UNIVERSITY OF

Data-Intensive Distributed Computing @ WATERLOO

CS 451/651 (Fall 2025)

Batch Processing |
(v1.01)

Week 3:September 18, 2025

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at https://1intool.github.io/cs451-2025f/

‘@@@@\ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details




Key Questions

What's MapReduce and how does it work with HDFS?
What challenges do communication and skew present in scaling out?

Why is local aggregation important!?



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

How do you write a program that runs across 100 machines!?

Implications

Must create higher levels of abstraction
Must think about fault tolerance from the beginning

The essence of abstraction is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that context.

— computer scientist John V. Guttag



o \
THIS IS THE WAY



MapReduce

Programmer specifies two functions:

map (ky, vy) - List[(ky, vy)]
reduce (k,, List[v,]) - List[(ks, Vv3)]

All values with the same key are sent to the same reducer



Ll V1

v2 v3 v4 ks N v6
map map

map

b [E

'

¢ [E

B s

N\

o B

'

map

H:

'

Cc

group values by key

|

115

reduce

)

- B

2

7

|

reduce

. B

}

2

|

reduce

)
-, B




e The datacenter is the computer" -
- a——- — _ What' s'the instruction LMD esemen o

\swc‘e Google ‘\m f R e A



“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
emit(word, 1)
}
¥

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value
Y
emit(key, sum)

}



MapReduce

Programmer specifies two functions:

map (ky, vy) - List[(ky, vy)]
reduce (k,, List[v,]) - List[(ks, Vv3)]

All values with the same key are sent to the same reducer

The “runtime” handles everything else...



MapReduce “Runtime”

Handles scheduling

Assigns workers to map and reduce tasks

Handles “data distribution”
Moves processes to data

Handles coordination
Groups and shuffles intermediate data

Handles errors and faults
Detects worker failures and restarts



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

How do you write a program that runs across 100 machines!?

Implications

Must create higher levels of abstraction
Must think about fault tolerance from the beginning

~-M it!
|;d apReduce takes care of it
t;ar



</end> 7



More! Why do you care?

The essence of abstraction is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that context.

— computer scientist John V. Guttag

All abstractions are leaky
Important to develop intuitions
What do you want to be!?
Curiosity

W N -

You don’t have to be an engineer to be be a racing driver,
but you do have to have mechanical sympathy

— Formula One driver Jackie Stewart



MapReduce

Programmer specifies two functions:

map (ky, vy) - List[(ky, vy)]
reduce (k,, List[v,]) - List[(ks, Vv3)]

All values with the same key are sent to the same reducer

That’s it?
Not quite...



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

|deal scaling characteristics:

Twice the data, twice the running time
Twice the resources, half the running time

Why can’t we achieve this!?

|. Communication is unavoidable
2. Skew creates idle workers



ldeal Scaling: Why not?

Communication is unavoidable

Workers need to share intermediate results...
Which requires communication across machines...
Which requires synchronization...

Which kills performance.

Skew creates idle workers
Tasks are never divided perfectly evenly...
And even if they are, processing times can be unpredictable...
Which leads to idle workers.



Storage Hierarchy




tl;dr — communication is costly

So let’s reduce the amount of data shuffling!
How! Aggregate intermediate results locally!



MapReduce

fopr
Programmer specifies tyo functions:
map (kl’ Vl) — L t (k29 VZ)]
reduce (k,, List[v,]) - List[(ks, v3)]

All values with the same key are sent to the same reducer

partition (k', p) - 0 ... p-1
Often a simple hash of the key, e.g., hash(k') mod n
Divides up key space for parallel reduce operations

combine (k,, List[v,]) — List[(k,, V,)]
Mini-reducers that run in memory after the map phase
Used as an optimization to reduce the amount of data shuffling



ki NE

v2 v3 v4 ks N v6
map map

map

'

ol b E

'

B:ls

combine

combine

'

a K

b [E

!
B

'

A =l - B

combine

'

o B

H:

N

map

'

b [l - B

combine

'

B

¢ [E

|

reduce

)
- B

|

reduce

)
. B

partition partition partition partition
group values by key
Bs B 2]9]8

|

reduce

)
-, B




Word Count; Baseline

class Mapper {
def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
emit(word, 1)
Y

}
}

class Reducer {
def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value
Y
emit(key, sum)
Y
¥

What'’s the impact of combiners?



Word Count: Mapper Histogram

class Mapper {
def map(key: Long, value: String) = {
val counts = new Map()
for (word <- tokenize(value)) {
counts(word) +=1

}

for ((k, v) <- counts) {
emit(k, v)
Y
¥
}

Are combiners still needed?



ldeal Scaling: Why not?

Communication is unavoidable
Workers need to share intermediate results...
Which requires communication across machines...
Which requires synchronization...
Comb;j Which kills perf
in ich kills performance.
€rs help here| °

Skew creates idle workers
Tasks are never divided perfectly evenly...
And even if they are, processing times can be unpredictable...
Which leads to idle workers.

L] 7
itioners:
ut Part\
What ab©



ki NE

v2 v3 v4 ks N v6
map map

map

'

ol b E

'

B:ls

combine

combine

'

a K

b [E

!
B

'

A =l - B

combine

'

o B

H:

N

map

'

b [l - B

combine

'

B

¢ [E

|

reduce

)
- B

|

reduce

)
. B

partition partition partition partition
group values by key
Bs B 2]9]8

|

reduce

)
-, B




y . 4\
MapReduce Thats It

fopr
Programmer specifies tyo functions:
map (kl’ Vl) — L t (k29 VZ)]
reduce (k,, List[v,]) - List[(ks, v3)]

All values with the same key are sent to the same reducer

partition (k', p) - 0 ... p-1
Often a simple hash of the key, e.g., hash(k') mod n
Divides up key space for parallel reduce operations

combine (k,, List[v,]) — List[(k,, V,)]
Mini-reducers that run in memory after the map phase
Used as an optimization to reduce the amount of data shuffling



Which means...

You have limited control over data and execution flow!
All algorithms must be expressed inm, r, ¢, p

You don’t know:

Where mappers and reducers run
When a mapper or reducer begins or finishes
Which input a particular mapper is processing
Which intermediate key a particular reducer is processing



Abstractions

Pros
You don’t have to worry about it.
You don’t need to know what’s going on.\/

Cons
You can’t worry about it (even if you wanted to).
You don’t know what’s going on (even if you wanted to).



Recap, why combiners!?



Combiner Design

Combiners and reducers share same method signature

Sometimes, reducers can serve as combiners
Often, not...

Combiner are optional optimizations

Should not affect algorithm correctness
May be run 0, |, or multiple times

Reducers are guaranteed to run exactly once

Can reducers be used as combiners?
Example: find average of integers associated with the same key



Computing the Mean: Version |

class Mapper {
def map(key: String, value: Int) = {
emit(key, value)
}
}

class Reducer {
def reduce(key: String, values: Iterable[Int]) {
for (value <- values) {
sum += value
cnt += 1
Y
emit(key, sum/cnt)
Y
}

Why can’t we use reducer as combiner!



Computing the Mean: Version 2

class Mapper {
def map(key: String, value: Int) =
context.write(key, value)
¥
class Combiner {
def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value
cnt += 1
¥
emit(key, (sum, cnt))
Y
¥

class Reducer {
def reduce(key: String, values: Iterable[Pair]) = {
for ((s, ¢) <- values) {

sum += s
cnt += C
}
emit(key, sum/cnt) , ]
) Why doesn’t this work?

}



Computing the Mean: Version 3

class Mapper {
def map(key: String, value: Int) =
context.write(key, (value, 1))
}
class Combiner {
def reduce(key: String, values: Iterable[Pair]) = {
for ((s, c¢) <- values) {

sum += s
cnt += ¢
¥
emit(key, (sum, cnt))

}
}

class Reducer {
def reduce(key: String, values: Iterable[Pair]) = {
for ((s, ¢) <- values) {

sum += s

cnt += ¢
I Fixed? Yes!
emit(key, sum/cnt)

}
}



Another Example

Term co-occurrence matrix for a text collection

M = N x N matrix (N = vocabulary size)
M;: number of times i and j co-occur in some context
(for concreteness, let’s say context = sentence)

Why!?



Large Counting Problems

Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

A large event space (number of terms)
A large number of observations (the collection itself)
Goal: keep track of interesting statistics about the events

Basic approach

Mappers generate partial counts
Reducers aggregate partial counts

How do we aggregate partial counts efficiently?



First Try: “Pairs”

Each mapper takes a sentence:

Generate all co-occurring term pairs
For all pairs, emit (a, b) — count

Reducers sum up counts associated with these pairs
Use combiners!



Pairs: Pseudo-Code

class Mapper {
def map(key: Long, value: String) = {
for (u <- tokenize(value)) {
for (v <- neighbors(u)) {
emit((u, v), 1)
}
Y
Y
}

class Reducer {
def reduce(key: Pair, values: Iterable[Int]) = {
for (value <- values) {
sum += value
Y
emit(key, sum)
Y
¥



Pairs: Pseudo-Code

One more thing...

class Partitioner {
def getPartition(key: Pair, value: Int, numTasks: Int): Int = {
return key.left % numTasks
}
}



“Pairs” Analysis

Advantages
Easy to implement, easy to understand

Disadvantages

Lots of pairs to sort and shuffle around (upper bound?)
Fewer opportunities for combiners to work



Another Try: “Stripes”

ldea: group together pairs into an associative array

(a, b) — 1
(a,c)— 2
(a,d)—5 a—{b:1,c:2,d:5e: 3,2}

(a,e) — 3
(a, f) > 2

Each mapper takes a sentence:

Generate all co-occurring term pairs
For each term, emit a — { b: count,, c: count,, d: count, ... }

Reducers perform element-wise sum of associative arrays

a—{b:1, d: 5,e:3}
+ a—{b:1,c 2 d: 2, f:2}
a—{b:2,c2,d7,e 3 f2}

Y



Stripes: Pseudo-Code

class Mapper {
def map(key: Long, value: String) = {
for (u <- tokenize(value)) {
val map = new Map()
for (v <- neighbors(u)) {
map(v) +=1
}
} emit(u, map) a—{b:1,c:2,d:5,e:3,1.2}
}
¥

class Reducer {
def reduce(key: String, values: Iterable[Map]) = {
val map = new Map()
for (value <- values) {

map += value a—{b:1, d:5,e:3}
) + a—{b:1,c: 2 d:2, f:2}
emit(key, map) a—{b:2,c2,d7,e 3 f2}

}
}



“Stripes” Analysis

Advantages

Far less sorting and shuffling of key-value pairs
Can make better use of combiners

Disadvantages
More difficult to implement
Underlying object more heavyweight
Overhead associated with data structure manipulations
Fundamental limitation in terms of size of event space



Stripes >> Pairs?

Tradeoffs

Developer code vs. framework
CPU vs. RAM vs. disk vs. network
Number of key-value pairs: sorting and shuffling data across the network
Size and complexity of each key-value pair: de/serialization overhead
Cost of manipulating data structures
Opportunities for local aggregation



Tradeoffs

Pairs:

Generates a lot more key-value pairs
Fewere combining opportunities
More sorting and shuffling
Simple aggregation at reduce

Stripes:
Generates fewer key-value pairs (but more complex values)
More opportunities for combining
Less sorting and shuffling
More complex (slower) aggregation at reduce

(At scale, stripes are faster)



Hrm. Can we generalize?
(Yes, but next time...)



Deep(-er) Dive: How does this all work!?

Where do we place the data?
Where do we place the compute!?



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing

components break all the time.

Where do we place the data? r
AnsWE

Trick #1: Partition GFS\ (circa 2003)
Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!



GFS: Assumptions

Commodity hardware over “exotic” hardware
Scale “out”, not “up”

High component failure rates
Inexpensive commodity components fail all the time

“Modest” number of huge files
Multi-gigabyte files are common, if not encouraged

Files are write-once, mostly appended to
Logs are a common case

Large streaming reads over random access
Design for high sustained throughput over low latency

GF S slides adapted from material by (Ghemawat et al., SOSP 2003)



GFS: Design Decisions

Files stored as chunks
Fixed size (64MB)

Reliability through replication
Each chunk replicated across 3+ chunkservers

Single master to coordinate access and hold metadata
Simple centralized management

No data caching
Little benefit for streaming reads over large datasets

Simplify the API: not POSIX!

Push many issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)



From GFS to HDFS

Terminology differences:

GFS master = Hadoop namenode
GFS chunkservers = Hadoop datanodes

Implementation differences:

Different consistency model for file appends
Implementation language
Performance

For the most part, we’ll use Hadoop terminology...



HDFS Architecture

(Yes, SPOF!)

HDFS namenode

Application [foo/bar
HDF'S Client [, File namespace block 3df2
A

A 4

HDFS datanode HDFS datanode

Linux file system Linux file system

oa . 0

Adapted from (Ghemawat et al., SOSP 2003)



Namenode Responsibilities

Managing the file system namespace

Holds file/directory structure, file-to-block mapping,
metadata (ownership, access permissions, etc.)

Coordinating file operations

Directs clients to datanodes for reads and writes
No data is moved through the namenode

Maintaining overall health
Periodic communication with the datanodes
Block re-replication and rebalancing
Garbage collection



Deep(-er) Dive: How does this all work!?

Where do we place the data?
Where do we place the compute!?



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Where do we place the compute!

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!



Compute meets Data!

Compute Nodes Storage Nodes

Move data to compute!
Move compute to data!



Basic Cluster Components

Namenode (NN)
Holds HDFS metadata

Jobtracker (JT)

Coordinator for MapReduce jobs

On each of the worker machines:

Tasktracker (TT): contains multiple task slots
Datanode (DN): serves HDFS data blocks



Putting everything together...

namenode (NN)

jobtracker (JT)

namenode daemon

jobtracker daemon

tasktracker daemon

tasktracker daemon

datanode daemon

Linux file system

datanode daemon

Linux file system

tasktracker daemon

20

20

datanode daemon

Linux file system

20

worker node worker node worker node

Key idea: aligh map tasks with HDFS blocks




>
<
ES
73
w
w
@
o
=4
W




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

