

Data-Intensive Distributed Computing

CS 451/651 431/631 (Winter 2018)

Part 9: Real-Time Data Analytics (2/2)
March 29, 2018

Jimmy Lin

David R. Cheriton School of Computer Science

University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2018w/

Since last time...

Storm/Heron

Gives you pipes, but you gotta connect everything up yourself

Spark Streaming

Gives you RDDs, transformations and windowing – but no event/processing time distinction

Beam

Gives you transformations and windowing, event/processing time distinction – but too complex

Step 1: From RDDs to DataFrames Step 2: From bounded to unbounded tables

Data stream as an unbounded table

Source: Spark Structured Streaming Documentation

Programming Model for Structured Streaming

Model of the Quick Example

Windowed Grouped Aggregation with 10 min windows, sliding every 5 mins

counts incremented for windows 12:05 - 12:15 and 12:10 - 12:20

late data that was generated at 12:04 but arrived at 12:11

counts incremented only for window 12:00 - 12:10

Late data handling in Windowed Grouped Aggregation

Streams Processing Challenges

Inherent challenges

Latency requirements
Space bounds

System challenges

Bursty behavior and load balancing
Out-of-order message delivery and non-determinism
Consistency semantics (at most once, exactly once, at least once)

Algorithmic Solutions

Throw away data Sampling

Accepting some approximations

Hashing

Reservoir Sampling

Task: select s elements from a stream of size N with uniform probability

N can be very very large
We might not even know what N is! (infinite stream)

Solution: Reservoir sampling

Store first s elements
For the k-th element thereafter, keep with probability s/k

(randomly discard an existing element)

Example: s = 10

Keep first 10 elements

11th element: keep with 10/11

12th element: keep with 10/12

. . .

Reservoir Sampling: How does it work?

Example: s = 10

Keep first 10 elements

11th element: keep with 10/11

If we decide to keep it: sampled uniformly by definition probability existing item is discarded: $10/11 \times 1/10 = 1/11$ probability existing item survives: 10/11

General case: at the (k + I)th element

```
Probability of selecting each item up until now is s/k
Probability existing item is discarded: s/(k+1) \times 1/s = 1/(k+1)
Probability existing item survives: k/(k+1)
Probability each item survives to (k+1)th round: (s/k) \times k/(k+1) = s/(k+1)
```

Hashing for Three Common Tasks

Cardinality estimation

What's the cardinality of set S? How many unique visitors to this page?

HashSet HLL counter

Set membership

Is x a member of set S?
Has this user seen this ad before?

HashSet Bloom Filter

Frequency estimation

How many times have we observed x? How many queries has this user issued?

HashMap

CMS

HyperLogLog Counter

Task: cardinality estimation of set

 $size() \rightarrow number of unique elements in the set$

Observation: hash each item and examine the hash code

On expectation, I/2 of the hash codes will start with 0 On expectation, I/4 of the hash codes will start with 00 On expectation, I/8 of the hash codes will start with 000 On expectation, I/16 of the hash codes will start with 0000

• • •

How do we take advantage of this observation?

Bloom Filters

Task: keep track of set membership

 $put(x) \rightarrow insert x into the set$ contains(x) \rightarrow yes if x is a member of the set

Components

m-bit bit vector k hash functions: $h_1 \dots h_k$

0 0 0 0 0 0 0 0 0 0

Bloom Filters: put

Bloom Filters: put

put x

0 1 0 0 1 0 0 0 0 0 0

What's going on here?

Bloom Filters

Error properties: contains(x)

False positives possible No false negatives

Usage

Constraints: capacity, error probability

Tunable parameters: size of bit vector m, number of hash functions k

Count-Min Sketches

Task: frequency estimation

 $put(x) \rightarrow increment count of x by one get(x) \rightarrow returns the frequency of x$

Components

m by k array of counters k hash functions: $h_1 \dots h_k$

put x

put x

put y

Count-Min Sketches

Error properties: get(x)

Reasonable estimation of heavy-hitters Frequent over-estimation of tail

Usage

Constraints: number of distinct events, distribution of events, error bounds Tunable parameters: number of counters m and hash functions k, size of counters

Hashing for Three Common Tasks

Cardinality estimation

What's the cardinality of set S? How many unique visitors to this page?

HashSet HLL counter

Set membership

Is x a member of set S?
Has this user seen this ad before?

HashSet Bloom Filter

Frequency estimation

How many times have we observed x? How many queries has this user issued?

HashMap

CMS

Summingbird

A domain-specific language (in Scala) designed to integrate batch and online MapReduce computations

Idea #1: Algebraic structures provide the basis for seamless integration of batch and online processing

Idea #2: For many tasks, close enough is good enough
Probabilistic data structures as monoids

Boykin, Ritchie, O'Connell, and Lin. Summingbird: A Framework for Integrating Batch and Online MapReduce Computations. PVLDB 7(13):1441-1451, 2014.

Batch and Online MapReduce

"map"

```
flatMap[T, U](fn: T => List[U]): List[U]
    map[T, U](fn: T => U): List[U]
    filter[T](fn: T => Boolean): List[T]
```

"reduce"

sumByKey

Idea #I: Algebraic structures provide the basis for seamless integration of batch and online processing

Semigroup =
$$(M, \oplus)$$

 $\oplus : M \times M \rightarrow M$, s.t., $\forall m_1, m_2, m_3 \supseteq M$
 $(m_1 \oplus m_2) \oplus m_3 = m_1 \oplus (m_2 \oplus m_3)$

Monoid = Semigroup + identity
$$\varepsilon$$
 s.t., $\varepsilon \oplus m = m \oplus \varepsilon = m$, $\forall m \ni M$

Commutative Monoid = Monoid + commutativity

$$\forall m_1, m_2 \ni M, m_1 \oplus m_2 = m_2 \oplus m_1$$

Simplest example: integers with + (addition)

Idea #I: Algebraic structures provide the basis for seamless integration of batch and online processing

Summingbird values must be at least semigroups (most are commutative monoids in practice)

Power of associativity = You can put the parentheses anywhere!

$$(a \oplus b \oplus c \oplus d \oplus e \oplus f)$$

$$((((((a \oplus b) \oplus c) \oplus d) \oplus e) \oplus f)$$

$$((a \oplus b \oplus c) \oplus (d \oplus e \oplus f))$$
Batch = Hadoop
Online = Storm
Mini-batches

Results are exactly the same!

```
Summingbird Word Count
```

Run on Scalding (Cascading/Hadoop)

```
Scalding.run {
    wordCount[Scalding](
        Scalding.source[Tweet]("source_data"),
        Scalding.store[String, Long]("count_out")
        )
}
write to HDFS
```

Run on Storm

```
Storm.run {
    wordCount[Storm](
    new TweetSpout(),
    new MemcacheStore[String, Long]
    write to KV store
}
```


"Boring" monoids

addition, multiplication, max, min moments (mean, variance, etc.)
sets
tuples of monoids
hashmaps with monoid values

More interesting monoids?

"Interesting" monoids

Bloom filters (set membership)

HyperLogLog counters (cardinality estimation)

Count-min sketches (event counts)

Idea #2: For many tasks, close enough is good enough!

Cheat Sheet

Exact Approximate

Set membership set Bloom filter

Set cardinality set hyperloglog counter

Frequency count hashmap count-min sketches

Example: Count queries by hour

Exact with hashmaps

```
def wordCount[P <: Platform[P]]
  (source: Producer[P, Query],
    store: P#Store[Long, Map[String, Long]]) =
    source.flatMap { query =>
        (query.getHour, Map(query.getQuery -> 1L))
    }.sumByKey(store)
```

Approximate with CMS

```
def wordCount[P <: Platform[P]]
  (source: Producer[P, Query],
    store: P#Store[Long, SketchMap[String, Long]])
  (implicit countMonoid: SketchMapMonoid[String, Long]) =
    source.flatMap { query =>
        (query.getHour,
        countMonoid.create((query.getQuery, 1L)))
    }.sumByKey(store)
```


TSAR, a TimeSeries AggregatoR!

Example: count historical clicks and clicks in real time

But this is still too painful...

Example: count historical clicks and clicks in real time

Idea: everything is streaming

Batch processing is just streaming through a historic dataset!

Everything is Streaming!

The Vision

Processing Bounded Datasets

```
Pipeline p = Pipeline.create(options);
p.apply(TextIO.Read.from("gs://your/input/"))
 .apply(FlatMapElements.via((String word) ->
    Arrays.asList(word.split("[^a-zA-Z']+"))))
 .apply(Filter.by((String word) -> !word.isEmpty()))
 .apply(Count.perElement())
 .apply(MapElements.via((KV<String, Long> wordCount) ->
   wordCount.getKey() + ": " + wordCount.getValue()))
 .apply(TextIO.Write.to("gs://your/output/"));
```

Processing Unbounded Datasets

```
Pipeline p = Pipeline.create(options);
p.apply(KafkaIO.read("tweets")
    .withTimestampFn(new TweetTimestampFunction())
    .withWatermarkFn(kv ->
        Instant.now().minus(Duration.standardMinutes(2))))
 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))
    .triggering(AtWatermark()
        .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))
        .withLateFirings(AtCount(1)))
    .accumulatingAndRetractingFiredPanes())
 .apply(FlatMapElements.via((String word) ->
     Arrays.asList(word.split("[^a-zA-Z']+"))))
 .apply(Filter.by((String word) -> !word.isEmpty()))
 .apply(Count.perElement())
 .apply(KafkaIO.write("counts"))
                                            Where in event time?
                                          When in processing time?
                                           How do refines relate?
```

