datasets

Emit tuple as value with join key as the intermediate key

Execution framework brings together tuples sharing the same key

Perform join in reducer

aka repartition join, shuffle join

Union two RDDs

R1

R4

S2

S3

R1

R4

S2

S3

keys values

Map

R1

R4

S2

S3

keys values

Reduce

Note: no guarantee if R is going to come first or S

Reduce-side Join

More precisely, an inner join: What about outer joins?

R1

R2

R3

R4

S1

S2

S3

S4

merge to join

Assume two datasets are sorted by the join key:

Map-side Join
aka sort-merge join

R1

R2

R3

R4

S1

S2

S3

S4

R1

R2

R3

R4

S1

S2

S3

S4

Assume two datasets are sorted by the join key:

merge to join merge to join

How can we parallelize this? Co-partitioning

Map-side Join
aka sort-merge join

Map-side Join
aka sort-merge join

Works if…
Two datasets are co-partitioned

Sorted by join key

MapReduce implementation:
Map over one dataset, read from other corresponding partition

Co-partitioned, sorted datasets: realistic to expect?
With proper setup, Spark automatically optimizes!

Hash Join
aka broadcast join, replicated join

Basic idea:
Load one dataset into memory in a hashmap, keyed by join key

Read the other dataset, probe for join key

Works if…
R << S and R fits into memory

Implementation:
Distribute R to all machines (e.g., broadcast in Spark)

Map over S, each mapper loads R in memory and builds the hashmap

For every tuple in S, probe join key in R

Hash Join Variants

Co-partitioned variant:
R and S co-partitioned (but not sorted)?

Only need to build hashmap on the corresponding partition

Striped variant:
R too big to fit into memory?

Divide R into R1, R2, R3, … s.t. each Rn fits into memory

Perform hash join: n, Rn ⋈ S

Take the union of all join results

Use a global key-value store:
Load R into memcached (or Redis)

Probe global key-value store for join key

Which join to use?

hash join > map-side join > reduce-side join

Limitations of each?
Hash join: memory

Map-side join: sort order and partitioning

Reduce-side join: general purpose

Who decides?

Implementation of distributed group by

… implications for algorithm design

Technical Deep Dives

The importance of partitioning

Case study in relational joins

Frontend

Backend

users

OLTP

RDBMS

Frontend

Backend

users

OLTP

RDBMS

Frontend

Backend

users

OLTP

RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata +

Governance Layer

“traditional”

Data Warehouse

Everything

is in

the cloud!

Frontend

Backend

users

OLTP

RDBMS

Frontend

Backend

users

OLTP

RDBMS

Frontend

Backend

users

OLTP

RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata +

Governance Layer

“traditional”

Data Warehouse

In the cloud, does any of this matter?
The cloud is just another abstraction!

Pros

You don’t have to worry about it.

You don’t need to know what’s going on.

Cons

You can’t worry about it (even if you wanted to).

You don’t know what’s going on (even if you wanted to).

✓

✗

Spark Stack

Physical Operators

RDDs

DataFrames / DataSets

What level are we operating in?

Next week…

Source: Wikipedia

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

