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Key Questions

What'’s the difference between scaling up and scaling out?

What are the implications of distributed processing
across many machines!?

What are the challenges for a divide-and-conquer strategy?

What challenges does partitioning address?
What challenges does it exacerbate?

What challenges does replication address!?
What challenges does it exacerbate?

What’s MapReduce and how does it work with HDFS?



What are we trying to do?
tl;dr — everything!

You want

Flexible tools
Diverse data and workloads
High scalability and elasticity
Low latency, high throughput

Your boss wants

Cheap
Easy to manage
Small environmental footprint

Remember: There are no solutions, only tradeoffs!
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Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Ob\/'\OUSz
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To set some context for scale, two years ago we moved from Amazon
EMR onto a set of EC2 instances running HDFS with 300 terabytes of
data. Today, we have two separate HDFS clusters with || petabytes of
data and we also store multiple petabytes of data in S3 on top of that.

AirBnB’s data platform (circa 2016)

https://medium.com/airbnb-engineering/data-infrastructure-at-airbnb-8adfb34f169c



Generation 3 (2017-present) - Let’s rebuild for long term

Incremental ingestion:

ETL
(Flattened/Modeled Tables)
! |
» Incremental ingestion: > <30 min
- <30min to get in new data/updates I W 1
Pull

Key-Val DBs
(Sharded) Ingestion
(Batch)

Hive/Spark/
—> Presto/
Notebooks

7,
%Y
Parquet
Hudi

Changelogs
Data size: ~100 PB

Latency: <30min raw data
<1 hr modeled

RDBMS DBs E2E Fresh data ingestion:
, <30 min for raw data Tables
<1 hour for Modeled Tables

-

Uber’s data platform (circa 2018)

https://www.uber.com/en-CA/blog/uber-big-data-platform/



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Ob\/'\OUS?

Scale-out vs. Scale-up
. but don’t under-estimate the power of a single “beefy” machine

GCP x4-megamem-1920-metal instance:
1920 vCPUs, 32,768 GB RAM, 512 TiB disk

https://cloud.google.com/compute/docs/memory-optimized-machines



Building Blocks

Source: Barroso and Urs Holzle (2009)



Datacenter Organization

LAST-LEVEL CACHE | AST-LEVEL CACHE DRAM: - 256GB, 100ns, 150GB/s

DISK:  80TB, 10ms, 800MB/s
- ! /
LOCAL DRAM FLASH: 4TB, 100us, 3GB/s

RACK SWITCH
l l LOCAL RACK (40 SERVERS)
DRAM — DRAM e D DRAM: 10TB, 20us, 5GB/s
DRAM | DRAM e D DISK:  3.2PB, 10ms, 5GB/s
DRAM oo DRAM rammd D FLASH: 160TB, 120us, 5GB/s

DRAM | DRAM ~ p.

l_' DATACENTER FABRIC CLUSTER (125 RACKS)

DRAM: 1.28PB, 50us, 1.2GB/s
DISK:  400PB, 10ms, 1.2GB/s
FLASH: 20PB, 150us, 1.2GB/s

Source: Barroso et al. (2019)
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Anatomy of a Datacenter

Computer Air Handling Unit (CRAC)

* Up To 30 Ton Sensible Cay cigrPcr Unit

* Air Discharge Can Be Up! Downflow Configuration

» Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Plenum With Floor Supply Diffuscrs

Individual Colocation Computer Cabinets

+ Typ. Cabinet Footprint (28"W x 36"D x 84"H)
* Typical Capacities Of 1750 To 3750 Watts Per Cabinet

Power Distribution Unit (PDU)
» Typical Capacitics Up To 225 kVA Per Unit
« Redundancy Through Dual PDU's With
Integral Static Transfer Switch (STS)
Emergency Diesel Generators
« Total Generator Capacity = Total Electrical Load To Building
« Multiple Generators Can Be Electrically Combined With
Paralleling Gear
+ Can Be Located Indoors Or Outdoors At Grade Or On Roof.
« Outdoor Applications Require Sound Attenuating Enclosures

Fuel Oil Storage Tanks

» Tank Capacity Dependant On Length
Of Generator Opcration

« Can Be Located Underground Or At
Grade Or Indoors

.
Colocation Suites

* Modular Configuration For
Flexible Suite Sq.Ft. Areas.
* Suites Consist Of Multiple Cabinets Wi
Sccured Partitions (Cages, Walls, Etc.)

" UPS System
-~ « Uninterruptible Power Supply Modules
g « Up To 1000 kVA Per Module
/ « Cabinets And Battery Strings Or Rotary Flywheels
* Multiple Redundancy Configurations Can Be Designed

/Electrlcal Primary Switchgear

o * Includes Incoming Service And Distribution
* Direct Distribution To Mechanical Equipment
« Distribution To Secondary Electrical Equipment Via UPS

Pump Room

« Used To Pump Condenser/Chilled Water Between Drycoolers And CRAC Units
» Additional Equipment Includes Expansion Tank, Glycol Feed System

* N+1 Design (Standby Pump)

Heat Rejection Devices
+ Drycoolers, Air Cooled Chillers, Etc.
* Up To 400 Ton Capacity Per Unit

* Mounted At Grade Or On Roof

* N+1 Design

Source: Barroso and Urs Holzle (2013)



Datacenter Cooling
What’s a computer?

Ceiling Ceiling
- - o -
= AN s
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Floor Tiles — . ey
e —IFloor Slab

Source: Barroso and Urs Holzle (2013)
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. . Name
@KonstantinPilz Phase 2
First operational date Feb. 18,2025

@ Konstantin Pilz g s xAl Colossus Memphis

After 2 years tracking GPU clusters, we're releasing our dataset of 700+
150,000 NVIDIA H100

Hard
Al supercomputers. SRR SXM5 80GB

Secondary hardware g())(,’(\)/loo NVIDIA H200

c , ; : :
The US clearly dominates countries, and xAl’s Colossus is leading HI00 equivalents 500 000

system: 200k Al chips, $7B price tag, and power needs of a medium- Lel
SiZEd Clty Power capacity 280 MW
Here are my personal highlights §_ Country peditateeiat
. ~,
Power capacity of Al supercomputers Z EPOCH Al

Power capacity

1GW Leading Al supercomputers by
computational performance
Reported power

Calculated power

100 MW Other Al supercomputers
Reported power
Calculated power
10 MW
1MW
100 kW
2019 2020 2021 2022 2023 2024 2025
First operational date of cluster
CC-BY https://x.com/KonstantinPilz/status/1915103186106413107 epoch.ai



Elon Musk & E3 w A o
%Y @elonmusk

Colossus 2, built by @xAl, will be the world’s first Gigawatt+ Al training
supercomputer

) Michael Dell = & ~ @MichaelDell - Aug 21

Great visit to @xai with @BrentM_SpaceX @nmswede today! It’s amazing to
see what you guys are accomplishing and we couldn’t be prouder to be part of
it. | very much enjoyed it. Onward % x.com/BrentM_SpaceX/...

7:01 AM - Aug 22, 2025 - 25M Views

https://x.com/elonmusk/status/1958846872157921546
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Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.



Example: SSD Failure
Thanks to ChatGPT &

Assume AFR (Annual Failure Rate) of 1% (= 0.01 per year)
Assume constant hazard

The per-day failure probability for one drive is:
Paay = 0.01/365 = 0.000027397

For N independent drives, the daily failure count is well-approximated
by a Poisson random variable with rate: 1 = N x p,,,

Expected failures per day = 1
Chance of at least one failure today = | — e

10,000 SSDs: = 0.274 failures / day
P(z1 failure today) = 24%

100,000 SSDs: = 2.74 failures / day
P (= failure today) = 94%

https://www.backblaze.com/blog/ssd-edition-2023-mid-year-drive-stats-review/



Data-Intensive Distributed Processing
Divide and Conquer!
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Divide and Conquer

“Work”

Wi

worker

r

W) W3
worker worker
v v v
), I3
“Result”

Partition

|
|

Aggregate



Roots in Functional Programming

Partition: process many records by “doing” something to each (f)
f f f f f

oo

Map



Roots in Functional Programming

Aggregate: combine results in a particular way (g)
f f f f f

11117

Map

Fold




Functional Programming in Scala

scala> val t = Array(1, 2, 3, 4, 5)
t: Array[Int] = Array(1l, 2, 3, 4, 5)

scala> t.map(n => n*n)
res@: Array[Int] = Array(l, 4, 9, 16, 25)

scala> t.map(n => n*n).foldLeft(0)((m, n) => m + n)
resl: Int = 55

Now do this across many machines...



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

How do you write a program that runs across 100 machines?
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Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

How do you write a program that runs across 100 machines?

Implications

Must build higher-level abstractions
Must think about fault tolerance from the beginning

The essence of abstraction is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that context.

— computer scientist John V. Guttag
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A Data-Parallel Abstraction

Start with a large number of records
Map“Do something” to each
Group intermediate results
“Aggregate” intermediate results duce

Re

Write final results

Key idea: provide a functional abstraction for these two operations
Dean and Ghemawat (2004)



Historical Note

Google “invented” MapReduce
Hadoop is an open-source implementation

Unless explicitly stated otherwise, we're referring to Hadoop

CrhErbED



MapReduce

Programmer specifies two functions:

map (ki, vi) — List[(k;, vy)]
reduce (k,, List[vy]) — List[(ks, v3)]

All values with the same key are sent to the same reducer
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MapReduce

Programmer specifies two functions:

map (ky, vi) — List[(k;, v3)]
reduce (k,, List[v,y]) - List[(ks, v3)]

All values with the same key are sent to the same reducer

The “runtime” handles everything else...
What's “everything else’?



MapReduce “Runtime”

Handles scheduling

Assigns workers to map and reduce tasks

Handles “data distribution”
Moves code to data

Handles coordination
Groups and shuffles intermediate data

Handles errors and faults
Detects failures and compensates



MapReduce

Programmer specifies two functions:

map (ky, vi) — List[(k;, v3)]
reduce (k,, List[v,y]) - List[(ks, v3)]

All values with the same key are sent to the same reducer

The “runtime” handles everything else...
(Not quite... but later)



“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
emit(word, 1)
}
}

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value
¥
emit(key, sum)

}



Roots in Functional Programming
IRRAS
96960

CLLer

Map

Fold
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That’s it.

MapReduce results = records.map(...)
.reduce(...)

results?2 = resultsl.map(...)
.reduce(...)

Spal"k results = rdd.foo(...)
.bar(...)
.baz(...)



More! Why do you care!?

The essence of abstraction is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that context.

— computer scientist John V. Guttag

All abstractions are leaky
Important to develop intuitions

What do you want to be!
Curiosity

AW —

You don’t have to be an engineer to be be a racing driver,
but you do have to have mechanical sympathy

— Formula One driver Jackie Stewart



One More...

In the cloud, does any of this matter?

The cloud is just another abstraction!

Pros
You don’t have to worry about it.
You don’t need to know what’s going on.\/

Cons
You can’t worry about it (even if you wanted to).
You don’t know what’s going on (even if you wanted to).



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!



Partition

tl;dr — (1) divide data and store across multiple machines;
(2) divide processing across multiple machine

Challenges
How do we divide data?
Where do we place data? (mapping data to machines)
Where do we place workers? (mapping workers to machines)
How do workers access data! (mapping data to workers)

(Who'’s “we”, btw?)
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Partition

tl;dr — (1) divide data and store across multiple machines;
(2) divide processing across multiple machine

Challenges
How do we divide data?
Where do we place data? (mapping data to machines)
Where do we place workers? (mapping workers to machines)
How do workers access data! (mapping data to workers)

How do we share intermediate results?



Replicate

tl;dr — keep multiple copies for fault tolerance

Challenges

How many copies do we keep?
Where do we keep them!?
How do we keep all the copies in sync?
Which copy do we process!?

(caching as a special case)



Orchestration

tl;dr — we need to coordinate all of this

Challenges

How do we do all of this in the presence of unreliable components!?
How do we do dll of this keeping every machine busy?

When workers die? unpredictable
When workers finish? unpredictable
When workers interrupt each other? unpredictable
When workers access resources!? unpredictable



CAP Theorem

Consistency
Availability
Partition Tolerance

Choose two!

In practical terms, if we have a network partition (P):
What do we do?

Choose A (AP system)
What happens to C?

Choose C (CP system)
What happens to A!?



Data-Intensive Distributed Processing

How do you actually do it?

Hadoop provides one answer...

G hEEbDD




Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Where do we place the data?

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!



HDFS Architecture

HDFS namenode

Application /foo/bar
HDFES Client ) File namespace block 3df2
A

A

HDFS datanode HDFS datanode

Linux file system Linux file system

oa . 96

Adapted from (Ghemawat et al., SOSP 2003)



Immutable Truth #1: At scale, you must
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Where do we place the compute!

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!



Compute meets Data!

Compute Nodes Storage Nodes

Move data to compute!
Move compute to data!



Putting everything together...

namenode (NN) jobtracker (JT)

namenode daemon jobtracker daemon
EAS)

—“‘4, S

'S

tasktracker daemon tasktracker daemon N tasktracker daemon
datanode daemon datanode daemon datanode daemon
Linux file system Linux file system Linux file system




“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
emit(word, 1)
}
}

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value
¥
emit(key, sum)

}



Logical View
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Physical View

User
Program
(1) submit
(2) sc/hetﬂ]le map (2) ;che\dule reduce
A”/
worker >
split O
split 1 output
P (3) read . file 0
split 2 (4) local write
; worker >
split 3
split 4 output
file 1
worker >
Input Map Intermediate files Reduce Output
files phase (on local disk) phase files

Adapted from (Dean and Ghemawat, OSDI 2004)
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