
Data-Intensive Distributed Computing

Part 6: Data Mining (3/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 431/631 (Winter 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

March 6, 2018

These slides are available at http://lintool.github.io/bigdata-2018w/

Structure of the Course

“Core” framework features
and algorithm design

An
al

yz
in

g
Te

xt

An
al

yz
in

g
G

ra
ph

s

An
al

yz
in

g
Re

la
tio

na
l D

at
a

Da
ta

 M
in

in
g

Theme: Similarity

Problem: find similar items
Offline variant: extract all similar pairs of objects from a large collection

Online variant: is this object similar to something I’ve seen before?

How similar are two items? How “close” are two items?
Equivalent formulations: large distance = low similarity

Lots of applications!

Problem: arrange similar items into clusters
Offline variant: entire static collection available at once

Online variant: objects incrementally available

Literature Note

Many communities have tackled similar problems:
Theoretical computer science

Information retrieval
Data mining
Databases

…

Issues
Slightly different terminology
Results not easy to compare

Four Steps

Specify distance metric
Jaccard, Euclidean, cosine, etc.

“Project”
Minhash, random projections, etc.

Extract
Bucketing, sliding windows, etc.

Compute representation
Shingling, tf.idf, etc.

Source: www.flickr.com/photos/thiagoalmeida/250190676/

Distance Metrics

1. Non-negativity:

2. Identity:

3. Symmetry:

4. Triangle Inequality

d(x, y) � 0

d(x, y) = 0 () x = y

d(x, y) = d(y, x)

d(x, y)  d(x, z) + d(z, y)

Distance Metrics

J(A,B) =
|A \B|
|A [B|

d(A,B) = 1� J(A,B)

Distance: Jaccard

Given two sets A, B

Jaccard similarity:

Distance: Norms

Given
x = [x1, x2, . . . xn]

y = [y1, y2, . . . yn]

Euclidean distance (L2-norm)

Manhattan distance (L1-norm)

Lr-norm

d(x, y) =

vuut
nX

i=0

(xi � yi)
2

d(x, y) =

nX

i=0

|xi � yi|

d(x, y) =

"
nX

i=0

|xi � yi|r
#1/r

cos ✓ =

x · y
|x||y|

sim(x, y) =

Pn
i=0 xiyipPn

i=0 x
2
i

pPn
i=0 y

2
i

d(x, y) = 1� sim(x, y)

Distance: Cosine

Idea: measure distance between the vectors

Thus:

Given
x = [x1, x2, . . . xn]

y = [y1, y2, . . . yn]

Distance: Hamming

Given two bit vectors

Hamming distance: number of elements which differ

Representations

Representations

Unigrams (i.e., words)

Feature weights
boolean

tf.idf
BM25

…

Shingles = n-grams
At the word level

At the character level

(Text)

Representations

For recommender systems:
Items as features for users
Users as features for items

For log data:
Behaviors (clicks) as features

For graphs:
Adjacency lists as features for vertices

(Beyond Text)

Source: www.flickr.com/photos/rheinitz/6158837748/

Minhash

Near-Duplicate Detection of Webpages

What’s the source of the problem?
Mirror pages (legit)

Spam farms (non-legit)
Additional complications (e.g., nav bars)

Naïve algorithm:
Compute cryptographic hash for webpage (e.g., MD5)

Insert hash values into a big hash table
Compute hash for new webpage: collision implies duplicate

What’s the issue?

Intuition:
Hash function needs to be tolerant of minor differences
High similarity implies higher probability of hash collision

Minhash

Naïve approach: N2 comparisons: Can we do better?

Seminal algorithm for near-duplicate detection of webpages
Used by AltaVista

Setup:
Documents (HTML pages) represented by shingles (n-grams)

Jaccard similarity: dups are pairs with high similarity

Element A B

e1 1 0

e2 0 0

e3 1 1

e4 0 0

e5 0 1

e6 0 0

e7 1 1

Preliminaries: Representation

Sets:

Can be equivalently expressed as matrices:

A = {e1, e3, e7}

B = {e3, e5, e7}

M00 = # rows where both elements are 0

Let:

M11 = # rows where both elements are 1

M01 = # rows where A=0, B=1

M10 = # rows where A=1, B=0

Element A B

e1 1 0

e2 0 0

e3 1 1

e4 0 0

e5 0 1

e6 0 0

e7 1 1

J(A,B) =
M11

M01 +M10 +M11

Preliminaries: Jaccard

Element A B

e1 1 0

e2 0 0

e3 1 1

e4 0 0

e5 0 1

e6 0 0

e7 1 1

Element A B

e6 0 0

e2 0 0

e5 0 1

e3 1 1

e7 1 1

e4 0 0

e1 1 0

h(A) = e3 h(B) = e5

Minhash
Computing minhash

Start with the matrix representation of the set
Randomly permute the rows of the matrix

minhash is the first row with a “one”

Example

Element A B

e6 0 0

e2 0 0

e5 0 1

e3 1 1

e7 1 1

e4 0 0

e1 1 0

P [h(A) = h(B)] = J(A,B)

M00

M00

M01

M11

M11

M00

M10

M11

M01 +M10 +M11

M11

M01 +M10 +M11

Minhash and Jaccard

To Permute or Not to Permute?

Problem: Permutations are expensive

Solution: Interpret the hash value as the permutation
Only need to keep track of the minimum hash value
Can keep track of multiple minhash values at once

Extracting Similar Pairs

Naïve approach: N2 comparisons: Can we do better?

Tradeoffs:
False positives: discovered pairs that have similarity less than s

False negatives: pairs with similarity greater than s not discovered

Task: discover all pairs with similarity greater than s

Extracting Similar Pairs (LSH)

P [h(A) = h(B)] = J(A,B)We know:

Algorithm:
For each object, compute its minhash value

Group objects by their hash values
Output all pairs within each group

Task: discover all pairs with similarity greater than s

Analysis:
If J(A,B) = s, then probability we detect it is s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

Threshold = 0.8

False Positives

False Negatives

2 Minhash Signatures

P [h(A) = h(B)] = J(A,B)We know:

Algorithm:
For each object, compute 2 minhash values and concatenate = signature

Group objects by their signatures
Output all pairs within each group

Task: discover all pairs with similarity greater than s

Analysis:
If J(A,B) = s, then probability we detect it is s2

3 Minhash Signatures

P [h(A) = h(B)] = J(A,B)We know:

Algorithm:
For each object, compute 3 minhash values and concatenate = signature

Group objects by their signatures
Output all pairs within each group

Task: discover all pairs with similarity greater than s

Analysis:
If J(A,B) = s, then probability we detect it is s3

k Minhash Signatures

P [h(A) = h(B)] = J(A,B)We know:

Algorithm:
For each object, compute k minhash values and concatenate = signature

Group objects by their signatures
Output all pairs within each group

Task: discover all pairs with similarity greater than s

Analysis:
If J(A,B) = s, then probability we detect it is sk

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

Threshold = 0.8

False Positives

False Negatives

k Minhash Signatures concatenated together

n different k Minhash Signatures

P [h(A) = h(B)] = J(A,B)We know:

Algorithm:
For each object, compute n sets k minhash values

For each set, concatenate k minhash values together
In each set: group objects by signatures, output all pairs in each group

De-dup pairs

Task: discover all pairs with similarity greater than s

Analysis:
If J(A,B) = s, P(none of the n collide) = (1 – sk)n

If J(A,B) = s, then probability we detect it is 1 – (1 – sk)n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

k Minhash Signatures concatenated together

Threshold = 0.8

False Positives

False Negatives

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

6 Minhash Signatures concatenated together

Threshold = 0.8

False Positives

False Negatives

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

n different sets of 6 Minhash Signatures

Threshold = 0.8

False Positives

False Negatives

n different k Minhash Signatures

Example: J(A,B) = 0.8, 10 sets of 6 minhash signatures
P(k minhash signatures match) = (0.8)6 = 0.262
P(k minhash signature doesn’t match in any of the 10 sets) =
(1 – (0.8)6)10 = 0.0478

Thus, we should find 1 – (1 – (0.8)6)10 = 0.952 of all similar pairs

Example: J(A,B) = 0.4, 10 sets of 6 minhash signatures
P(k minhash signatures match) = (0.4)6 = 0.0041
P(k minhash signature doesn’t match in any of the 10 sets) =
(1 – (0.4)6)10 = 0.9598

Thus, we should find 1 – (1 – 0.262144)10 = 0.040 of all similar pairs

s 1 – (1 – s6)10

0.2 0.0006

0.3 0.0073

0.4 0.040

0.5 0.146

0.6 0.380

0.7 0.714

0.8 0.952

0.9 0.999

n different k Minhash Signatures

Practical Notes

Common implementation:
Generate M minhash values, select k of them n times

Reduces amount of hash computations needed

Determining “authoritative” version is non-trivial

MapReduce/Spark Implementation

Map over objects:
Generate M minhash values, select k of them n times

Each draw yields a signature, emit:
key = (p, signature), where p = [1 … n] and value = object id

Shuffle/Sort

Reduce
Receive all object ids with same (n, signature), emit clusters

Second pass to de-dup and group clusters

(Optional) Third pass to eliminate false positives

Offline Extraction vs. Online Querying

Batch formulation of the problem:
Discover all pairs with similarity greater than s

Useful for post-hoc batch processing of web crawl

Online formulation of the problem:
Given new webpage, is it similar to one I’ve seen before?

Useful for incremental web crawl processing

Online Similarity Querying

Preparing the existing collection:
For each object, compute n sets of k minhash values
For each set, concatenate k minhash values together

Keep each signature in hash table (in memory)
Note: can parallelize across multiple machines

Querying and updating:
For new webpage, compute signatures and check for collisions
Collisions imply duplicate (determine which version to keep)

Update hash tables

Source: www.flickr.com/photos/roj/4179478228/

Random Projections

Limitations of Minhash

Minhash is great for near-duplicate detection
Set high threshold for Jaccard similarity

Limitations:
Jaccard similarity only

Set-based representation, no way to assign weights to features

Random projections:
Works with arbitrary vectors using cosine similarity

Same basic idea, but details differ
Slower but more accurate: no free lunch!

Random Projection Hashing

Generate a random vector r of unit length
Draw from univariate Gaussian for each component

Normalize length

Define:

Physical intuition?

hr(u) =

⇢
1 if r · u � 0
0 if r · u < 0

RP Hash Collisions

It can be shown that:
Proof in (Goemans and Williamson, 1995)

Thus:

Physical intuition?

P [hr(u) = hr(v)] = 1� ✓(u, v)

⇡

cos(✓(u, v)) = cos((1� P [hr(u) = hr(v)])⇡)

Random Projection Signature

Given D random vectors:

Insight: similarity boils down to comparison of
hamming distances between signatures

Convert each object into a D bit signature:

Since:

[r1, r2, r3, . . . rD]

We can derive:

u ! [hr1(u), hr2(u), hr3(u), . . . hrD (u)]

cos(✓(u, v)) = cos((1� P [hr(u) = hr(v)])⇡)

cos(✓(u, v)) = cos

✓
hamming(su, sv)

D
· ⇡

◆

One-RP Signature

Algorithm:
Compute D-bit RP signature for every object
Take first bit, bucket objects into two sets

Perform brute force pairwise (hamming distance) comparison
in each bucket, retain those below hamming distance threshold

Task: discover all pairs with cosine similarity greater than s

Analysis:
Probability we will discover all pairs: *

* Note, this is actually a simplification: see Ture et al. (SIGIR 2011) for details.

Efficiency

1� cos

�1
(s)

⇡

N2 vs. 2

✓
N

2

◆2


1� cos

�1
(s)

⇡

�2

N2 vs. 4

✓
N

4

◆2

Two-RP Signature

Algorithm:
Compute D-bit RP signature for every object

Take first two bits, bucket objects into four sets

Perform brute force pairwise (hamming distance) comparison
in each bucket, retain those below hamming distance threshold

Task: discover all pairs with cosine similarity greater than s

Analysis:
Probability we will discover all pairs:

Efficiency

N2 vs. 2k
✓
N

2k

◆2


1� cos

�1
(s)

⇡

�k

k-RP Signature

Algorithm:
Compute D-bit RP signature for every object
Take first k bits, bucket objects into 2k sets

Perform brute force pairwise (hamming distance) comparison
in each bucket, retain those below hamming distance threshold

Task: discover all pairs with cosine similarity greater than s

Analysis:
Probability we will discover all pairs:

Efficiency

1�
"
1�


1� cos

�1
(s)

⇡

�k#m

N2 vs. m · 2k
✓
N

2k

◆2

m Sets of k-RP Signature

Algorithm:
Compute D-bit RP signature for every object

Choose m sets of k bits; for each, use k selected bits to bucket objects into 2k sets

Perform brute force pairwise (hamming distance) comparison
in each bucket, retain those below hamming distance threshold

Task: discover all pairs with cosine similarity greater than s

Analysis:
Probability we will discover all pairs:

Efficiency

MapReduce/Spark Implementation

Map over objects:
Compute D-bit RP signature for every object

Choose m sets of k bits and use to bucket; for each, emit:
key = (p, k bits), where p = [1 … m], value = (object id, rest of signature bits)

Shuffle/Sort

Reduce
Receive (p, k bits)

Perform brute force pairwise (hamming distance) comparison for each key,
retain those below hamming distance threshold

Second pass to de-dup and group clusters

(Optional) Third pass to eliminate false positives

Online Querying

Preparing the existing collection:
Compute D-bit RP signature for every object

Choose m sets of k bits and use to bucket
Store signatures in memory (across multiple machines)

Querying:
Compute D-bit signature of query object, choose m sets of k bits in same way

Perform brute-force scan of correct bucket (in parallel)

Additional Issues to Consider

Two sources of error:
From LSH

From using hamming distance as proxy for cosine similarity

Load imbalance

Emphasis on recall, not precision

Parameter tuning

“Sliding Window” Algorithm

For each permutation, sort bit signatures
Apply sliding window of width B over sorted

Compute hamming distances of bit signatures within window

Compute D-bit RP signature for every object

For each object, permute bit signature m times

MapReduce/Spark Implementation

Mapper:
Compute D-bit RP signature for every object

Permute m times, for each emit:
key = (p, signature), where p = [1 … m], value = object id

Shuffle/Sort

Reduce
Keep FIFO queue of B bit signatures

For each new bit signature, compute hamming distance wrt all in queue
Add new bit signature to end of queue, displacing oldest

Four Steps to Finding Similar Items

Specify distance metric
Jaccard, Euclidean, cosine, etc.

“Project”
Minhash, random projections, etc.

Extract
Bucketing, sliding windows, etc.

Compute representation
Shingling, tf.idf, etc.

Source: Wikipedia (Japanese rock garden)

Questions?

