Data-Intensive Distributed Computing

CS 451/651 (Fall 2025)

Batch Processing II

Week 4: September 25, 2025

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at https://lintool.github.io/cs451-2025f/

Key Questions

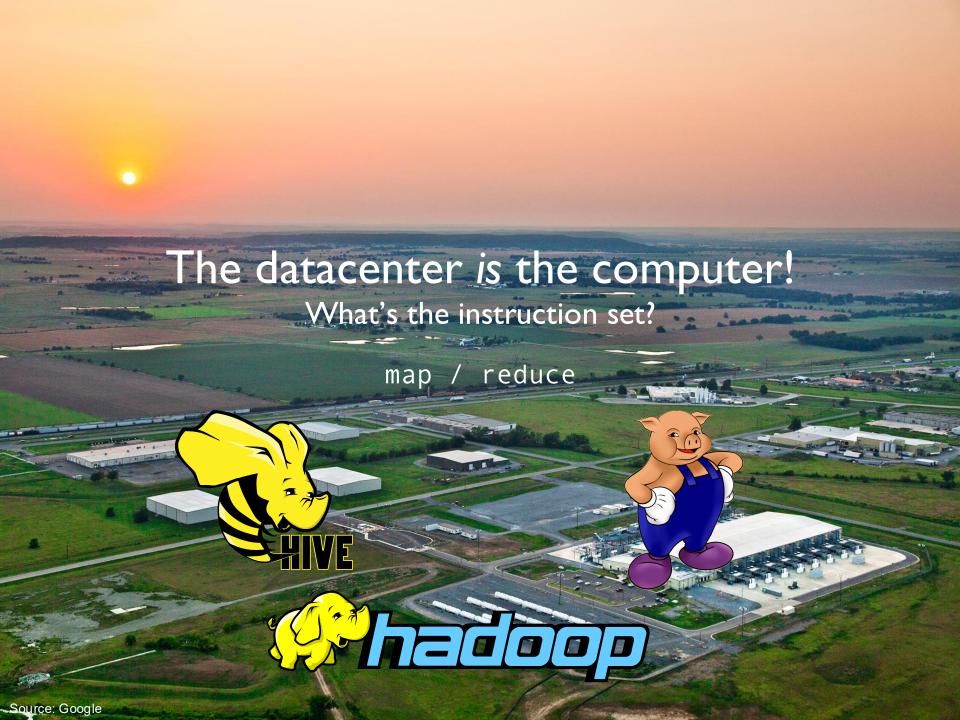
In what ways does Spark improve over MapReduce?

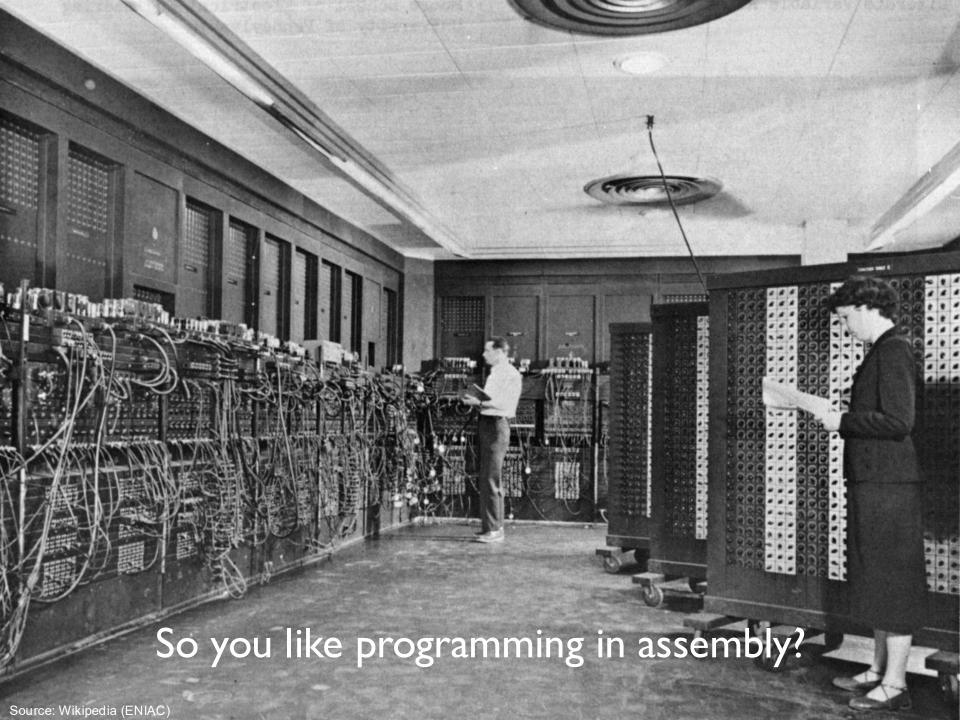
How is distributed group by implemented efficiently at scale?

How do commutative and associative operations contribute to efficient distributed execution?

How does partitioning contribute to efficient distributed execution?

How do these concepts come together in efficient joins at scale?





The datacenter is the computer!

What's the instruction set?

map / filter / flatMap ... groupByKey / reduceByKey / join 7 cogroup

That's it.

More? Why do you care?

The essence of abstraction is preserving information that is relevant in a given context, and forgetting information that is irrelevant in that context.

- computer scientist John V. Guttag

- I. All abstractions are leaky
- 2. Important to develop intuitions
- 3. What do you want to be?
- 4. Curiosity

You don't have to be an engineer to be be a racing driver, but you do have to have mechanical sympathy

Formula One driver Jackie Stewart

Spark Stack

DataFrames / DataSets

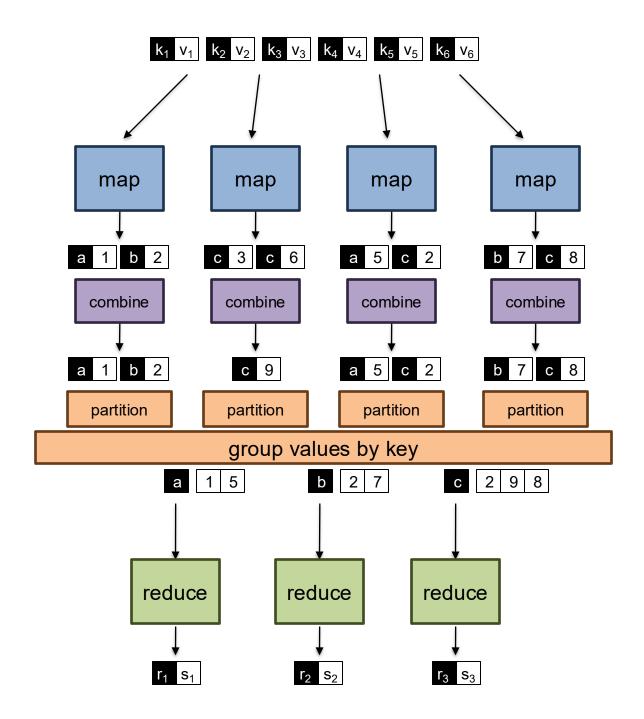
RDDs

Physical Operators

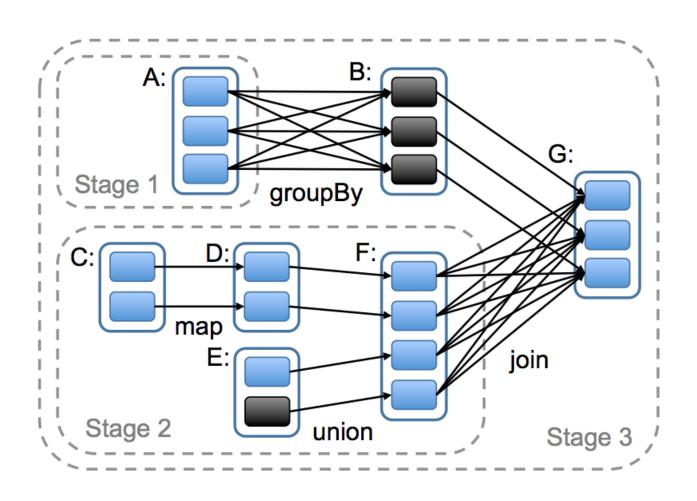
Who lives where?

Technical Deep Dives

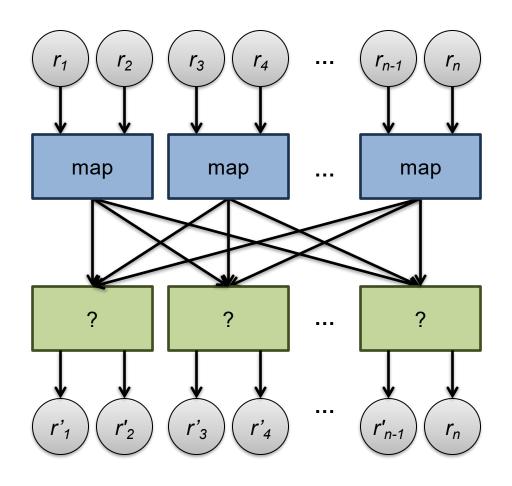
Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins



Spark Execution Plan



We need communication



How is this implemented?

Why do you care?

- I. All abstractions are leaky
- 2. Important to develop intuitions
- 3. What do you want to be?
- 4. Curiosity

All abstractions are *leaky* example: get(x)

Storage Hierarchy

Remote Machine not all gets are the same!

Remote Machine Different Rack

Remote Machine Same Rack

Local Machine cache, memory, SSD, magnetic disks capacity, latency, bandwidth

All abstractions are *leaky* example: get(x)

You shouldn't need to care about locality, but you kinda need to...

Here's another one...

Seek vs. Scans

Consider a I TB database with 100 byte records

We want to update I percent of the records

Scenario I: Mutate each record

Each update takes ~ 30 ms (seek, read, write) 10^8 updates = ~ 35 days

Scenario 2: Rewrite all records

Assume 100 MB/s throughput Time = 5.6 hours(!)

Lesson? Random access is expensive!

What's the point?

At scale, sorting is the most efficient implementation of distributed group by!

Sort/Shuffle/Merge MapReduce

Map side

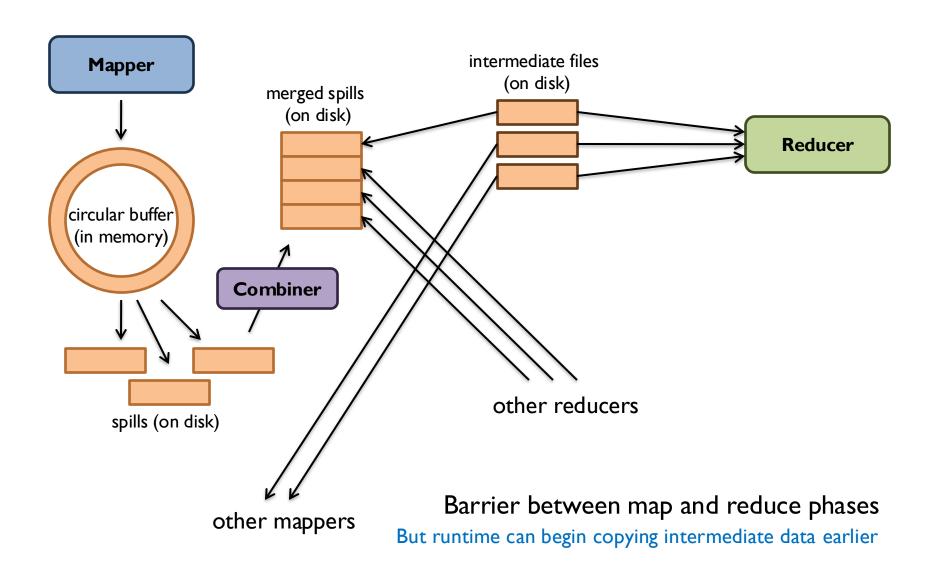
Map outputs are buffered in memory in a circular buffer When buffer reaches threshold, contents are "spilled" to disk Spills are merged into a single, partitioned file (sorted within each partition) Combiner runs during the merges

Reduce side

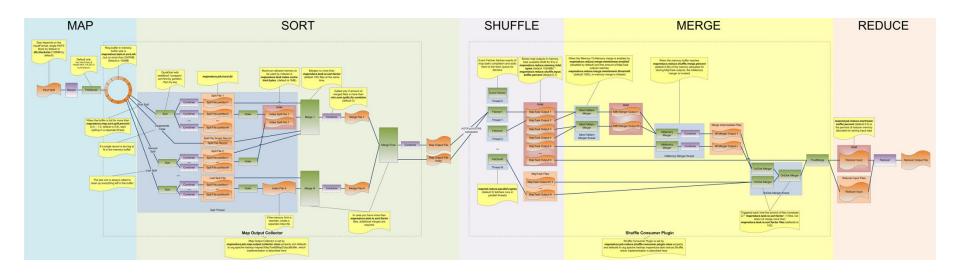
Map outputs are copied over to the reducer machines "Sort" is a multi-pass merge of map outputs (happens in memory and on disk)

Final merge pass goes directly into reducer

Sort/Shuffle/Merge MapReduce

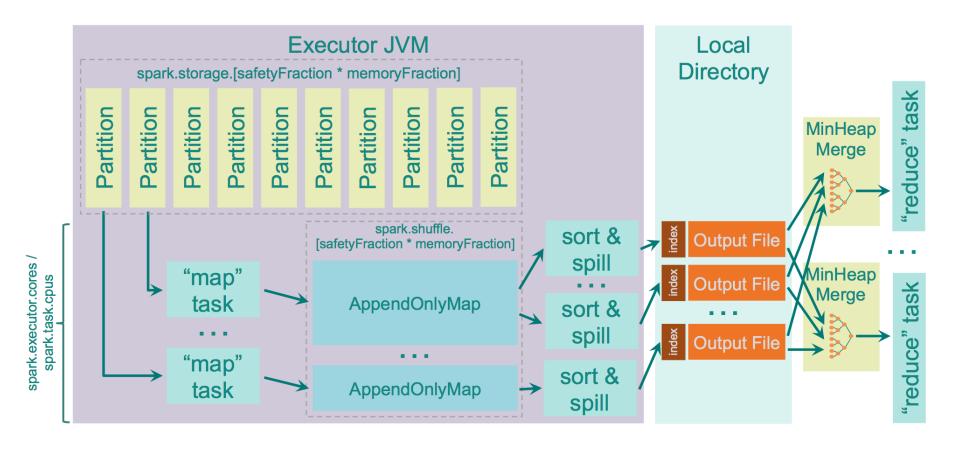


Sort/Shuffle/Merge MapReduce



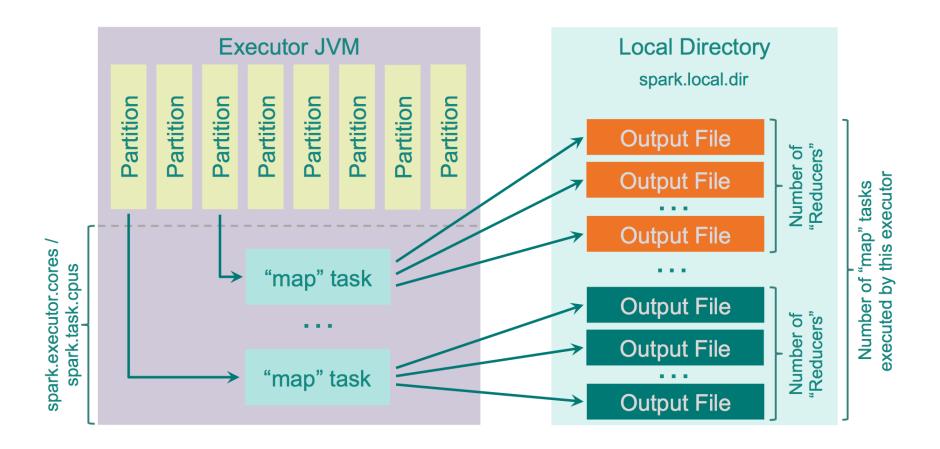
Spark Shuffle Implementations

Sort shuffle



Spark Shuffle Implementations

Hash shuffle



What's the point?

Technical Deep Dives

Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins

Super powers: Associativity and Commutativity!

The Power of Associativity

You can put parentheses wherever you want!

The Power of Commutativity

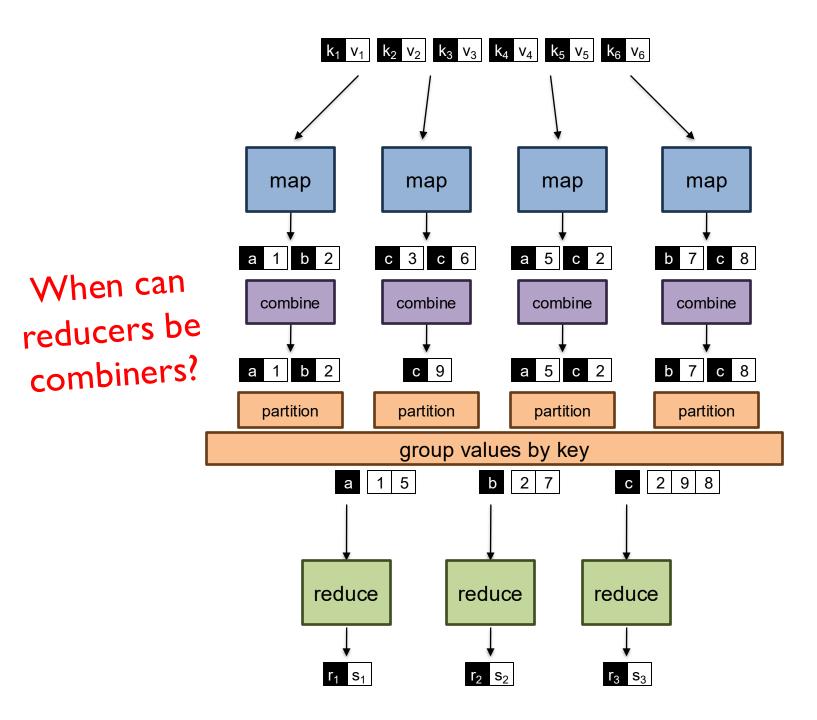
You can swap order of operands however you want!

Implications for distributed processing?

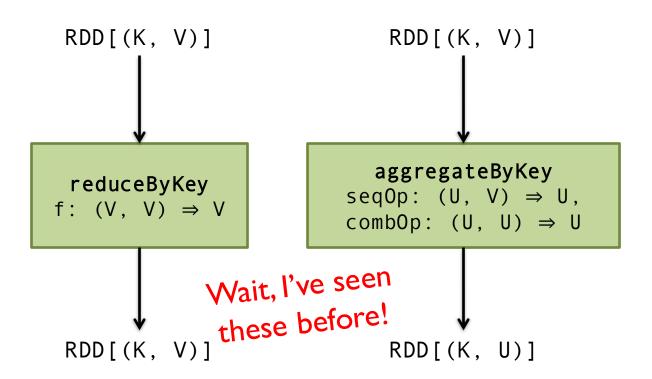
You don't know when the tasks begin
You don't know when the tasks end
You don't know when the tasks interrupt each other
You don't know when intermediate data arrive

. . .

It's okay!



Back to these...



Computing the Mean: Version I

```
class Mapper {
  def map(key: String, value: Int) = {
    emit(key, value)
class Reducer {
  def reduce(key: String, values: Iterable[Int]) {
    for (value <- values) {</pre>
      sum += value
      cnt += 1
    emit(key, sum/cnt)
```

Computing the Mean: Version 3

```
class Mapper {
  def map(key: String, value: Int) =
    context.write(key, (value, 1))
class Combiner {
  def reduce(key: String, values: Iterable[Pair]) = {
    for ((s, c) <- values) {
      sum += s
      cnt += c
    emit(key, (sum, cnt))
                                                    RDD[(K, V)]
class Reducer {
  def reduce(key: String, values: Iterable[Pair]) = {
    for ((s, c) <- values) {
      sum += s
                                                    reduceByKey
      cnt += c
                                                  f: (V, V) \Rightarrow V
    emit(key, sum/cnt)
                                                    RDD[(K, V)]
```

Co-occurrence Matrix: Stripes

```
class Mapper {
  def map(key: Long, value: String) = {
     for (u <- tokenize(value)) {</pre>
       val map = new Map()
        for (v <- neighbors(u)) {</pre>
          map(v) += 1
                                  a \rightarrow \{ b: 1, c: 2, d: 5, e: 3, f: 2 \}
       emit(u, map)
                                 a \rightarrow \{ b: 1, d: 5, e: 3 \}
                             a \rightarrow \{ b: 1, c: 2, d: 2, f: 2 \}
 a \rightarrow \{ b: 2, c: 2, d: 7, e: 3, f: 2 \}
class Reducer {
                                                                 RDD[(K, V)]
  def reduce(key: String, values: Iterable[Map]) = {
     val map = new Map()
     for (value <- values) {
                                                                 reduceByKey
       map += value
                                                                f: (V, V) \Rightarrow V
     emit(key, map)
                                                                 RDD[(K, V)]
```

Computing the Mean: Version 2

```
class Mapper {
  def map(key: String, value: Int) =
    context.write(key, value)
class Combiner {
  def reduce(key: String, values: Iterable[Int]) = {
    for (value <- values) {</pre>
      sum += value
      cnt += 1
    emit(key, (sum, cnt))
class Reducer {
                                                 RDD[(K, V)]
  def reduce(key: String, values: Iterable[Pair]) | {
    for ((s, c) <- values) {
      sum += s
                                               aggregateByKey
                                             seqOp: (U, V) \Rightarrow U,
      cnt += c
                                            combOp: (U, U) \Rightarrow U
    emit(key, sum/cnt)
                                                 RDD[(K, U)]
```

Super powers: Associativity and Commutativity!

(But what's the fallback option?)

Technical Deep Dives

Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins

Why does partitioning matter?

Ideal Scaling: Why not?

Communication is unavoidable

Workers need to share intermediate results...

Which requires communication across machines...

Which requires synchronization...

Let's of discussion here! Which kills performance.

Skew creates idle workers

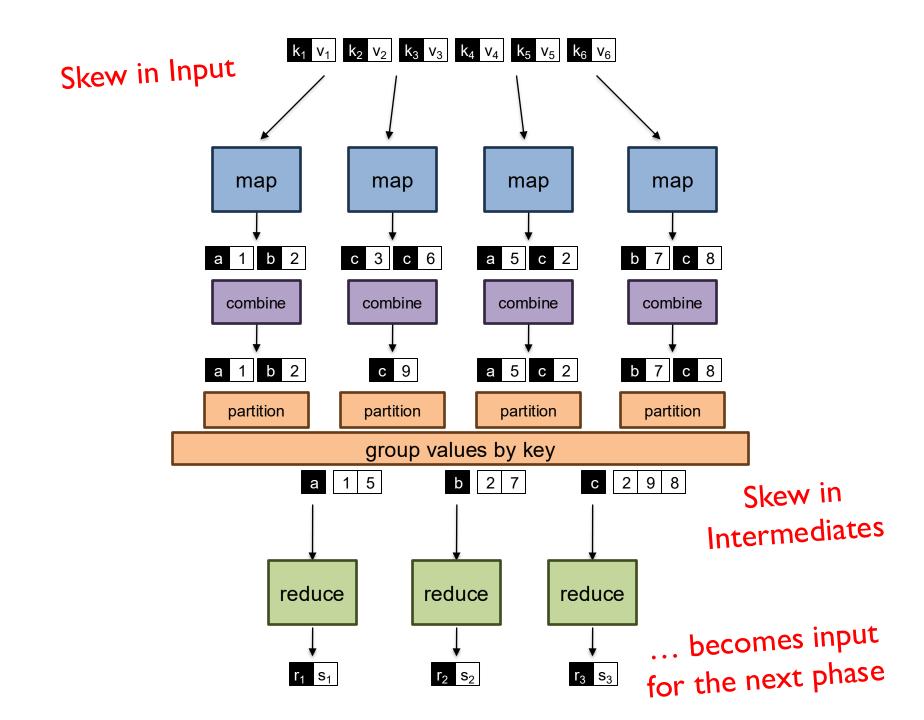
Tasks are never divided perfectly evenly...

And even if they are, processing times can be unpredictable...

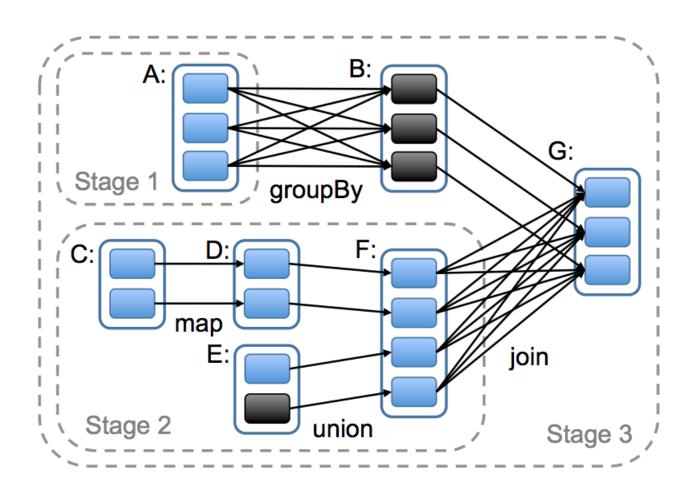
Which leads to idle workers.

This matters also!

Why does partitioning matter? Better partitioning remediates skew!



Spark Execution Plan



Partition challenges

Machines are heterogenous Equal partitioning of inputs is hard...

Equal partitioning of intermediates is even harder...

Hash partitioning

Implementation?

Pairs: Pseudo-Code

```
class Mapper {
  def map(key: Long, value: String) = {
    for (u <- tokenize(value)) {</pre>
      for (v <- neighbors(u)) {</pre>
        emit((u, v), 1)
class Reducer {
  def reduce(key: Pair, values: Iterable[Int]) = {
    for (value <- values) {</pre>
      sum += value
   emit(key, sum)
```

Pairs: Pseudo-Code

One more thing...

```
class Partitioner {
  def getPartition(key: Pair, value: Int, numTasks: Int): Int = {
    return key.left % numTasks
  }
}
```

Hash partitioning

Implementation?

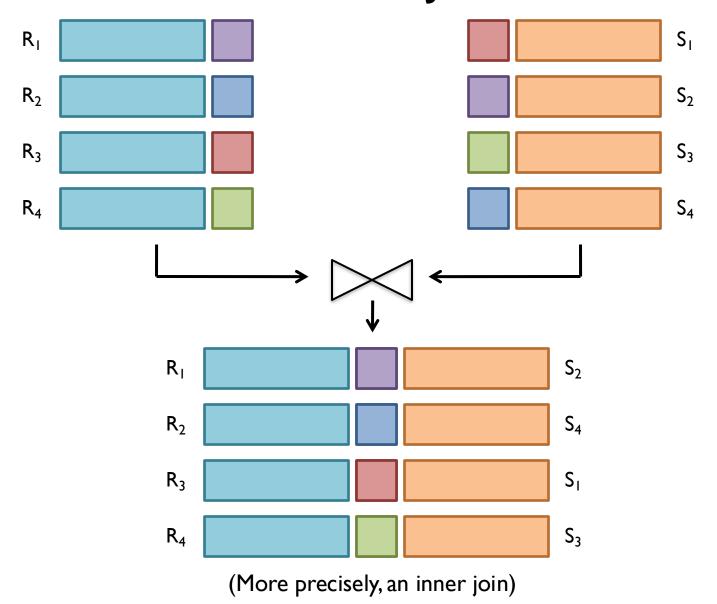
Range partitioning

Implementation?

Technical Deep Dives

Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins

Relational Joins



Spark Stack

DataFrames / DataSets

RDDs

Physical Operators

What level are we operating in?

Join Algorithms in MapReduce / Spark

Reduce-side join aka repartition join aka shuffle join

Map-side join aka sort-merge join

Hash join aka broadcast join aka replicated join

Reduce-side Join

aka repartition join, shuffle join

Intuition: group by join key

Map over both datasets

Emit tuple as value with join key as the intermediate key

Execution framework brings together tuples sharing the same key

Perform join in reducer

Reduce-side Join

aka repartition join, shuffle join

Intuition: group by join key

Map over both datasets Union two RDDs

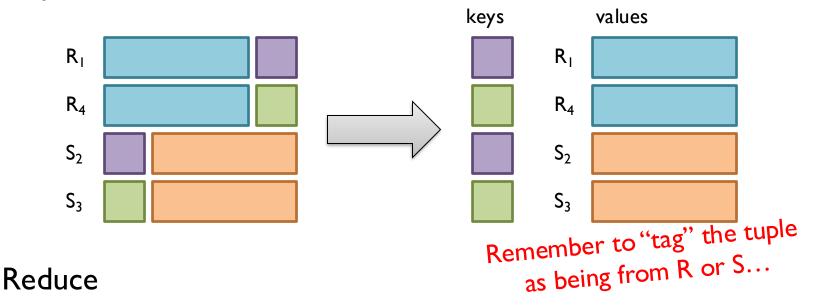
Emit tuple as value with join key as the intermediate key

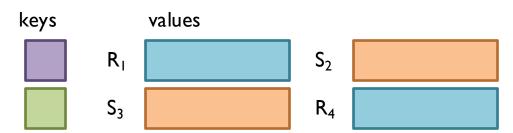
Execution framework brings together tuples sharing the same key

Perform join in reducer

Reduce-side Join

Map





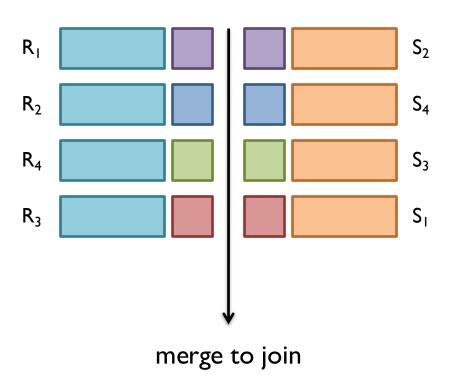
Note: no guarantee if R is going to come first or S

More precisely, an inner join: What about outer joins?

Map-side Join

aka sort-merge join

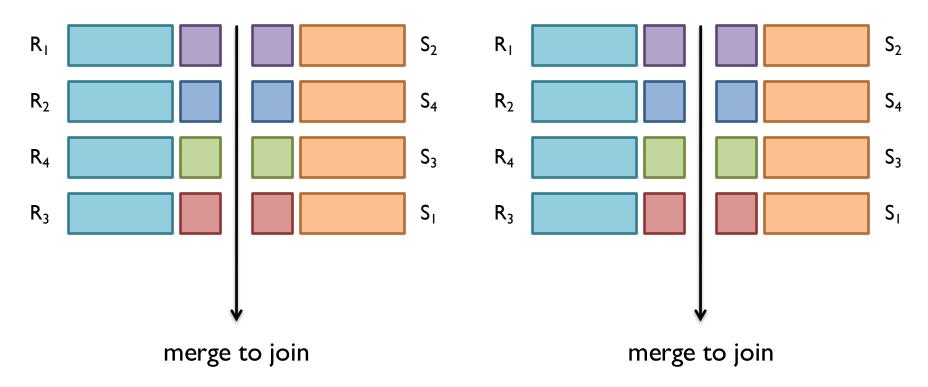
Assume two datasets are sorted by the join key:



Map-side Join

aka sort-merge join

Assume two datasets are sorted by the join key:



How can we parallelize this? Co-partitioning

Map-side Join

aka sort-merge join

Works if...

Two datasets are co-partitioned Sorted by join key

MapReduce implementation:

Map over one dataset, read from other corresponding partition

Co-partitioned, sorted datasets: realistic to expect? With proper setup, Spark automatically optimizes!

Hash Join

aka broadcast join, replicated join

Basic idea:

Load one dataset into memory in a hashmap, keyed by join key Read the other dataset, probe for join key

Works if...

R << S and R fits into memory

Implementation:

Distribute R to all machines (e.g., broadcast in Spark)

Map over S, each mapper loads R in memory and builds the hashmap

For every tuple in S, probe join key in R

Hash Join Variants

Co-partitioned variant:

R and S co-partitioned (but not sorted)?

Only need to build hashmap on the corresponding partition

Striped variant:

R too big to fit into memory?

Divide R into $R_1, R_2, R_3, ...$ s.t. each R_n fits into memory

Perform hash join: $\forall n, R_n \bowtie S$ Take the union of all join results

Use a global key-value store:

Load R into memcached (or Redis)
Probe global key-value store for join key

Which join to use?

hash join > map-side join > reduce-side join

Limitations of each?

Hash join: memory

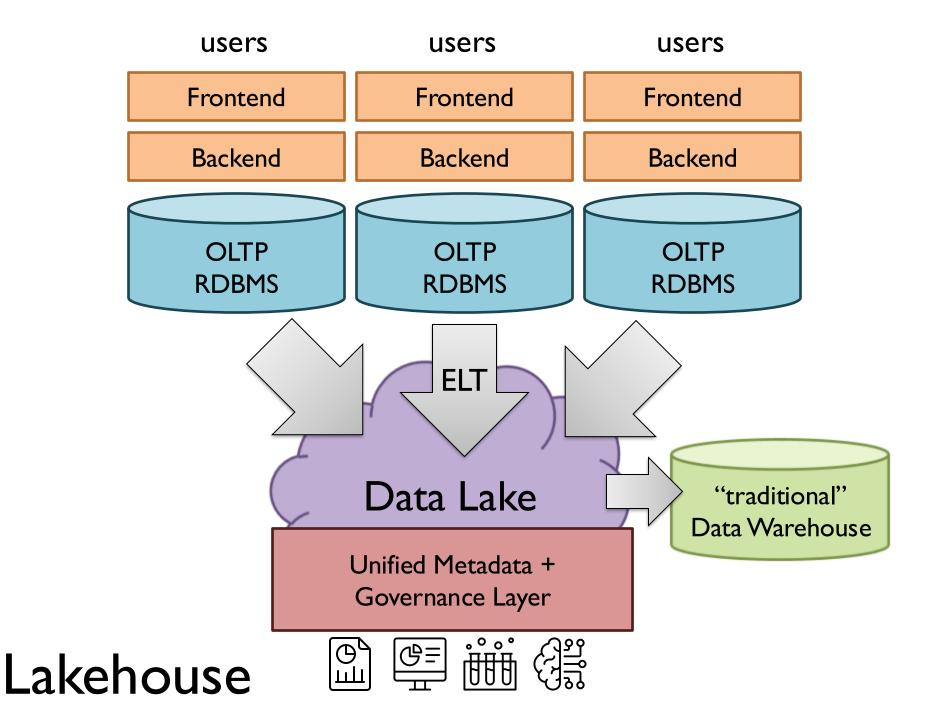
Map-side join: sort order and partitioning

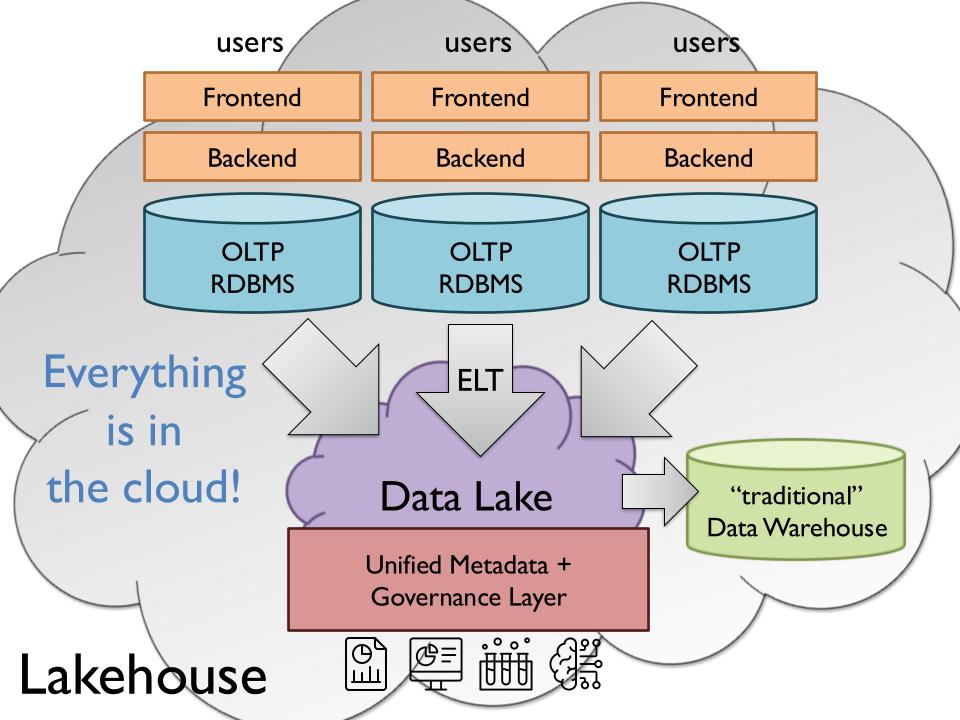
Reduce-side join: general purpose

Who decides?

Technical Deep Dives

Implementation of distributed group by
... implications for algorithm design
The importance of partitioning
Case study in relational joins





In the cloud, does any of this matter?

The cloud is just another abstraction!

Pros

You don't have to worry about it.
You don't need to know what's going on.

Cons

You can't worry about it (even if you wanted to).
You don't know what's going on (even if you wanted to).

Spark Stack

DataFrames / DataSets

RDDs

Physical Operators

What level are we operating in?

Next week...

