
Data-Intensive Distributed Computing

Data Warehouses, Data Lakes, and Lakehouses

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

CS 451/651 (Fall 2025)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

Week 2: September 11, 2025

(v1.00)

These slides are available at https://lintool.github.io/cs451-2025f/



Key Questions

What are the main differences between 

operational and analytical infrastructure?

What are data warehouses?

What problems did they evolve to solve?

What are data lakes and lakehouses?

What problems did they evolve to solve?

What are the components of modern data platforms?

How do operational and analytical data models differ?

What goes on in ETL/ELT?

How do different physical representations of data affect 

storage, compute, and other tradeoffs within data platforms?



Recap: What are we doing and why?



Frontend

Backend

users

OLTP 

RDBMS

Frontend

Backend

users

OLTP 

RDBMS

Frontend

Backend

users

OLTP 

RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 

Governance Layer

“traditional”

Data Warehouse



Build a useful product

analyze user behavior 

to extract insights

transform insights 

into actions

$
(hopefully)

Google. Facebook. Twitter. Amazon. Uber.

The Data Flywheel
(a virtuous cycle)



What’s this course about?
The infrastructure that supports the data flywheel.

data platforms + data engineering



What problems do data platforms solve?
Ingesting, storing, manipulating, maintaining, serving… 

the data that supports the data flywheel.



What does that really mean?

Transform Insights into Actions

Dashboards

Report generation

Ad hoc analyses

ML models

Business Intelligence

Data Science



This Week

Previous: Evolution of Data Platforms
Data Warehouses, Data Lakes, and Lakehouses

Now: Three Deep Dives

Data Modeling, ELT, Physical Representations



Deep Dive: Data Models

What’s a data model?

A data model is an abstract model that organizes elements 

of data and standardizes how they relate to one another and 

to the properties of real-world entities. (from Wikipedia)



Frontend

Backend

users

RDBMS

RDBMS = Relational Database Management System
Imposes a relational view of data: tables, rows, columns

Provides a set of relational operators to manipulate data: SQL

Why is this a good idea?
Offload physical data design

Standardize query processing

Ensure data integrity, manage concurrency

Handle backup and recovery



Why Relational?
(BTW, do the readings)

https://x.com/secretGeek/status/7269997868



How do we name things?

What’s the name of our school?

Seriously, what are we actually going to call it?

https://x.com/Alibaba_Qwen/status/1947344511988076547



Why Relational?

What’s the competition?
JSON, YAML, XML, etc. (“documents”)

Now answer the questions on the previous slide



Why Relational?

Source: Designing Data-Intensive Applications, 2nd Edition, Chapter 3

At some point you realize that you’re 

basically implementing an RDBMS… poorly



✓
(Starting point… but recall discussion about EDWs and EDLs

 and the importance of flexibility…)

Why relational?

(Operational and analytical data models are different.)

What’s the schema?



RDBMS Workloads

OLTP (online transaction processing)
Typical applications: e-commerce, banking, airline reservations

Customer-facing: real-time, low latency, highly-concurrent

Tasks: relatively small set of transactional queries; CRUD

Data access pattern: random reads, updates, writes (small amounts of data)

OLAP (online analytical processing)
Typical applications: business intelligence, data mining

Back-end processing: batch workloads, less concurrency

Tasks: complex analytical queries, often ad hoc

Data access pattern: table scans, large amounts of data per query

tl;dr – EDWs are organized in a way that makes 

answering the most common questions easy

(optimize for the common case)



Customer Billing

OrderInventory

OrderLine

A Simple OLTP Schema



Dim_Customer

Dim_Product
Fact_Sales

Dim_Store

A Simple OLAP Schema



Source: Designing Data-Intensive Applications, 2nd Edition, Chapter 3



EDWs are generally organized as stars (or snowflakes)

Why? This data model makes answering 

the most common questions easy



What does that really mean?

Transform Insights into Actions

Dashboards

Report generation

Ad hoc analyses

ML models

Business Intelligence

Data Science



store

p
ro

d
u
ct

slice and dice

Common operations

roll up/drill down

pivot

OLAP Cubes



Source: Designing Data-Intensive Applications, 2nd Edition, Chapter 3

Let’s work through concrete examples of DM differences…



Deep Dive: ELT



ETL
(Extract, Transform, and Load)

Frontend

Backend

users

OLTP 

RDBMS

OLTP database for 

user-facing transactions

BI tools

analysts

OLAP Data 

Warehouse

OLAP database for 

data warehousing



Extract-Transform-Load

Transform
Data cleaning and integrity checking

Schema transformations and field conversions

…

Extract
Export from OLTP database

Load
Ingest into OLAP database



Frontend

Backend

users

BI tools

analysts

ETL
(Extract, Transform, and Load)

OLAP Data 

Warehouse

OLTP 

RDBMS

OLTP database for 

user-facing transactions

OLAP database for 

data warehousing

Where and when does 

this actually happen? 



Frontend

Backend

users

BI tools

analysts

OLAP Data 

Warehouse

OLTP 

RDBMS

OLTP database for 

user-facing transactions

OLAP database for 

data warehousing

Where and when does 

this actually happen? 

Implications?

ETL process



“On the first day of logging the Facebook clickstream, more than 400 gigabytes of data 

was collected. The load, index, and aggregation processes for this data set really taxed the 

Oracle data warehouse. Even after significant tuning, we were unable to aggregate a day of 

clickstream data in less than 24 hours.” 

Jeff Hammerbacher, Information Platforms and the Rise of the Data Scientist. 

In, Beautiful Data, O’Reilly, 2009. 



Frontend

Backend

users

data scientists

ELT
(Extract, Load, Transform)

“OLTP” PHP/MySQL

Hadoop



Frontend

Backend

users

OLTP 

RDBMS

Frontend

Backend

users

OLTP 

RDBMS

Frontend

Backend

users

OLTP 

RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 

Governance Layer

“traditional”

Data Warehouse



Extract-Load-Transform

Transform
Everything else…

Extract
Export from operational databases

Load
Ingest into the data lake



Extract + Load

Many possible architectural patterns for extraction
Source considerations: web servers, mobile clients, APIs, etc.

Common pattern: publish events to Kafka w/ periodic rollups

“Load” is as simple as copying into the data lake



Uber’s data platform (circa 2018)
https://www.uber.com/en-CA/blog/uber-big-data-platform/

Read blog for more details!



Twitter’s data platform (circa 2012)



Scribe Daemons

(Production Hosts)

Main Hadoop

DW

Main Datacenter

Staging Hadoop Cluster

HDFS

Scribe

Aggregators

Scribe Daemons

(Production Hosts)

Datacenter

Staging Hadoop Cluster

HDFS

Scribe

Aggregators

Scribe Daemons

(Production Hosts)

Datacenter

Staging Hadoop Cluster

HDFS

Scribe

Aggregators

Importing Log Data



(Examples of) Transformation

Schema transformations
(e.g., pre-joins to bridge OLTP/OLAP data models)

= “everything else”

Field conversions
(e.g., munging timestamps)

Data cleaning
Missing keys, dangling pointers, null values

Outliers, inconsistent values

…

Data profiling
(e.g., distribution of keys/values)



Medallion system

 Bronze

 Silver

 Gold

“Raw” ingested data

“Refined” transformed data



Deep Dive: Physical Representations



Frontend

Backend

users

OLTP 

RDBMS

Frontend

Backend

users

OLTP 

RDBMS

Frontend

Backend

users

OLTP 

RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 

Governance Layer

“traditional”

Data Warehouse



Flexibility

In a data lake, you can store whatever you want, 

and “load” is just copying in data…

But what do you actually store?



Logical

Physical
How records are actually 

represented…

R1

R2

R3



csv
okay for “quick + dirty”, avoid for prod

Many sources of confusion
What’s the delimiter?

What about escape characters?

Bad performance
Verbose and slow

Compression limits parallelism



json
commonly used, but lots of gotchas

Lack of schema
What’s the schema?

Are you sure?

Really sure? (error vs. evolution)

What if it isn’t an integer?

How do you represent a null?

Bad performance
Verbose (plain-text encoding, repeated field names)

Slow (complex parsing)

bson? Worst of both worlds!



protobuf / avro
best practice

Schemas are good!
Validation for free

Possible forward/backward compatibility support for evolution

Binary encodings are good!
Efficient, unambiguous, compact

Amenable to different encodings + compression

Fast serialization + deserialization

Decouple logical from physical!



Logical

Physical
How records are actually 

represented…

R1

R2

R3

Create well-defined schemas…

Encoded in protobuf or avro

Best Practice



R1

R2

R3

R4

Row representation

Column representation

Row vs. Column Representations



R1

R2

R3

R4

Row representation

Column representation

Row vs. Column Representations
Project + Select



Row vs. Column Representations

Row representations
Easier to modify a record: in-place updates

Might read unnecessary data when processing

Column representations
Only read necessary data when processing

Tuple writes require multiple operations

Tuple updates are complex

Suitable for OLTP

Suitable for OLAP

Common ELT pattern:

load row representation, transform into column representation



Why Column Representations?

More amenable to analytics
Process only data necessary for the query: big win in DWs

Difficulty in updates: manageable drawback

More compact representation
Further enhances processing performance



Encoding Columns

Column representation brings semantically similar values together
Big wins if cardinality of values is small

Allows application of encoding tricks…
Dictionary encoding

Run-length encoding

Bit-packing

…



Compressing Columns

Compression can be applied on top of encoding
Speed more important than compression ratio

Most commonly used codec today is Snappy
Fast, lightweight

Based on dictionaries + backpointers



What’s Parquet?

Semi-structured data meets column representation
Answers this question: What does a “column” mean in json?

Pulls together everything we discussed above
Given a schema, records are divided into row groups

Within each row group, data is represented in columns

(Establishes precise semantics on what columns mean in json)

Each column is encoded + compressed separately



Logical

Physical
How records are actually 

represented…

R1

R2

R3

Create well-defined schemas…

Encoded in protobuf or avro
(for row representations)

Best Practice

Encoded in parquet
(for column representations)



Frontend

Backend

users

OLTP 

RDBMS

Frontend

Backend

users

OLTP 

RDBMS

Frontend

Backend

users

OLTP 

RDBMS

Data Lake

ELT

Lakehouse

Unified Metadata + 

Governance Layer

“traditional”

Data Warehouse

load row representation, 

transform into column 

representation



Uber’s data platform (circa 2018)
https://www.uber.com/en-CA/blog/uber-big-data-platform/






	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

