
Data-Intensive Distributed Computing

Part 9: Real-Time Data Analytics (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 431/631 (Winter 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

March 27, 2018

These slides are available at http://lintool.github.io/bigdata-2018w/

Frontend

Backend

users

BI tools

analysts

ETL
(Extract, Transform, and Load)

Data
Warehouse

OLTP
database

My data is a
day old… Meh.

Twitter’s data warehousing architecture

Mishne et al. Fast Data in the Era of Big Data: Twitter's Real-
Time Related Query Suggestion Architecture. SIGMOD 2013.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

00:00:00 02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

F
re

q
u
e
n
cy

Time, 2011-10-06 (UTC)

steve jobs
apple

bill gates
pirates of silicon valley

pixar
stay foolish

Case Study: Steve Jobs passes away

Initial Implementation

Algorithm: Co-occurrences within query sessions

Why?
Log collection lag

Hadoop scheduling lag
Hadoop job latencies

Implementation: Pig scripts over query logs on HDFS

Problem: Query suggestions were several hours old!

We need real-time processing!

HDFS

Incoming
requests

Outgoing
responses

Stats
collector

In-memory
stores

Ranking
algorithm

firehose

query hose

persist
load

Frontend
cache

Backend engine

Solution?

Can we do better than one-off custom systems?

Source: Wikipedia (River)

Stream Processing Frameworks

real-time
vs.

online
vs.

streaming

What is a data stream?

Sequence of items:
Structured (e.g., tuples)

Ordered (implicitly or timestamped)
Arriving continuously at high volumes

Sometimes not possible to store entirely
Sometimes not possible to even examine all items

Applications

Network traffic monitoring
Datacenter telemetry monitoring

Sensor networks monitoring
Credit card fraud detection

Stock market analysis
Online mining of click streams

Monitoring social media streams

What exactly do you do?

“Standard” relational operations:
Select
Project

Transform (i.e., apply custom UDF)
Group by

Join
Aggregations

What else do you need to make this “work”?

Issues of Semantics

Group by… aggregate
When do you stop grouping and start aggregating?

Joining a stream and a static source
Simple lookup

Joining two streams
How long do you wait for the join key in the other stream?

Joining two streams, group by and aggregation
When do you stop joining?

What’s the solution?

Windows

Windows restrict processing scope:
Windows based on ordering attributes (e.g., time)

Windows based on item (record) counts
Windows based on explicit markers (e.g., punctuations)

Windows on Ordering Attributes

Assumes the existence of an attribute that
defines the order of stream elements (e.g., time)

Let T be the window size in units of the ordering attribute

t1 t2 t3 t4 t1' t2’ t3’ t4’

t1 t2
t3

sliding window

tumbling window

ti’ – ti = T

ti+1 – ti = T

Windows on Counts

Window of size N elements (sliding, tumbling) over the stream

t1 t2 t3t1' t2’ t3’ t4’

Windows from “Punctuations”

Application-inserted “end-of-processing”
Example: stream of actions… “end of user session”

Properties
Advantage: application-controlled semantics

Disadvantage: unpredictable window size (too large or too small)

Streams Processing Challenges

Inherent challenges
Latency requirements

Space bounds

System challenges
Bursty behavior and load balancing

Out-of-order message delivery and non-determinism
Consistency semantics (at most once, exactly once, at least once)

Source: Wikipedia (River)

Stream Processing Frameworks

Producer/Consumers

Producer Consumer

How do consumers get data from producers?

Producer/Consumers

Producer Consumer

Producer pushes
e.g., callback

Producer/Consumers

Producer Consumer

e.g., poll, tail
Consumer pulls

Producer/Consumers

Producer Consumer

Consumer

Consumer

Consumer

Producer

Producer/Consumers

Producer Consumer

Consumer

Consumer

Consumer

Producer
Br

ok
er

Queue, Pub/Sub

Producer/Consumers

Producer Consumer

Consumer

Consumer

Consumer

Producer
Br

ok
er

Source: Wikipedia (River)

Stream Processing Frameworks

Storm/Heron

Storm/Heron

Storm: real-time distributed stream processing system
Started at BackType

BackType acquired by Twitter in 2011
Now an Apache project

Heron: API compatible re-implementation of Storm
Introduced by Twitter in 2015

Open-sourced in 2016

Want real-time stream processing?
I got your back.

I’ve got the most intuitive
implementation: a computation graph!

Topologies

Storm topologies = “job”
Once started, runs continuously until killed

A topology is a computation graph
Graph contains vertices and edges

Vertices hold processing logic
Directed edges indicate communication between vertices

Processing semantics
At most once: without acknowledgments
At least once: with acknowledgements

Spouts and Bolts: Logical Plan

Components
Tuples: data that flow through the topology

Spouts: responsible for emitting tuples
Bolts: responsible for processing tuples

Spouts and Bolts: Physical Plan

Physical plan specifies execution details
Parallelism: how many instances of bolts and spouts to run

Placement of bolts/spouts on machines
…

Stream Groupings

Bolts are executed by multiple instances in parallel
User-specified as part of the topology

When a bolt emits a tuple, where should it go?
Answer: Grouping strategy

Shuffle grouping: randomly to different instances
Field grouping: based on a field in the tuple
Global grouping: to only a single instance

All grouping: to every instance

Source: https://blog.twitter.com/2015/flying-faster-with-twitter-heron

Heron Architecture

Source: https://blog.twitter.com/2015/flying-faster-with-twitter-heron

Heron Architecture

Heron Architecture

Stream Manager
Manages routing tuples between spouts and bolts

Responsible for applying backpressure

Some me some code!

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("word", new WordSpout(), parallelism);
builder.setBolt("consumer", new ConsumerBolt(), parallelism)

.fieldsGrouping("word", new Fields("word"));

Config conf = new Config();
// Set config here
// ...

StormSubmitter.submitTopology("my topology”, conf,
builder.createTopology());

Some me some code!

public static class WordSpout extends BaseRichSpout {
@Override
public void declareOutputFields(

OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("word"));

}

@Override
public void nextTuple() {

// ...
collector.emit(word);

}
}

Some me some code!
public static class ConsumerBolt extends BaseRichBolt {

private OutputCollector collector;
private Map<String, Integer> countMap;

public void prepare(Map map, TopologyContext
topologyContext, OutputCollector outputCollector) {

collector = outputCollector;
countMap = new HashMap<String, Integer>();

}

@Override
public void execute(Tuple tuple) {

String key = tuple.getString(0);
if (countMap.get(key) == null) {

countMap.put(key, 1);
} else {

Integer val = countMap.get(key);
countMap.put(key, ++val);

}
}

}

Source: Wikipedia (Plumbing)

Source: Wikipedia (River)

Stream Processing Frameworks

Spark Streaming

Want real-time stream processing?
I got your back.

I’ve got the most intuitive
implementation: a computation graph!

Hmm, I gotta get in on this
streaming thing…

But I got all this batch processing
framework that I gotta lug around.

I know: we’ll just chop the stream into little pieces,
pretend each is an RDD, and we’re on our merry way!

Spark Streaming: Discretized Streams

Spark

Spark
Streaming

batches of X
seconds

live data stream

processed
results

Source: All following Spark Streaming slides by Tathagata Das

Run a streaming computation as a series
of very small, deterministic batch jobs

Chop up the stream into batches of X seconds
Process as RDDs!

Return results in batches

Example: Get hashtags from Twitter
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

Twitter Streaming API

stored in memory as an RDD
(immutable, distributed)

Example: Get hashtags from Twitter
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one
Dstream to create another DStream

new DStream

new RDDs created
for every batch

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

Example: Get hashtags from Twitter
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch
saved to HDFS

Fault Tolerance

Bottom line: they’re just RDDs!

Fault Tolerance

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

Bottom line: they’re just RDDs!

Key Concepts

DStream – sequence of RDDs representing a stream of data
Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

Transformations – modify data from on DStream to another
Standard RDD operations – map, countByValue, reduce, join, …

Stateful operations – window, countByValueAndWindow, …

Output Operations – send data to external entity
saveAsHadoopFiles – saves to HDFS

foreach – do anything with each batch of results

Example: Count the hashtags
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.countByValue()

flatMap

map

reduceByKey

flatMap

map

reduceByKey

…

flatMap

map

reduceByKey

batch @ t+1batch @ t batch @ t+2

hashTags

tweets

tagCounts
[(#cat, 10), (#dog, 25), ...]

Example: Count the hashtags over last 10 mins
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding window
operation

window length sliding interval

Example: Count the hashtags over last 10 mins

tagCounts

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

hashTags

t-1 t t+1 t+2 t+3

sliding window

countByValue

count over all
the data in the

window

Smart window-based countByValue

?

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

hashTags

t-1 t t+1 t+2 t+3

+

+
–

countByValue

add the counts
from the new
batch in the

window
subtract the
counts from

batch
before the
window

tagCounts

Smart window-based reduce

Incremental counting generalizes to many reduce operations
Need a function to “inverse reduce” (“subtract” for counting)

val tagCounts = hashtags

.countByValueAndWindow(Minutes(10), Seconds(1))

val tagCounts = hashtags

.reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(1))

What’s the problem?

event time
vs.

processing time

Source: Wikipedia (River)

Stream Processing Frameworks

Apache Beam

Apache Beam

2015: Google releases Cloud Dataflow

2016: Google donates API and SDK to Apache
to become Apache Beam

2013: Google publishes paper about MillWheel

Programming Model

Core Concepts
Pipeline: a data processing task

PCollection: a distributed dataset that a pipeline operates on
Transform: a data processing operation

Source: for reading data
Sink: for writing data

Processing semantics: exactly once

Looks a lot like Spark!

Pipeline p = Pipeline.create(options);

p.apply(TextIO.Read.from("gs://your/input/"))

.apply(FlatMapElements.via((String word) ->
Arrays.asList(word.split("[^a-zA-Z']+"))))

.apply(Filter.by((String word) -> !word.isEmpty()))

.apply(Count.perElement())

.apply(MapElements.via((KV<String, Long> wordCount) ->
wordCount.getKey() + ": " + wordCount.getValue()))

.apply(TextIO.Write.to("gs://your/output/"));

The Beam Model

What results are computed?

Where in event time are the results computed?

When in processing time are the results materialized?

How do refinements of results relate?

Event Time vs. Processing Time
What’s the distinction?

Where in event time are the results computed?

When in processing time are the results materialized?

How do refinements of results relate?

Watermark: System’s notion when all data in a
window is expected to arrive

Trigger: a mechanism for declaring when output of
a window should be materialized

Default trigger “fires” at watermark

Late and early firings: multiple “panes” per window

Event Time vs. Processing Time
What’s the distinction?

Where in event time are the results computed?

When in processing time are the results materialized?

How do refinements of results relate?

Watermark: System’s notion when all data in a
window is expected to arrive

How do multiple “firings” of a window
(i.e., multiple “panes”) relate?

Options: Discarding, Accumulating,
Accumulating & retracting

Word Count

Pipeline p = Pipeline.create(options);

p.apply(TextIO.Read.from("gs://your/input/"))

.apply(FlatMapElements.via((String word) ->
Arrays.asList(word.split("[^a-zA-Z']+"))))

.apply(Filter.by((String word) -> !word.isEmpty()))

.apply(Count.perElement())

.apply(MapElements.via((KV<String, Long> wordCount) ->
wordCount.getKey() + ": " + wordCount.getValue()))

.apply(TextIO.Write.to("gs://your/output/"));

Word Count

Pipeline p = Pipeline.create(options);

p.apply(KafkaIO.read("tweets")
.withTimestampFn(new TweetTimestampFunction())
.withWatermarkFn(kv ->

Instant.now().minus(Duration.standardMinutes(2))))
.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))

.triggering(AtWatermark()
.withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))
.withLateFirings(AtCount(1)))

.accumulatingAndRetractingFiredPanes())
.apply(FlatMapElements.via((String word) ->

Arrays.asList(word.split("[^a-zA-Z']+"))))
.apply(Filter.by((String word) -> !word.isEmpty()))
.apply(Count.perElement())
.apply(KafkaIO.write("counts")) Where in event time?

When in processing time?
How do refines relate?

With windowing…

Source: Wikipedia (Japanese rock garden)

Questions?

