
Data-Intensive Distributed Computing

Part 5: Analyzing Relational Data (2/3)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 431/631 (Winter 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

February 13, 2018

These slides are available at http://lintool.github.io/bigdata-2018w/

Frontend

Backend

users

BI tools

analysts

ETL
(Extract, Transform, and Load)

Data
Warehouse

OLTP
database

Frontend

Backend

users

Frontend

Backend

external APIs

OLTP
database

OLTP
database

“On the first day of logging the Facebook clickstream, more than 400 gigabytes of data
was collected. The load, index, and aggregation processes for this data set really taxed the
Oracle data warehouse. Even after significant tuning, we were unable to aggregate a day of
clickstream data in less than 24 hours.”

Jeff Hammerbacher, Information Platforms and the Rise of the Data Scientist.
In, Beautiful Data, O’Reilly, 2009.

Frontend

Backend

users

ETL
(Extract, Transform, and Load)

Hadoop

Wait, so why not use a
database to begin with?

SQL-on-Hadoop

“OLTP”

data scientists

Cost + Scalability

Databases are great…
If your data has structure (and you know what the structure is)

If you know what queries you’re going to run ahead of time
If your data is reasonably clean

Databases are not so great…
If your data has little structure (or you don’t know the structure)

If you don’t know what you’re looking for
If your data is messy and noisy

Frontend

Backend

users

Frontend

Backend

users

Frontend

Backend

external APIs

“Traditional”
BI tools

SQL on
Hadoop

Other
tools

Data Warehouse“Data Lake”

data scientists

OLTP
database

ETL
(Extract, Transform, and Load)

OLTP
database

OLTP
database

“Traditional”
BI tools

SQL on
Hadoop

Other
tools

Data Warehouse“Data Lake”

data scientists

What’s the selling point of SQL-on-Hadoop?
Trade (a little?) performance for flexibility

HDFS

Execution Layer

SQL query interface

Other
Data

Sources

SQL-on-Hadoop

Today: How all of this works…

Source: Material drawn from Cloudera training VM

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 8882 6884

Hive: Example

Relational join on two tables:
Table of word counts from Shakespeare collection

Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

Hive: Behind the Scenes

STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1

Map Reduce
Alias -> Map Operator Tree:

s
TableScan

alias: s
Filter Operator

predicate:
expr: (freq >= 1)
type: boolean

Reduce Output Operator
key expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

tag: 0
value expressions:

expr: freq
type: int
expr: word
type: string

k
TableScan

alias: k
Filter Operator

predicate:
expr: (freq >= 1)
type: boolean

Reduce Output Operator
key expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

tag: 1
value expressions:

expr: freq
type: int

Reduce Operator Tree:
Join Operator

condition map:
Inner Join 0 to 1

condition expressions:
0 {VALUE._col0} {VALUE._col1}
1 {VALUE._col0}

outputColumnNames: _col0, _col1, _col2
Filter Operator

predicate:
expr: ((_col0 >= 1) and (_col2 >= 1))
type: boolean

Select Operator
expressions:

expr: _col1
type: string
expr: _col0
type: int
expr: _col2
type: int

outputColumnNames: _col0, _col1, _col2
File Output Operator

compressed: false
GlobalTableId: 0
table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-2
Map Reduce

Alias -> Map Operator Tree:
hdfs://localhost:8022/tmp/hive-training/364214370/10002

Reduce Output Operator
key expressions:

expr: _col1
type: int

sort order: -
tag: -1
value expressions:

expr: _col0
type: string
expr: _col1
type: int
expr: _col2
type: int

Reduce Operator Tree:
Extract

Limit
File Output Operator

compressed: false
GlobalTableId: 0
table:

input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator

limit: 10

Hive: Behind the Scenes

Hive Architecture

Hive Implementation

Metastore holds metadata
Tables schemas (field names, field types, etc.) and encoding

Permission information (roles and users)

Hive data stored in HDFS
Tables in directories

Partitions of tables in sub-directories
Actual data in files (plain text or binary encoded)

Frontend

Backend

users

Frontend

Backend

users

Frontend

Backend

external APIs

“Traditional”
BI tools

SQL on
Hadoop

Other
tools

Data Warehouse“Data Lake”

data scientists

OLTP
database

ETL
(Extract, Transform, and Load)

OLTP
database

OLTP
database

Dim_Customer

Dim_Date

Dim_Product
Fact_Sales

Dim_Store

A Simple OLAP Schema

TPC BenchmarkTM H Standard Specification Revision 2.17.1 Page 13

1.2 Database Entities, Relationships, and Characteristics

The components of the TPC-H database are defined to consist of eight separate and individual tables (the Base
Tables). The relationships between columns of these tables are illustrated in Figure 2: The TPC-H Schema.

Figure 2: The TPC-H Schema

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-
PRIORITY

SHIP-
PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

ADDRESS

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PART (P_)
SF*200,000

PARTSUPP (PS_)
SF*800,000

LINEITEM (L_)
SF*6,000,000

ORDERS (O_)
SF*1,500,000

CUSTOMER (C_)
SF*150,000

SUPPLIER (S_)
SF*10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)
25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)
5

Legend:

x The parentheses following each table name contain the prefix of the column names for that table;

x The arrows point in the direction of the one-to-many relationships between tables;

x The number/formula below each table name represents the cardinality (number of rows) of the table. Some
are factored by SF, the Scale Factor, to obtain the chosen database size. The cardinality for the LINEITEM
table is approximate (see Clause 4.2.5).

TPC-H Data Warehouse

store

pr
od

uc
t

slice and dice

Common operations

roll up/drill down

pivot

OLAP Cubes

MapReduce algorithms
for processing relational data

Source: www.flickr.com/photos/stikatphotography/1590190676/

Relational Algebra

Primitives
Projection (p)
Selection (s)

Cartesian product (´)
Set union (È)

Set difference (-)

Rename (r)

Other Operations
Join (⋈)

Group by… aggregation
…

R1

s
R2

R3

R4

R5

R1

R3

Selection

Selection in MapReduce

Easy!
In mapper: process each tuple, only emit tuples that meet criteria

Can be pipelined with projection
No reducers necessary (unless to do something else)

Performance mostly limited by HDFS throughput
Speed of encoding/decoding tuples becomes important

Take advantage of compression when available
Semistructured data? No problem!

R1

p
R2

R3

R4

R5

R1

R2

R3

R4

R5

Projection

Projection in MapReduce

Easy!
In mapper: process each tuple, re-emit with only projected attributes

Can be pipelined with selection
No reducers necessary (unless to do something else)

Implementation detail: bookkeeping required
Need to keep track of attribute mappings after projection

e.g., name was r[4], becomes r[1] after projection

Performance mostly limited by HDFS throughput
Speed of encoding/decoding tuples becomes important

Take advantage of compression when available
Semistructured data? No problem!

Group by… Aggregation

Aggregation functions:
AVG, MAX, MIN, SUM, COUNT, …

MapReduce implementation:
Map over dataset, emit tuples, keyed by group by attribute

Framework automatically groups values by group by attribute
Compute aggregation function in reducer

Optimize with combiners, in-mapper combining

Combiner Design

Combiners and reducers share same method signature
Sometimes, reducers can serve as combiners

Often, not…

Remember: combiner are optional optimizations
Should not affect algorithm correctness

May be run 0, 1, or multiple times

Example: find average of integers associated with the same key

SELECT key, AVG(value) FROM r GROUP BY key;

Computing the Mean: Version 1

class Mapper {
def map(key: Text, value: Int, context: Context) = {

context.write(key, value)
}

}

class Reducer {
def reduce(key: Text, values: Iterable[Int], context: Context) {

for (value <- values) {
sum += value
cnt += 1

}
context.write(key, sum/cnt)

}
}

class Mapper {
def map(key: Text, value: Int, context: Context) =

context.write(key, value)
}
class Combiner {

def reduce(key: Text, values: Iterable[Int], context: Context) = {
for (value <- values) {

sum += value
cnt += 1

}
context.write(key, (sum, cnt))

}
}
class Reducer {

def reduce(key: Text, values: Iterable[Pair], context: Context) = {
for (value <- values) {

sum += value.left
cnt += value.right

}
context.write(key, sum/cnt)

}
}

Computing the Mean: Version 2

class Mapper {
def map(key: Text, value: Int, context: Context) =

context.write(key, (value, 1))
}
class Combiner {

def reduce(key: Text, values: Iterable[Pair], context: Context) = {
for (value <- values) {

sum += value.left
cnt += value.right

}
context.write(key, (sum, cnt))

}
}
class Reducer {

def reduce(key: Text, values: Iterable[Pair], context: Context) = {
for (value <- values) {

sum += value.left
cnt += value.right

}
context.write(key, sum/cnt)

}
}

Computing the Mean: Version 3

Computing the Mean: Version 4

class Mapper {
val sums = new HashMap()
val counts = new HashMap()

def map(key: Text, value: Int, context: Context) = {
sums(key) += value
counts(key) += 1

}

def cleanup(context: Context) = {
for (key <- counts) {

context.write(key, (sums(key), counts(key)))
}

}
}

Relational Joins

Source: Microsoft Office Clip Art

R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

Relational Joins

(More precisely, an inner join)

One-to-OneOne-to-ManyMany-to-Many

Types of Relationships

Join Algorithms in MapReduce

Reduce-side join
aka repartition join

aka shuffle join

Map-side join
aka sort-merge join

Hash join
aka broadcast join
aka replicated join

Reduce-side Join

Basic idea: group by join key
Map over both datasets

Emit tuple as value with join key as the intermediate key
Execution framework brings together tuples sharing the same key

Perform join in reducer

Two variants
1-to-1 joins

1-to-many and many-to-many joins

aka repartition join, shuffle join

R1

R4

S2

S3

R1

R4

S2

S3

keys values
Map

R1

R4

S2

S3

keys values

Reduce

Note: no guarantee if R is going to come first or S

Reduce-side Join: 1-to-1

More precisely, an inner join: What about outer joins?

R1

S2

S3

R1

S2

S3

S9

keys values
Map

R1 S2

keys values

Reduce

S9

S3 …

Reduce-side Join: 1-to-many

Secondary Sorting

What if we want to sort value also?
E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

MapReduce sorts input to reducers by key
Values may be arbitrarily ordered

Secondary Sorting: Solutions

Solution 2
“Value-to-key conversion” : form composite intermediate key, (k, v1)

Let the execution framework do the sorting
Preserve state across multiple key-value pairs to handle processing

Anything else we need to do?

Solution 1
Buffer values in memory, then sort

Why is this a bad idea?

k → (v8, r4), (v1, r1), (v4, r3), (v3, r2)…

(k, v1) → r1

Before

After

(k, v3) → r2

(k, v4) → r3

(k, v8) → r4

Values arrive in arbitrary order…

…

Values arrive in sorted order…
Process by preserving state across multiple keys
Remember to partition correctly!

Value-to-Key Conversion

R1

keys values

In reducer…

S2

S3

S9

R4

S3

S7

New key encountered: hold in memory

Cross with records from other dataset

New key encountered: hold in memory

Cross with records from other dataset

Reduce-side Join: V-to-K Conversion

R1

keys values

S2

S3

S9

Hold in memory

Cross with records from other dataset

R5

R8

Reduce-side Join: many-to-many
In reducer…

R1

R2

R3

R4

S1

S2

S3

S4

merge to join

Assume two datasets are sorted by the join key:

Map-side Join
aka sort-merge join

R1

R2

R3

R4

S1

S2

S3

S4

R1

R2

R3

R4

S1

S2

S3

S4

Assume two datasets are sorted by the join key:

merge to join merge to join

How can we parallelize this? Co-partitioning

Map-side Join
aka sort-merge join

Map-side Join
aka sort-merge join

Works if…
Two datasets are co-partitioned

Sorted by join key

MapReduce implementation:
Map over one dataset, read from other corresponding partition

No reducers necessary (unless to do something else)

Co-partitioned, sorted datasets: realistic to expect?

Hash Join
aka broadcast join, replicated join

Basic idea:
Load one dataset into memory in a hashmap, keyed by join key

Read other dataset, probe for join key

Works if…
R << S and R fits into memory

MapReduce implementation:
Distribute R to all nodes (e.g., DistributedCache)

Map over S, each mapper loads R in memory and builds the hashmap
For every tuple in S, probe join key in R

No reducers necessary (unless to do something else)

Hash Join Variants

Co-partitioned variant:
R and S co-partitioned (but not sorted)?

Only need to build hashmap on the corresponding partition

Striped variant:
R too big to fit into memory?

Divide R into R1, R2, R3, … s.t. each Rn fits into memory
Perform hash join: "n, Rn ⋈ S

Take the union of all join results

Use a global key-value store:
Load R into memcached (or Redis)

Probe global key-value store for join key

Which join to use?

Hash join > map-side join > reduce-side join

Limitations of each?
In-memory join: memory

Map-side join: sort order and partitioning
Reduce-side join: general purpose

Execution Layer

SQL query interface

SQL-on-Hadoop

HDFS
Other
Data

Sources

Build logical plan

Optimize logical plan

Select physical plan

Note: generic SQL-on-Hadoop implementation; not exactly what Hive does, but pretty close.

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

big1

join

join

big2 small

select

project

Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

big1

join

join

big2 small

project

select

project

select

project
Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

big1

join

join

big2 small

project

select

project

select

project

Shuffle join?
Sort-merge join?
Hash join?

Shuffle join?
Sort-merge join?
Hash join?

Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

big1

shuffleJ

hashJ

big2 small

sink

scan scan
Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

big1

shuffleJ

hashJ

big2 small

sink

scan scan
Build logical plan

Optimize logical plan

Select physical plan

Map

Reduce

Map

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

big1

shuffleJ

hashJ

big2 small

sink

scan scan
Build logical plan

Optimize logical plan

Select physical plan

Map

Reduce

Putting Everything Together

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

Hive: Behind the Scenes
Now you understand what’s going on here!

STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1

Map Reduce
Alias -> Map Operator Tree:

s
TableScan

alias: s
Filter Operator

predicate:
expr: (freq >= 1)
type: boolean

Reduce Output Operator
key expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

tag: 0
value expressions:

expr: freq
type: int
expr: word
type: string

k
TableScan

alias: k
Filter Operator

predicate:
expr: (freq >= 1)
type: boolean

Reduce Output Operator
key expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

tag: 1
value expressions:

expr: freq
type: int

Reduce Operator Tree:
Join Operator

condition map:
Inner Join 0 to 1

condition expressions:
0 {VALUE._col0} {VALUE._col1}
1 {VALUE._col0}

outputColumnNames: _col0, _col1, _col2
Filter Operator

predicate:
expr: ((_col0 >= 1) and (_col2 >= 1))
type: boolean

Select Operator
expressions:

expr: _col1
type: string
expr: _col0
type: int
expr: _col2
type: int

outputColumnNames: _col0, _col1, _col2
File Output Operator

compressed: false
GlobalTableId: 0
table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-2
Map Reduce

Alias -> Map Operator Tree:
hdfs://localhost:8022/tmp/hive-training/364214370/10002

Reduce Output Operator
key expressions:

expr: _col1
type: int

sort order: -
tag: -1
value expressions:

expr: _col0
type: string
expr: _col1
type: int
expr: _col2
type: int

Reduce Operator Tree:
Extract

Limit
File Output Operator

compressed: false
GlobalTableId: 0
table:

input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator

limit: 10

Hive: Behind the Scenes
Now you understand what’s going on here!

Execution Layer

SQL query interface

SQL-on-Hadoop

HDFS
Other
Data

Sources

val sqlContext = ... // An existing SQLContext
val df = sqlContext.sql("SELECT * FROM table")
// df is a dataframe, can be further manipulated...

// employees is a dataframe:
employees
.join(dept, employees ("deptId") === dept ("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept ("name"))
.agg(count("name"))

What about Spark SQL?

Based on the DataFrame API:
A distributed collection of data organized into named columns

Two ways of specifying SQL queries:
Directly:

Via DataFrame API:

SQL Query

DataFrame

Unresolved
Logical Plan Logical Plan Optimized

Logical Plan
Physical

Plans
Physical

Plans RDDs
Selected
Physical

Plan

Analysis Logical
Optimization

Physical
Planning

C
os

t M
od

el

Physical
Plans

Code
Generation

Catalog

Figure 3: Phases of query planning in Spark SQL. Rounded rectangles represent Catalyst trees.

In total, the rules for the analyzer are about 1000 lines of code.

4.3.2 Logical Optimization
The logical optimization phase applies standard rule-based optimiza-
tions to the logical plan. These include constant folding, predicate
pushdown, projection pruning, null propagation, Boolean expres-
sion simplification, and other rules. In general, we have found it
extremely simple to add rules for a wide variety of situations. For
example, when we added the fixed-precision DECIMAL type to Spark
SQL, we wanted to optimize aggregations such as sums and aver-
ages on DECIMALs with small precisions; it took 12 lines of code to
write a rule that finds such decimals in SUM and AVG expressions, and
casts them to unscaled 64-bit LONGs, does the aggregation on that,
then converts the result back. A simplified version of this rule that
only optimizes SUM expressions is reproduced below:
object DecimalAggregates extends Rule[LogicalPlan] {
/** Maximum number of decimal digits in a Long */
val MAX_LONG_DIGITS = 18

def apply(plan: LogicalPlan): LogicalPlan = {
plan transformAllExpressions {
case Sum(e @ DecimalType.Expression(prec, scale))

if prec + 10 <= MAX_LONG_DIGITS =>
MakeDecimal(Sum(LongValue(e)), prec + 10, scale)

}
}

As another example, a 12-line rule optimizes LIKE expressions
with simple regular expressions into String.startsWith or
String.contains calls. The freedom to use arbitrary Scala code in
rules made these kinds of optimizations, which go beyond pattern-
matching the structure of a subtree, easy to express. In total, the
logical optimization rules are 800 lines of code.

4.3.3 Physical Planning
In the physical planning phase, Spark SQL takes a logical plan and
generates one or more physical plans, using physical operators that
match the Spark execution engine. It then selects a plan using a
cost model. At the moment, cost-based optimization is only used to
select join algorithms: for relations that are known to be small, Spark
SQL uses a broadcast join, using a peer-to-peer broadcast facility
available in Spark.5 The framework supports broader use of cost-
based optimization, however, as costs can be estimated recursively
for a whole tree using a rule. We thus intend to implement richer
cost-based optimization in the future.

The physical planner also performs rule-based physical optimiza-
tions, such as pipelining projections or filters into one Spark map
operation. In addition, it can push operations from the logical plan
into data sources that support predicate or projection pushdown. We
will describe the API for these data sources in Section 4.4.1.

In total, the physical planning rules are about 500 lines of code.
5Table sizes are estimated if the table is cached in memory or comes from
an external file, or if it is the result of a subquery with a LIMIT.

4.3.4 Code Generation
The final phase of query optimization involves generating Java
bytecode to run on each machine. Because Spark SQL often operates
on in-memory datasets, where processing is CPU-bound, we wanted
to support code generation to speed up execution. Nonetheless,
code generation engines are often complicated to build, amounting
essentially to a compiler. Catalyst relies on a special feature of the
Scala language, quasiquotes [34], to make code generation simpler.
Quasiquotes allow the programmatic construction of abstract syntax
trees (ASTs) in the Scala language, which can then be fed to the
Scala compiler at runtime to generate bytecode. We use Catalyst to
transform a tree representing an expression in SQL to an AST for
Scala code to evaluate that expression, and then compile and run the
generated code.

As a simple example, consider the Add, Attribute and Literal tree
nodes introduced in Section 4.2, which allowed us to write expres-
sions such as (x+y)+1. Without code generation, such expressions
would have to be interpreted for each row of data, by walking down
a tree of Add, Attribute and Literal nodes. This introduces large
amounts of branches and virtual function calls that slow down exe-
cution. With code generation, we can write a function to translate a
specific expression tree to a Scala AST as follows:
def compile(node: Node): AST = node match {
case Literal(value) => q"$value"
case Attribute(name) => q"row.get($name)"
case Add(left, right) =>
q"${compile(left)} + ${compile(right)}"

}

The strings beginning with q are quasiquotes, meaning that al-
though they look like strings, they are parsed by the Scala compiler
at compile time and represent ASTs for the code within. Quasiquotes
can have variables or other ASTs spliced into them, indicated using
$ notation. For example, Literal(1) would become the Scala AST
for 1, while Attribute("x") becomes row.get("x"). In the end, a
tree like Add(Literal(1), Attribute("x")) becomes an AST for
a Scala expression like 1+row.get("x").

Quasiquotes are type-checked at compile time to ensure that only
appropriate ASTs or literals are substituted in, making them sig-
nificantly more useable than string concatenation, and they result
directly in a Scala AST instead of running the Scala parser at runtime.
Moreover, they are highly composable, as the code generation rule
for each node does not need to know how the trees returned by its
children were built. Finally, the resulting code is further optimized
by the Scala compiler in case there are expression-level optimiza-
tions that Catalyst missed. Figure 4 shows that quasiquotes let us
generate code with performance similar to hand-tuned programs.

We have found quasiquotes very straightforward to use for code
generation, and we observed that even new contributors to Spark
SQL could quickly add rules for new types of expressions. Qua-
siquotes also work well with our goal of running on native Java

At the end of the day… it’s transformations on RDDs

Spark SQL: Query Planning

= Reduce-side join

= Map-side join

Hash join with broadcast variables

Spark SQL: Physical Execution

Hadoop Data Warehouse Design

Observation:
Joins are relatively expensive

OLAP queries frequently involve joins

Solution: denormalize
What’s normalization again?

Why normalize to begin with?
Fundamentally a time-space tradeoff

How much to denormalize?
What about consistency?

TPC BenchmarkTM H Standard Specification Revision 2.17.1 Page 13

1.2 Database Entities, Relationships, and Characteristics

The components of the TPC-H database are defined to consist of eight separate and individual tables (the Base
Tables). The relationships between columns of these tables are illustrated in Figure 2: The TPC-H Schema.

Figure 2: The TPC-H Schema

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-
PRIORITY

SHIP-
PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

ADDRESS

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PART (P_)
SF*200,000

PARTSUPP (PS_)
SF*800,000

LINEITEM (L_)
SF*6,000,000

ORDERS (O_)
SF*1,500,000

CUSTOMER (C_)
SF*150,000

SUPPLIER (S_)
SF*10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)
25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)
5

Legend:

x The parentheses following each table name contain the prefix of the column names for that table;

x The arrows point in the direction of the one-to-many relationships between tables;

x The number/formula below each table name represents the cardinality (number of rows) of the table. Some
are factored by SF, the Scale Factor, to obtain the chosen database size. The cardinality for the LINEITEM
table is approximate (see Clause 4.2.5).

Denormalization Opportunities?

“Denormalizing the snowflake”

Execution Layer

SQL query interface

SQL-on-Hadoop

HDFS
Other
Data

Sources

What’s the assignment?

HDFS

Spark

SQL query interface

SQL-on-Hadoop

You

What’s the assignment?

TPC BenchmarkTM H Standard Specification Revision 2.17.1 Page 13

1.2 Database Entities, Relationships, and Characteristics

The components of the TPC-H database are defined to consist of eight separate and individual tables (the Base
Tables). The relationships between columns of these tables are illustrated in Figure 2: The TPC-H Schema.

Figure 2: The TPC-H Schema

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-
PRIORITY

SHIP-
PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

ADDRESS

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PART (P_)
SF*200,000

PARTSUPP (PS_)
SF*800,000

LINEITEM (L_)
SF*6,000,000

ORDERS (O_)
SF*1,500,000

CUSTOMER (C_)
SF*150,000

SUPPLIER (S_)
SF*10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)
25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)
5

Legend:

x The parentheses following each table name contain the prefix of the column names for that table;

x The arrows point in the direction of the one-to-many relationships between tables;

x The number/formula below each table name represents the cardinality (number of rows) of the table. Some
are factored by SF, the Scale Factor, to obtain the chosen database size. The cardinality for the LINEITEM
table is approximate (see Clause 4.2.5).

What’s the assignment?

SQL query

select
l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

from lineitem
where
l_shipdate = 'YYYY-MM-DD'

group by l_returnflag, l_linestatus;

Raw Spark program

input parameter

Your task…

What’s the assignment?

Source: Wikipedia (Japanese rock garden)

Questions?

