UNIVERSITY OF

Data-Intensive Distributed Computing @ WATERLOO

CS 451/651 (Fall 2025)

Batch Processing Il
(v1.00)

Week 4:September 25, 2025

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at https://1intool.github.io/cs451-2025f/

‘@@@@\ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

Key Questions

In what ways does Spark improve over MapReduce?
How is distributed group by implemented efficiently at scale?

How do commutative and associative operations
contribute to efficient distributed execution!?

How does partitioning contribute to efficient distributed execution?

How do these concepts come together in efficient joins at scale!?

e

~ The datacenter is the computer!
e What! ssthe struction-sethrmome—-s=-

e EAMLS
—— " -~y
=

—— = S - : =

e N

[§=]a/a]a]n]

e
>

¢

/
\

sSQH,rge: Google <

W gt e e S0

-
)
-
-
.
o 4
-
e
»

APACHE

- The datacenter is the computer’
g | What sthe mstructlon set’ R

- ..-—-'-‘—vur ©E

map / f i 1 t e E / f 1 atfl t M a p > .T’;’. — -w'“m:"”?f‘i-

~Sqyrce: Google w ,f WA et g GRRL as

That’s it.

MapReduce results = records.map(...)

.reduce(...)

results2 = resultsl.map(...)
.reduce(...)

Spark results = rdd.foo(...)
.bar(...)

.baz(...)

More! Why do you care?

The essence of abstraction is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that context.

— computer scientist John V. Guttag

All abstractions are leaky
Important to develop intuitions
What do you want to be!?
Curiosity

W N -

You don’t have to be an engineer to be be a racing driver,
but you do have to have mechanical sympathy

— Formula One driver Jackie Stewart

Spark Stack

DataFrames / DataSets

RDDs

Physical Operators

Who lives where?

Technical Deep Dives

Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins

ki NE

v2 v3 v4 ks N v6
map map

map

'

ol b E

'

B:ls

combine

combine

'

a K

b [E

!
B

'

A =l - B

combine

'

o B

H:

N

map

'

b [l - B

combine

'

B

¢ [E

|

reduce

)
- B

|

reduce

)
. B

partition partition partition partition
group values by key
Bs B 2]9]8

|

reduce

)
-, B

Spark Execution Plan

T o O . . S e e e e o .

We need communication

? ? ?

D& @E " @

How is this implemented!?

W -

Why do you care!?

All abstractions are leaky
Important to develop intuitions
What do you want to be!?
Curiosity

All abstractions are leaky
example: get (x)

Storage Hierarchy

How fast is your get?

not all gets are
the same!

All abstractions are leaky
example: get (x)

You shouldn’t need to care about locality, but you kinda need to...

Here’s another one...

Seek vs. Scans

Consider a | TB database with 100 byte records
We want to update | percent of the records

Scenario |: Mutate each record

Each update takes ~30 ms (seek, read, write)
108 updates = ~35 days

Scenario 2: Rewrite all records

Assume 100 MB/s throughput
Time = 5.6 hours(!)

Lesson? Random access is expensive!

Source: Ted Dunning, on Hadoop mailing list

What'’s the point?

At scale, sorting is the most efficient implementation
of distributed group by!

Sort/Shuffle/Merge MapReduce

Map side
Map outputs are buffered in memory in a circular buffer
When buffer reaches threshold, contents are “spilled” to disk
Spills are merged into a single, partitioned file (sorted within each partition)
Combiner runs during the merges

Reduce side
Map outputs are copied over to the reducer machines
“Sort” is a multi-pass merge of map outputs (happens in memory and on disk)
Final merge pass goes directly into reducer

Sort/Shuffle/Merge MapReduce

[Mapper] intermediate files
merged spills (on disk)

l (on disk) /

Reducer]

I —
/_——-—-?

circular buffer

(in memory)
7

Combiner

N7

other reducers

spills (on disk)

Barrier between map and reduce phases
other mappers _ _ o . :
But runtime can begin copying intermediate data earlier

Sort/Shuffle/Merge MapReduce

SORT SHUFFLE MERGE REDUCE

fopreey

| o ,7. | W
/m%w o s
- '—': /yr@ ‘
=4 I R -
it = i it o) —
< !r'“""‘"’,, ——— [| [
== [} e,
,.,

ey LT i ot
| o ot - [RE PO i St
=] g i
e s} — | R L,

e e

o P S R
s Aerd |

T

The last one i ot 3o L
P PR P] T
= e e mem

<——-",..... Lo |

o o

Map Output Collector ‘Shuffle Consumer Plugin

Source: https://0x0fff.com/hadoop-mapreduce-comprehensive-description/

Spark Shuffle Implementations
Sort shuffle

________________________ Executor JVM Local

i spark.storage.[safetyFraction * memoryFraction] i Dire ctory

E c c c c C C = C C c i

' 6 06 o o6 o o o o o 9o, MinHeap
HEMEMEEMEHEHEPEE Merge
. (@ © (© (© © © © © © M

A o IR o IR o IR o IR o IR o IR o IR o IR o NORRR o iy

Y/
Y vy I::_‘_‘::::::_‘E‘.:h:_;ﬂ:_j::::::_‘j

L E [safetyFra(s:t?g; *sm:miryFraction] sort &)E Output File

task > AppendOnlyMap . sort &

spill /E Output File §>_)

sort &
J spill

spark.executor.cores /
spark.task.cpus
A

Source: http://0x0fff.com/spark-architecture-shuffle/

7‘ Spl|| . o
' inHeap
| /E Output File Merge

“reduce” task

“reduce” task

Spark Shuffle Implementations
Hash shuffle

Executor JVM Local Directory

spark.local.dir

C = (= C C C C (=
© © o © o o o o -
clEIEIERELIERE]LE Output File -
EELELELEER
Output File L3S |8
‘. EQ |2 3
x S o
I = . Z : P
~ Output File 9O
@ 2] 11 ” EEm] _=E é
83 map” task) 5 =
g Output File s % g3
S 87 : =@ |[E3
X Output File LSS (=22
X g_ 73 ” = 8 (]
5 @ > "map”task — 39
0 md Output File ;

Source: http://0x0fff.com/spark-architecture-shuffle/

What'’s the point?

Technical Deep Dives

Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins

Super powers:
Associativity and Commutativity!

The Power of Associativity

You can put parentheses wherever you want!

v, © v, D v3]EB[v4 D vi D v, €Bv7]€B[V8
v, D vz]@:v3 ® v, & v5:@:v6 Dv, D vg
v, D v, @\v3 D v, D V5]:@:V6 Dv, D vg

Credit to Oscar Boykin for the idea behind these slides

The Power of Commutativity

You can swap order of operands however you want!

v, © v, D v3]EB[v4 @ v. D vééBv7:€B vg D vy
v © vi D vy D v7]69[v, D VZEBV3:GB Vg D vy
v ® OO v ® v ® ok ®v, ® v

Credit to Oscar Boykin for the idea behind these slides

Implications for distributed processing?

You don’t know when the tasks begin
You don’t know when the tasks end
You don’t know when the tasks interrupt each other
You don’t know when intermediate data arrive

It’s okay!

When can
reducers be
combiners!

ki NE

/

map

N

'

2 K

b [E

¢ [E

'

v2 v3 v4 ks N v6
map map

combine

combine

6] [E5

'

'

!

combine

'

map

2 B

'

¢ [E

combine

'

[l o B B: H:5H: B /Hs
partition partition partition partition
group values by key

Bs B 2]9]8

|

reduce

)
- B

|

reduce

|

)
. B

reduce

)
-, B

Back to these...

RDD[(K, V)] RDD[(K, V)]

. red\;lceByKey Sesgfre(gjte\?yKiyU

: , V V) ’ ’
() @ combOp: (U, U) = U

l Wait, I've seen

RDD[(K, V)]

these before! l
RDD[(K, U)]

Computing the Mean: Version |

class Mapper {
def map(key: String, value: Int) = {
emit(key, value)
}
}

class Reducer {
def reduce(key: String, values: Iterable[Int]) {
for (value <- values) {
sum += value
cnt += 1
Y
emit(key, sum/cnt)
Y
}

Computing the Mean: Version 3

class Mapper {
def map(key: String, value: Int) =
context.write(key, (value, 1))
}
class Combiner {
def reduce(key: String, values: Iterable[Pair]) = {
for ((s, c¢) <- values) {

sum += s
cnt += ¢
¥
emit(key, (sum, cnt))

}

}
class Reducer { RDD[(K, V)]

def reduce(key: String, values: Iterable[Pair]) = { i

for ((s, ¢) <- values) {
sum +=s reduceByKey
cnt += ¢ f: (V, V) =V
}
emit(key, sum/cnt) v
} RDD[(K, V)]

}

Co-occurrence Matrix: Stripes

class Mapper {

def map(key: Long,

value:

String) = {

for (u <- tokenize(value)) {

RDD[(K, V)]

val map = new Map()
for (v <- neighbors(u)) {
}’"apm +=1 a—{b:1,¢c2d5e3f2)}
emit(u, map)
} a—{b:1, d:5,e:3}

) + a—{b:1,c2d: 2, f: 2}
; a—{b:2,c:2,d:7,e: 3,2}
class Reducer {

def reduce(key: String, values: Iterable[Map]) = {

}

}

val map = new Map()
for (value <- values) {
map += value

ki
emit(key, map)

f:

reduceByKey
(V, V) =V

v

RDD[(K, V)]

Computing the Mean: Version 2

class Mapper {
def map(key: String, value: Int) =
context.write(key, value)
}
class Combiner {
def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value

cnt += 1
Y
emit(key, (sum, cnt))
}
}
class Reducer { RDD[(K, V)]

def reduce(key: String, values: Iterable[Pair]) t={

for ((s, ¢) <- values) {
sum += s aggregateByKey
cnt += ¢ seqOp: (U, V) => U,
} combOp: (U, U) = U
emit(key, sum/cnt) I

) RDD[(K, U)]

Super powers:
Associativity and Commutativity!

(But what’s the fallback option?)

Technical Deep Dives

Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins

Why does partitioning matter?

ldeal Scaling: Why not?

Communication is unavoidable
Workers need to share intermediate results...
Which requires communication across machines...
L Which requires synchronization...
et’s of dj WhICh kills performance.
IS P

Skew creates idle workers

Tasks are never divided perfectly evenly...
And even if they are, processing times can be unpredictable...
Which leads to idle workers.

This matters also!

Why does partitioning matter?
Better partitioning remediates skew!

map

N

'

2 K

b [E

'

v2 v3 v4 ks N v6
map map

combine

combine

6] [E5

'

'

a K

b [E

!
B

combine

o B

'

map

2 B

'

¢ [E

combine

2 B

'

¢ [E

partition

partition

partition

partition

group values by key

a JE

5

|

reduce

)
- B

b B

7

|

reduce

2

|

)
. B

reduce

)
-, B

Skew in

Intermediates

.. becomes input
for the next phase

Spark Execution Plan

T o O . . S e e e e o .

Partition challenges
Machines are heterogenous
Equal partitioning of inputs is hard...
Equal partitioning of intermediates is even harder...

Hash partitioning

Implementation?

Pairs: Pseudo-Code

class Mapper {
def map(key: Long, value: String) = {
for (u <- tokenize(value)) {
for (v <- neighbors(u)) {
emit((u, v), 1)
}
Y
Y
}

class Reducer {
def reduce(key: Pair, values: Iterable[Int]) = {
for (value <- values) {
sum += value
Y
emit(key, sum)
Y
¥

Pairs: Pseudo-Code

One more thing...

class Partitioner {
def getPartition(key: Pair, value: Int, numTasks: Int): Int = {
return key.left % numTasks
}
}

Hash partitioning

Implementation?

Range partitioning
Implementation?

Technical Deep Dives

Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins

Relational Joins

T 0

T I

T [

] B
| |

>N<

y
« A s
S I [
» s
[s

(More precisely, an inner join)

Spark Stack

DataFrames / DataSets

RDDs

Physical Operators

What level are we operating in?

Join Algorithms in MapReduce / Spark

Reduce-side join
aka repartition join
aka shuffle join

Map-side join

aka sort-merge join

Hash join
aka broadcast join
aka replicated join

Reduce-side Join

aka repartition join, shuffle join

Intuition: group by join key
Map over both datasets
Emit tuple as value with join key as the intermediate key
Execution framework brings together tuples sharing the same key
Perform join in reducer

Reduce-side Join

aka repartition join, shuffle join

Intuition: group by join key
Map-over-both-datasets Union two RDDs
Emit tuple as value with join key as the intermediate key
Execution framework brings together tuples sharing the same key
Perform join in reducer

Reduce-side Join

Map
keys values
R, X
Ry)
S, :>)
S, .
Remember to “tag’ the tuple
eduee as being from R orS...
keys values
R, S,
S, R

Note: no guarantee if R is going to come first or S

More precisely, an inner join: What about outer joins!?

Map-side Join

aka sort-merge join

Assume two datasets are sorted by the join key:

. |
. [||

. Il ||

\ 4

merge to join

Map-side Join

aka sort-merge join

Assume two datasets are sorted by the join key:

v [| [& [

w [| [s~ [T

» [| [s~ [

v v

merge to join merge to join

How can we parallelize this? Co-partitioning

Map-side Join

aka sort-merge join

Works if...

Two datasets are co-partitioned
Sorted by join key

MapReduce implementation:
Map over one dataset, read from other corresponding partition

Co-partitioned, sorted datasets: realistic to expect!
With proper setup, Spark automatically optimizes!

Hash Join

aka broadcast join, replicated join

Basic idea:

Load one dataset into memory in a hashmap, keyed by join key
Read the other dataset, probe for join key

Works if...

R << S and R fits into memory

Implementation:
Distribute R to all machines (e.g., broadcast in Spark)
Map over S, each mapper loads R in memory and builds the hashmap
For every tuple in S, probe join key in R

Hash Join Variants

Co-partitioned variant:

R and S co-partitioned (but not sorted)!?
Only need to build hashmap on the corresponding partition

Striped variant:

R too big to fit into memory?
Divide R into R, R,, R;, ... s.t. each R, fits into memory
Perform hash join: Vn, R, > S
Take the union of all join results

Use a global key-value store:

Load R into memcached (or Redis)
Probe global key-value store for join key

Which join to use!

hash join > map-side join > reduce-side join

Limitations of each!?

Hash join: memory
Map-side join: sort order and partitioning
Reduce-side join: general purpose

Who decides!?

Technical Deep Dives

Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins

users users users
Frontend Frontend Frontend
Backend Backend Backend
i S S ==
OLTP OLTP OLTP
RDBMS RDBMS RDBMS
SN— e S e S ____——
ELT
N
Data Lake “traditional”
Data Warehouse

Unified Metadata +
Governance Layer

Lakehouse

2

0o%o0

<

1L

i

USGFS/ users § use

Frontend Frontend Frontend
i]

Backend Backend Backend

/

N— 1 —] —]

— OLTP OLTP OLTP
RDBMS RDBMS RDBMS

N— e S e S P

Everything ELT
/" isin
the cloud! Data Lake

“traditional”
Data Warehouse

Unified Metadata +
Governance Layer

o%90°

GISH)

Lakehouse @

In the cloud, does any of this matter?

The cloud is just another abstraction!

Pros
You don’t have to worry about it.
You don’t need to know what’s going on.\/

Cons
You can’t worry about it (even if you wanted to).
You don’t know what’s going on (even if you wanted to).

Spark Stack

DataFrames / DataSets

RDDs

Physical Operators

What level are we operating in?

Next week...

Source: Wikipedia

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

