
Data-Intensive Distributed Computing

Batch Processing I

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

CS 451/651 (Fall 2025)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

Week 3: September 18, 2025

(v1.01)

These slides are available at https://lintool.github.io/cs451-2025f/

Key Questions

What’s MapReduce and how does it work with HDFS?

What challenges do communication and skew present in scaling out?

Why is local aggregation important?

Immutable Truth #1: At scale, you must

distribute work across multiple machines.

Immutable Truth #2: At scale, computing

components break all the time.

Must create higher levels of abstraction

Must think about fault tolerance from the beginning

Implications

How do you write a program that runs across 100 machines?

The essence of abstraction is preserving information that is relevant in a

given context, and forgetting information that is irrelevant in that context.

 – computer scientist John V. Guttag

MapReduce

Programmer specifies two functions:

map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

Source: Google

The datacenter is the computer!
What’s the instruction set?

“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {

 for (word <- tokenize(value)) {

 emit(word, 1)

 }

}

def reduce(key: String, values: Iterable[Int]) = {

 for (value <- values) {

 sum += value

 }

 emit(key, sum)

}

MapReduce

The “runtime” handles everything else…

Programmer specifies two functions:

map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce “Runtime”

Handles scheduling
Assigns workers to map and reduce tasks

Handles “data distribution”
Moves processes to data

Handles coordination
Groups and shuffles intermediate data

Handles errors and faults
Detects worker failures and restarts

Immutable Truth #1: At scale, you must

distribute work across multiple machines.

Immutable Truth #2: At scale, computing

components break all the time.

Must create higher levels of abstraction

Must think about fault tolerance from the beginning

Implications

How do you write a program that runs across 100 machines?

</end> ?

More? Why do you care?

1. All abstractions are leaky

2. Important to develop intuitions

3. What do you want to be?

4. Curiosity

The essence of abstraction is preserving information that is relevant in a

given context, and forgetting information that is irrelevant in that context.

 – computer scientist John V. Guttag

You don’t have to be an engineer to be be a racing driver,

but you do have to have mechanical sympathy

 – Formula One driver Jackie Stewart

MapReduce

Programmer specifies two functions:

map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

That’s it?

Not quite…

Immutable Truth #1: At scale, you must

distribute work across multiple machines.

Ideal scaling characteristics:
Twice the data, twice the running time

Twice the resources, half the running time

Why can’t we achieve this?
1. Communication is unavoidable

2. Skew creates idle workers

Ideal Scaling: Why not?

Communication is unavoidable
Workers need to share intermediate results…

Which requires communication across machines…

Which requires synchronization…

Which kills performance.

Skew creates idle workers
Tasks are never divided perfectly evenly…

And even if they are, processing times can be unpredictable…

Which leads to idle workers.

Storage Hierarchy

Local Machine
cache, memory, SSD, magnetic disks

capacity, latency, bandwidth

Remote Machine

Same Rack

Remote Machine

Different Rack

Remote Machine

Different Datacenter

tl;dr – communication is costly

So let’s reduce the amount of data shuffling!

How? Aggregate intermediate results locally!

Programmer specifies two functions:

map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce

partition (k', p) → 0 ... p-1

Often a simple hash of the key, e.g., hash(k') mod n

Divides up key space for parallel reduce operations

combine (k2, List[v2]) → List[(k2, v2)]

Mini-reducers that run in memory after the map phase

Used as an optimization to reduce the amount of data shuffling

✗

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

What’s the impact of combiners?

Word Count: Baseline

class Mapper {

 def map(key: Long, value: String) = {

 for (word <- tokenize(value)) {

 emit(word, 1)

 }

 }

}

class Reducer {

 def reduce(key: String, values: Iterable[Int]) = {

 for (value <- values) {

 sum += value

 }

 emit(key, sum)

 }

}

Are combiners still needed?

Word Count: Mapper Histogram

class Mapper {

 def map(key: Long, value: String) = {

 val counts = new Map()

 for (word <- tokenize(value)) {

 counts(word) += 1

 }

 for ((k, v) <- counts) {

 emit(k, v)

 }

 }

}

Ideal Scaling: Why not?

Communication is unavoidable
Workers need to share intermediate results…

Which requires communication across machines…

Which requires synchronization…

Which kills performance.

Skew creates idle workers
Tasks are never divided perfectly evenly…

And even if they are, processing times can be unpredictable…

Which leads to idle workers.

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

Programmer specifies two functions:

map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce

partition (k', p) → 0 ... p-1

Often a simple hash of the key, e.g., hash(k') mod n

Divides up key space for parallel reduce operations

combine (k2, List[v2]) → List[(k2, v2)]

Mini-reducers that run in memory after the map phase

Used as an optimization to reduce the amount of data shuffling

✗

Which means…

You have limited control over data and execution flow!
All algorithms must be expressed in m, r, c, p

You don’t know:
Where mappers and reducers run

When a mapper or reducer begins or finishes

Which input a particular mapper is processing

Which intermediate key a particular reducer is processing

…

Abstractions

Pros

You don’t have to worry about it.

You don’t need to know what’s going on.

Cons

You can’t worry about it (even if you wanted to).

You don’t know what’s going on (even if you wanted to).

✓

✗

Recap, why combiners?

Combiner Design

Combiners and reducers share same method signature
Sometimes, reducers can serve as combiners

Often, not…

Combiner are optional optimizations
Should not affect algorithm correctness

May be run 0, 1, or multiple times

Example: find average of integers associated with the same key

Can reducers be used as combiners?

Reducers are guaranteed to run exactly once

Why can’t we use reducer as combiner?

Computing the Mean: Version 1

class Mapper {

 def map(key: String, value: Int) = {

 emit(key, value)

 }

}

class Reducer {

 def reduce(key: String, values: Iterable[Int]) {

 for (value <- values) {

 sum += value

 cnt += 1

 }

 emit(key, sum/cnt)

 }

}

class Mapper {

 def map(key: String, value: Int) =

 context.write(key, value)

}

class Combiner {

 def reduce(key: String, values: Iterable[Int]) = {

 for (value <- values) {

 sum += value

 cnt += 1

 }

 emit(key, (sum, cnt))

 }

}

class Reducer {

 def reduce(key: String, values: Iterable[Pair]) = {

 for ((s, c) <- values) {

 sum += s

 cnt += c

 }

 emit(key, sum/cnt)

 }

}

Why doesn’t this work?

Computing the Mean: Version 2

class Mapper {

 def map(key: String, value: Int) =

 context.write(key, (value, 1))

}

class Combiner {

 def reduce(key: String, values: Iterable[Pair]) = {

 for ((s, c) <- values) {

 sum += s

 cnt += c

 }

 emit(key, (sum, cnt))

 }

}

class Reducer {

 def reduce(key: String, values: Iterable[Pair]) = {

 for ((s, c) <- values) {

 sum += s

 cnt += c

 }

 emit(key, sum/cnt)

 }

}

Computing the Mean: Version 3

Fixed? Yes!

Another Example

Term co-occurrence matrix for a text collection
M = N x N matrix (N = vocabulary size)

Mij: number of times i and j co-occur in some context

(for concreteness, let’s say context = sentence)

Why?

Large Counting Problems

Term co-occurrence matrix for a text collection

= specific instance of a large counting problem

A large event space (number of terms)

A large number of observations (the collection itself)

Goal: keep track of interesting statistics about the events

Basic approach
Mappers generate partial counts

Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: “Pairs”

Each mapper takes a sentence:
Generate all co-occurring term pairs

For all pairs, emit (a, b) → count

Reducers sum up counts associated with these pairs

Use combiners!

Pairs: Pseudo-Code

class Mapper {

 def map(key: Long, value: String) = {

 for (u <- tokenize(value)) {

 for (v <- neighbors(u)) {

 emit((u, v), 1)

 }

 }

 }

}

class Reducer {

 def reduce(key: Pair, values: Iterable[Int]) = {

 for (value <- values) {

 sum += value

 }

 emit(key, sum)

 }

}

Pairs: Pseudo-Code

class Partitioner {

 def getPartition(key: Pair, value: Int, numTasks: Int): Int = {

 return key.left % numTasks

 }

}

One more thing…

“Pairs” Analysis

Advantages
Easy to implement, easy to understand

Disadvantages
Lots of pairs to sort and shuffle around (upper bound?)

Fewer opportunities for combiners to work

Another Try: “Stripes”

Idea: group together pairs into an associative array

Each mapper takes a sentence:
Generate all co-occurring term pairs

For each term, emit a → { b: countb, c: countc, d: countd … }

(a, b) → 1

(a, c) → 2

(a, d) → 5

(a, e) → 3

(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

Reducers perform element-wise sum of associative arrays

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
+

Stripes: Pseudo-Code

class Mapper {

 def map(key: Long, value: String) = {

 for (u <- tokenize(value)) {

 val map = new Map()

 for (v <- neighbors(u)) {

 map(v) += 1

 }

 emit(u, map)

 }

 }

}

class Reducer {

 def reduce(key: String, values: Iterable[Map]) = {

 val map = new Map()

 for (value <- values) {

 map += value

 }

 emit(key, map)

 }

}

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
+

“Stripes” Analysis

Advantages
Far less sorting and shuffling of key-value pairs

Can make better use of combiners

Disadvantages
More difficult to implement

Underlying object more heavyweight

Overhead associated with data structure manipulations

Fundamental limitation in terms of size of event space

Stripes >> Pairs?

Tradeoffs
Developer code vs. framework

CPU vs. RAM vs. disk vs. network

Number of key-value pairs: sorting and shuffling data across the network

Size and complexity of each key-value pair: de/serialization overhead

Cost of manipulating data structures

Opportunities for local aggregation

Tradeoffs

Pairs:
Generates a lot more key-value pairs

Fewere combining opportunities

More sorting and shuffling

Simple aggregation at reduce

Stripes:
Generates fewer key-value pairs (but more complex values)

More opportunities for combining

Less sorting and shuffling

More complex (slower) aggregation at reduce

(At scale, stripes are faster)

Hrm. Can we generalize?

(Yes, but next time…)

Deep(-er) Dive: How does this all work?

Where do we place the data?

Where do we place the compute?

Immutable Truth #1: At scale, you must

distribute work across multiple machines.

Immutable Truth #2: At scale, computing

components break all the time.

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!

Where do we place the data?

GFS: Assumptions

Commodity hardware over “exotic” hardware
Scale “out”, not “up”

High component failure rates
Inexpensive commodity components fail all the time

“Modest” number of huge files
Multi-gigabyte files are common, if not encouraged

Files are write-once, mostly appended to
Logs are a common case

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

Large streaming reads over random access
Design for high sustained throughput over low latency

GFS: Design Decisions

Files stored as chunks
Fixed size (64MB)

Reliability through replication
Each chunk replicated across 3+ chunkservers

Single master to coordinate access and hold metadata
Simple centralized management

No data caching
Little benefit for streaming reads over large datasets

Simplify the API: not POSIX!
Push many issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

From GFS to HDFS

Terminology differences:
GFS master = Hadoop namenode

GFS chunkservers = Hadoop datanodes

Implementation differences:
Different consistency model for file appends

Implementation language

Performance

For the most part, we’ll use Hadoop terminology…

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace

/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

(Yes, SPOF!)

Namenode Responsibilities

Managing the file system namespace
Holds file/directory structure, file-to-block mapping,

metadata (ownership, access permissions, etc.)

Coordinating file operations
Directs clients to datanodes for reads and writes

No data is moved through the namenode

Maintaining overall health
Periodic communication with the datanodes

Block re-replication and rebalancing

Garbage collection

Deep(-er) Dive: How does this all work?

Where do we place the data?

Where do we place the compute?

Immutable Truth #1: At scale, you must

distribute work across multiple machines.

Immutable Truth #2: At scale, computing

components break all the time.

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!

Where do we place the compute?

Compute meets Data!

Storage NodesCompute Nodes

Move data to compute?

Move compute to data?

Basic Cluster Components

Namenode (NN)
Holds HDFS metadata

On each of the worker machines:
Tasktracker (TT): contains multiple task slots

Datanode (DN): serves HDFS data blocks

Jobtracker (JT)
Coordinator for MapReduce jobs

datanode daemon

Linux file system

…

tasktracker daemon

worker node

datanode daemon

Linux file system

…

tasktracker daemon

worker node

datanode daemon

Linux file system

…

tasktracker daemon

worker node

namenode (NN)

namenode daemon

jobtracker (JT)

jobtracker daemon

Putting everything together…

Key idea: align map tasks with HDFS blocks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

