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Graph Algorithms, again?
(srsly?)



What makes graphs hard?

Irregular structure
Fun with data structures!

Irregular data access patterns
Fun with architectures!

Iterations
Fun with optimizations!

✗



Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations



n0

n3 n2

n1
n7

n6

n5
n4

n9

n8

Visualizing Parallel BFS



Given page x with inlinks t1…tn, where
C(t) is the out-degree of t
a is probability of random jump
N is the total number of nodes in the graph
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PageRank: Defined
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Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations
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MapReduce Sucks

Hadoop task startup time

Stragglers

Needless graph shuffling

Checkpointing at each iteration
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Let’s Spark!
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Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

MapReduce vs. Spark



Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations

Even faster?



Big Data Processing in a Nutshell

Partition

Replicate

Reduce cross-partition communication



Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs



“Best Practices”

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?
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Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.
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Schimmy Design Pattern

Basic implementation contains two dataflows:
Messages (actual computations)

Graph structure (“bookkeeping”)

Schimmy: separate the two dataflows, shuffle only the messages
Basic idea: merge join between graph structure and messages

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

S T

both relations sorted by join key

S1 T1 S2 T2 S3 T3

both relations consistently partitioned and sorted by join key
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PageRank over webgraph
(40m vertices, 1.4b edges)
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Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLsWeb pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics



Ugander et al. (2011) The Anatomy of the Facebook Social Graph.

Analysis of 721 million active 
users (May 2011)

54 countries w/ >1m active 
users, >50% penetration 
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Figure 9. Normalized country adjacency matrix. Matrix of edges between countries with > 1
million users and > 50% Facebook penetration shown on a log scale. To normalize, we divided each
element of the adjacency matrix by the product of the row country degree and column country degree.

country, and the data shows that 84.2% percent of edges are within countries. So the network divides fairly
cleanly along country lines into network clusters or communities. This mesoscopic-scale organization is
to be expected as Facebook captures social relationships divided by national borders. We can further
quantify this division using the modularity Q [37] which is the fraction of edges within communities
minus the expected fraction of edges within communities in a randomized version of the network that
preserves the degrees for each individual [38], but is otherwise random. In this case, the communities
are the countries. The computed value is Q = 0.7486 which is quite large [39] and indicates a strongly
modular network structure at the scale of countries. Especially considering that unlike numerous studies
using the modularity to detect communities, we in no way attempted to maximize it directly, and instead
merely utilized the given countries as community labels.

We visualize this highly modular structure in Fig. 9. The figure displays a heatmap of the number
of edges between the 54 countries where the active Facebook user population exceeds one million users
and is more than 50% of the internet-enabled population [40]. To be entirely accurate, the shown matrix
contains each edge twice, once in both directions, and therefore has twice the number of edges in diagonal
elements. The number of edges was normalized by dividing the ijth entry by the row and column sums,
equal to the product of the degrees of country i and j. The ordering of the countries was then determined
via complete linkage hierarchical clustering.

Country Structure in Facebook



Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics
Web pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics
Geo data: space-filling curves



Aside: Partitioning Geo-data



Geo-data = regular graph



Space-filling curves: Z-Order Curves



Space-filling curves: Hilbert Curves



Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics
Geo data: space-filling curves

But what about graphs in general?



Source: http://www.flickr.com/photos/fusedforces/4324320625/



General-Purpose Graph Partitioning

Graph coarsening
Recursive bisection



MULTILEVEL GRAPH PARTITIONING 363
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Fig. 1. The various phases of the multilevel graph bisection. During the coarsening phase, the
size of the graph is successively decreased; during the initial partitioning phase, a bisection of the
smaller graph is computed; and during the uncoarsening phase, the bisection is successively refined as
it is projected to the larger graphs. During the uncoarsening phase the light lines indicate projected
partitions, and dark lines indicate partitions that were produced after refinement.

Formally, a multilevel graph bisection algorithm works as follows: consider a
weighted graph G0 = (V0, E0), with weights both on vertices and edges. A multilevel
graph bisection algorithm consists of the following three phases.

Coarsening phase. The graph G0 is transformed into a sequence of smaller
graphs G1, G2, . . . , Gm

such that |V0| > |V1| > |V2| > · · · > |V
m

|.
Partitioning phase. A 2-way partition P

m

of the graph G
m

= (V
m

, E
m

) is
computed that partitions V

m

into two parts, each containing half the vertices
of G0.

Uncoarsening phase. The partition P
m

of G
m

is projected back to G0 by going
through intermediate partitions P

m�1, Pm�2, . . . , P1, P0.

3. Coarsening phase. During the coarsening phase, a sequence of smaller
graphs, each with fewer vertices, is constructed. Graph coarsening can be achieved in
various ways. Some possibilities are shown in Figure 2.

In most coarsening schemes, a set of vertices of G
i

is combined to form a single
vertex of the next level coarser graph G

i+1. Let V v

i

be the set of vertices of G
i

combined to form vertex v of G
i+1. We will refer to vertex v as a multinode. In order

for a bisection of a coarser graph to be good with respect to the original graph, the

Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

General-Purpose Graph Partitioning



Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.
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Fig. 2. Di↵erent ways to coarsen a graph.

weight of vertex v is set equal to the sum of the weights of the vertices in V v

i

. Also,
in order to preserve the connectivity information in the coarser graph, the edges of
v are the union of the edges of the vertices in V v

i

. In the case where more than one
vertex of V v

i

contains edges to the same vertex u, the weight of the edge of v is equal
to the sum of the weights of these edges. This is useful when we evaluate the quality
of a partition at a coarser graph. The edge-cut of the partition in a coarser graph
will be equal to the edge-cut of the same partition in the finer graph. Updating the
weights of the coarser graph is illustrated in Figure 2.

Two main approaches have been proposed for obtaining coarser graphs. The first
approach is based on finding a random matching and collapsing the matched vertices
into a multinode [4, 26], while the second approach is based on creating multinodes
that are made of groups of vertices that are highly connected [7, 19, 20, 10]. The
later approach is suited for graphs arising in VLSI applications, since these graphs
have highly connected components. However, for graphs arising in finite element
applications, most vertices have similar connectivity patterns (i.e., the degree of each
vertex is fairly close to the average degree of the graph). In the rest of this section
we describe the basic ideas behind coarsening using matchings.

Given a graph G
i

= (V
i

, E
i

), a coarser graph can be obtained by collapsing
adjacent vertices. Thus, the edge between two vertices is collapsed and a multinode
consisting of these two vertices is created. This edge collapsing idea can be formally
defined in terms of matchings. A matching of a graph is a set of edges no two of
which are incident on the same vertex. Thus, the next level coarser graph G

i+1 is
constructed from G

i

by finding a matching of G
i

and collapsing the vertices being
matched into multinodes. The unmatched vertices are simply copied over to G

i+1.
Since the goal of collapsing vertices using matchings is to decrease the size of the graph
G

i

, the matching should contain a large number of edges. For this reason, maximal
matchings are used to obtain the successively coarse graphs. A matching is maximal
if any edge in the graph that is not in the matching has at least one of its endpoints
matched. Note that depending on how matchings are computed, the number of edges

Graph Coarsening



Chicken-and-Egg

To coarsen the graph you need to identify dense local regions
To identify dense local regions quickly you to need traverse local edges

But to traverse local edges efficiently you need the local structure! 

To efficiently partition the graph, you need to already know what the partitions are!
Industry solution?



Big Data Processing in a Nutshell

Partition

Replicate

Reduce cross-partition communication



Partition



Partition

What’s the fundamental issue?



Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations



Partition

FastFast
Slow



State-of-the-Art Distributed Graph Algorithms

Fast asynchronous 
iterations

Fast asynchronous 
iterations

Periodic 
synchronization



Source: Wikipedia (Waste container)

Graph Processing Frameworks
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Cache!



Pregel: Computational Model

Based on Bulk Synchronous Parallel (BSP)
Computational units encoded in a directed graph
Computation proceeds in a series of supersteps

Message passing architecture

Each vertex, at each superstep:
Receives messages directed at it from previous superstep

Executes a user-defined function (modifying state)
Emits messages to other vertices (for the next superstep)

Termination:
A vertex can choose to deactivate itself
Is “woken up” if new messages received

Computation halts when all vertices are inactive



superstep t

superstep t+1

superstep t+2

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.



Pregel: Implementation

Master-Worker architecture
Vertices are hash partitioned (by default) and assigned to workers

Everything happens in memory

Processing cycle:
Master tells all workers to advance a single superstep

Worker delivers messages from previous superstep, executing vertex computation
Messages sent asynchronously (in batches)

Worker notifies master of number of active vertices

Fault tolerance
Checkpointing

Heartbeat/revert



class ShortestPathVertex : public Vertex<int, int, int> {
void Compute(MessageIterator* msgs) {

int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {

*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),
mindist + iter.GetValue());

}
VoteToHalt();

}
};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: SSSP



class PageRankVertex : public Vertex<double, void, double> {
public:

virtual void Compute(MessageIterator* msgs) {
if (superstep() >= 1) {

double sum = 0;
for (; !msgs->Done(); msgs->Next())

sum += msgs->Value();
*MutableValue() = 0.15 / NumVertices() + 0.85 * sum;

}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

}
}

};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: PageRank



class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {

int mindist = INF;
for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());
Output("combined_source", mindist);

}

};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: Combiners





Giraph Architecture

Master – Application coordinator
Synchronizes supersteps

Assigns partitions to workers before superstep begins

Workers – Computation & messaging
Handle I/O – reading and writing the graph

Computation/messaging of assigned partitions

ZooKeeper
Maintains global application state
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Active Inactive

Vote to Halt

Received Message

Vertex Lifecycle

Giraph Lifecycle
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Giraph Example
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Cache!



State-of-the-Art Distributed Graph Algorithms

Fast asynchronous 
iterations

Fast asynchronous 
iterations

Periodic 
synchronization



Source: Wikipedia (Waste container)

Graph Processing Frameworks



GraphX: Motivation



GraphX = Spark for Graphs

Integration of record-oriented and graph-oriented processing

Extends RDDs to Resilient Distributed Property Graphs

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]

}



Property Graph: Example



Underneath the Covers



GraphX Operators

val vertices: VertexRDD[VD] 
val edges: EdgeRDD[ED] 
val triplets: RDD[EdgeTriplet[VD, ED]]

“collection” view

Transform vertices and edges
mapVertices
mapEdges
mapTriplets

Join vertices with external table

Aggregate messages within local neighborhood

Pregel programs
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Cache!



Source: Wikipedia (Japanese rock garden)

Questions?


