
Data-Intensive Distributed Computing

Batch Processing I

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

CS 451/651 (Fall 2025)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

Week 3: September 16

(v1.01)

These slides are available at https://lintool.github.io/cs451-2025f/



Key Questions

What’s the difference between scaling up and scaling out?

What are the implications of distributed processing 
across many machines?

What are the challenges for a divide-and-conquer strategy?

What challenges does partitioning address?
What challenges does it exacerbate?

What challenges does replication address?
What challenges does it exacerbate?

What’s MapReduce and how does it work with HDFS?



What are we trying to do?
tl;dr – everything!

Remember: There are no solutions, only tradeoffs!

You want
Flexible tools

Diverse data and workloads
High scalability and elasticity
Low latency, high throughput

…

Your boss wants
Cheap

Easy to manage
Small environmental footprint

…



Example
Is saving 1.27ms in latency 
worth $1billion dollars?



Immutable Truth #1: At scale, you must 
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!



Immutable Truth #1: At scale, you must 
distribute work across multiple machines.

Obvious?



AirBnB’s data platform (circa 2016)
https://medium.com/airbnb-engineering/data-infrastructure-at-airbnb-8adfb34f169c

To set some context for scale, two years ago we moved from Amazon 
EMR onto a set of EC2 instances running HDFS with 300 terabytes of 
data. Today, we have two separate HDFS clusters with 11 petabytes of 
data and we also store multiple petabytes of data in S3 on top of that.



Uber’s data platform (circa 2018)
https://www.uber.com/en-CA/blog/uber-big-data-platform/



Immutable Truth #1: At scale, you must 
distribute work across multiple machines.

Obvious?

Scale-out vs. Scale-up
… but don’t under-estimate the power of a single “beefy” machine

GCP x4-megamem-1920-metal instance:
1920 vCPUs, 32,768 GB RAM, 512 TiB disk

https://cloud.google.com/compute/docs/memory-optimized-machines



Source: Barroso and Urs Hölzle (2009)

Building Blocks



Source: Barroso et al. (2019)

Datacenter Organization



Source: Google



Source: Google



Source: Facebook



Source: Barroso and Urs Hölzle (2013)

Anatomy of a Datacenter



Source: Barroso and Urs Hölzle (2013)

Datacenter Cooling
What’s a computer?



Source: Google



Source: Google



Source: Google



Source: Google



Source: CumminsPower



Source: Google



Source: Wikipedia (The Dalles, Oregon)



Source: Bonneville Power Administration



Source: Google

How much is 30 MW?



https://x.com/KonstantinPilz/status/1915103186106413107



https://x.com/elonmusk/status/1958846872157921546



Source: Wikipedia

Sir Adam Beck Hydroelectric 
Generating Stations: 1,962 MW



Immutable Truth #1: At scale, you must 
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.



Thanks to ChatGPT 😅
Example: SSD Failure

https://www.backblaze.com/blog/ssd-edition-2023-mid-year-drive-stats-review/

Assume AFR (Annual Failure Rate) of 1% (= 0.01 per year)
Assume constant hazard

For N independent drives, the daily failure count is well-approximated 
by a Poisson random variable with rate: 𝜆 = N × pday 

The per-day failure probability for one drive is:
pday = 0.01/365 ≈ 0.000027397

Expected failures per day = 𝜆
Chance of at least one failure today = 1 − 𝑒-𝜆

10,000 SSDs: ≈ 0.274 failures / day
𝑃(≥1 failure today) ≈ 24%

100,000 SSDs: ≈ 2.74 failures / day
𝑃(≥ failure today) ≈ 94%



Data-Intensive Distributed Processing
Divide and Conquer!





“Work”

w1 w2 w3

r1 r2 r3

“Result”

worker worker worker

Partition

Aggregate

Divide and Conquer



f f f f fMap

Roots in Functional Programming

Partition: process many records by “doing” something to each (f)



g g g g g

f f f f fMap

Fold

Roots in Functional Programming

Aggregate: combine results in a particular way (g)



scala> val t = Array(1, 2, 3, 4, 5)
t: Array[Int] = Array(1, 2, 3, 4, 5)

scala> t.map(n => n*n)
res0: Array[Int] = Array(1, 4, 9, 16, 25)

scala> t.map(n => n*n).foldLeft(0)((m, n) => m + n)
res1: Int = 55

Functional Programming in Scala

Now do this across many machines…



Immutable Truth #1: At scale, you must 
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

How do you write a program that runs across 100 machines?



Source: CS 251

More on Single-Cycle Processor /1
 Control Unit Added:

3



Source: CS 251

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

More on Single-Cycle Processor /1
 Control Unit Added:

3

✗



Source: Google

The datacenter is the computer!



Source: Google

The datacenter is the computer!



Immutable Truth #1: At scale, you must 
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Must build higher-level abstractions
Must think about fault tolerance from the beginning

Implications

How do you write a program that runs across 100 machines?

The essence of abstraction is preserving information that is relevant in a 
given context, and forgetting information that is irrelevant in that context. 

   – computer scientist John V. Guttag



Source: Google

The datacenter is the computer!



Source: Google

The datacenter is the computer!
What’s the instruction set?



A Data-Parallel Abstraction

Start with a large number of records

“Do something” to each

Group intermediate results

“Aggregate” intermediate results

Write final results

Key idea: provide a functional abstraction for these two operations

Map

Reduce

Dean and Ghemawat (2004)



Historical Note

Google “invented” MapReduce

Hadoop is an open-source implementation 

Unless explicitly stated otherwise, we’re referring to Hadoop



MapReduce

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer



mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3



MapReduce

The “runtime” handles everything else…
What’s “everything else”?

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer



MapReduce “Runtime”

Handles scheduling
Assigns workers to map and reduce tasks

Handles “data distribution”
Moves code to data

Handles coordination
Groups and shuffles intermediate data

Handles errors and faults
Detects failures and compensates



MapReduce

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

The “runtime” handles everything else…
(Not quite… but later)



“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {
  for (word <- tokenize(value)) {
    emit(word, 1)
  }
}

def reduce(key: String, values: Iterable[Int]) = {
  for (value <- values) {
    sum += value
  }
  emit(key, sum)
}



g g g g g

f f f f fMap

Fold

Roots in Functional Programming



mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3



That’s it.

MapReduce results = records.map(...)
                 .reduce(...)

results2 = results1.map(...)
                   .reduce(...)

Spark results = rdd.foo(...)
             .bar(...)
             .baz(...)



More? Why do you care?

1. All abstractions are leaky
2. Important to develop intuitions
3. What do you want to be?
4. Curiosity

The essence of abstraction is preserving information that is relevant in a 
given context, and forgetting information that is irrelevant in that context. 

   – computer scientist John V. Guttag

You don’t have to be an engineer to be be a racing driver, 
but you do have to have mechanical sympathy

 
      – Formula One driver Jackie Stewart



One More…
In the cloud, does any of this matter?
The cloud is just another abstraction!

Pros 
You don’t have to worry about it.

You don’t need to know what’s going on.

Cons
You can’t worry about it (even if you wanted to).

You don’t know what’s going on (even if you wanted to).

✓

✗



Immutable Truth #1: At scale, you must 
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!



Partition
tl;dr – (1) divide data and store across multiple machines;
 (2) divide processing across multiple machine

Challenges
How do we divide data?

Where do we place data? (mapping data to machines)
Where do we place workers? (mapping workers to machines)

How do workers access data? (mapping data to workers)

(Who’s “we”, btw?)



Okay, now what?

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8



mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3



Partition
tl;dr – (1) divide data and store across multiple machines;
 (2) divide processing across multiple machine

Challenges
How do we divide data?

Where do we place data? (mapping data to machines)
Where do we place workers? (mapping workers to machines)

How do workers access data? (mapping data to workers)

How do we share intermediate results?



Replicate
tl;dr – keep multiple copies for fault tolerance

Challenges
How many copies do we keep?

Where do we keep them?
How do we keep all the copies in sync?

Which copy do we process?

(caching as a special case)



Orchestration
tl;dr – we need to coordinate all of this

When workers die? unpredictable
When workers finish? unpredictable

When workers interrupt each other? unpredictable
When workers access resources? unpredictable

Challenges
How do we do all of this in the presence of unreliable components?

How do we do all of this keeping every machine busy?



CAP Theorem
Consistency
Availability

Partition Tolerance
Choose two!

In practical terms, if we have a network partition (P):
What do we do?

Choose A (AP system)
What happens to C?

Choose C (CP system)
What happens to A?



Data-Intensive Distributed Processing
How do you actually do it?

Hadoop provides one answer…



Immutable Truth #1: At scale, you must 
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!

Where do we place the data?



Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture



Immutable Truth #1: At scale, you must 
distribute work across multiple machines.

Immutable Truth #2: At scale, computing
components break all the time.

Trick #1: Partition

Trick #2: Replicate

Remember: There are no solutions, only tradeoffs!

Where do we place the compute?



Compute meets Data!

Storage NodesCompute Nodes

Move data to compute?
Move compute to data?



datanode daemon

Linux file system

…

tasktracker daemon

worker node

datanode daemon

Linux file system

…

tasktracker daemon

worker node

datanode daemon

Linux file system

…

tasktracker daemon

worker node

namenode (NN)

namenode daemon

jobtracker (JT)

jobtracker daemon

Putting everything together…



“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {
  for (word <- tokenize(value)) {
    emit(word, 1)
  }
}

def reduce(key: String, values: Iterable[Int]) = {
  for (value <- values) {
    sum += value
  }
  emit(key, sum)
}



mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

Logical View



split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

Physical View




