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Indexing: building this structure

Retrieval: manipulating this structure
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Shuffle and Sort: aggregate values by keys

Map

Reduce

Inverted Indexing with MapReduce



Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit(term, (docid, tf))
}

}
}

class Reducer {
def reduce(term: String, postings: Iterable[(docid, tf)]) = {

val p = new List()
for ((docid, tf) <- postings) {

p.append((docid, tf))
}
p.sort()
emit(term, p)

}
}
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Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit(term, (docid, tf))
}

}
}

class Reducer {
def reduce(term: String, postings: Iterable[(docid, tf)]) = {

val p = new List()
for ((docid, tf) <- postings) {

p.append((docid, tf))
}
p.sort()
emit(term, p)

}
}
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Let the framework do the sorting!

Where have we seen this before?

Another Try…

2

1

3

1

2

3



Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit((term, docid), tf)
}

}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {

emit(prev, postings)
postings.reset()

}
postings.append(key.docid, tf.first)
prev = key.term

}

def cleanup() = {
emit(prev, postings)

}
} What else do we need to do?



2 1 3 1 2 3

2 1 3 1 2 3

1fish 9 21 34 35 80 …

1fish 8 12 13 1 45 …

Conceptually:

In Practice:
Don’t encode docids, encode gaps (or d-gaps) 
But it’s not obvious that this save space…

= delta encoding, delta compression, gap compression

Postings Encoding



Overview of Integer Compression

Byte-aligned technique
VByte

Bit-aligned
Unary codes
g/d codes

Golomb codes (local Bernoulli model)

Word-aligned
Simple family

Bit packing family (PForDelta, etc.)



0

1 0

1 1 0

7 bits

14 bits

21 bits

Beware of branch mispredicts!

VByte

Works okay, easy to implement…

Simple idea: use only as many bytes as needed
Need to reserve one bit per byte as the “continuation bit”

Use remaining bits for encoding value



28 1-bit numbers

14 2-bit numbers

9 3-bit numbers

7 4-bit numbers

(9 total ways)

“selectors”

Beware of branch mispredicts?

Simple-9
How many different ways can we divide up 28 bits?

Efficient decompression with hard-coded decoders
Simple Family – general idea applies to 64-bit words, etc.



3 …

4 …

5 …

Beware of branch mispredicts?

Bit Packing

Efficient decompression with hard-coded decoders
PForDelta – bit packing + separate storage of “overflow” bits

What’s the smallest number of bits we need 
to code a block (=128) of integers?



x ³ 1, parameter b:
q + 1 in unary, where q = ë( x - 1 ) / bû
r in binary, where r = x - qb - 1, in ëlog bû or élog bù bits

Example:
b = 3, r = 0, 1, 2 (0, 10, 11)
b = 6, r = 0, 1, 2, 3, 4, 5 (00, 01, 100, 101, 110, 111)

x = 9, b = 3: q = 2, r = 2, code = 110:11
x = 9, b = 6: q = 1, r = 2, code = 10:100

Golomb Codes

Punch line: optimal b ~ 0.69 (N/df)
Different b for every term!



Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit((term, docid), tf)
}

}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {

emit(prev, postings)
postings.reset()

}
postings.append(key.docid, tf.first)
prev = key.term

}

def cleanup() = {
emit(prev, postings)

}
}
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…

Sound familiar?

But wait! How do we set 
the Golomb parameter b?

We need the df to set b…

But we don’t know the df until 
we’ve seen all postings!

Recall: optimal b ~ 0.69 (N/df)

Chicken and Egg?
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Getting the df

In the mapper:
Emit “special” key-value pairs to keep track of df

In the reducer:
Make sure “special” key-value pairs come first: process them to determine df

Remember: proper partitioning!
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Input document…

Emit normal key-value pairs…

Emit “special” key-value pairs to keep track of df…

Getting the df: Modified Mapper
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Write postings compressed

«fish …

…

First, compute the df by summing contributions 
from all “special” key-value pair…

Compute b from df

Important: properly define sort order to make 
sure “special” key-value pairs come first!

Where have we seen this before?

Getting the df: Modified Reducer
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But I don’t care about Golomb Codes!
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Compute the df by summing contributions 
from all “special” key-value pair…

Write the df

Basic Inverted Indexer: Reducer
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Inverted Indexing: IP (~Pairs)
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit((term, docid), tf)
}

}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {

emit(key.term, postings)
postings.reset()

}
postings.append(key.docid, tf.first)
prev = key.term

}

def cleanup() = {
emit(prev, postings)

}
}



Postings(1, 15, 22, 39, 54) ⊕ Postings(2, 46)
= Postings(1, 2, 15, 22, 39, 46, 54)

Merging Postings

Let’s define an operation ⊕ on postings lists P:

Then we can rewrite our indexing algorithm!
flatMap: emit singleton postings

reduceByKey: ⊕



Postings1 ⊕ Postings2 = PostingsM

Solution: apply compression as needed!

What’s the issue?



class Mapper {
val m = new Map()

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

m(term).append((docid, tf))
}
if memoryFull()

flush()
}

def cleanup() = {
flush()

}

def flush() = {
for (term <- m.keys) {

emit(term, new PostingsList(m(term)))
}
m.clear()

}
}

Slightly less elegant implementation… but uses same idea

Inverted Indexing: LP (~Stripes)



class Reducer {
def reduce(term: String, lists: Iterable[PostingsList]) = {

var f = new PostingsList()

for (list <- lists) {
f = f + list

}

emit(term, f)
}

}

Inverted Indexing: LP (~Stripes)
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Figure 5: Running time of the LP and IP algorithms on the first two English segments of ClueWeb09.

as soon as memory was 90% full, or when the mapper had processed 50k documents; on the reducer
end, the memory threshold was set to 90% as well. The correctness of the constructed indexes was
verified using the 50 queries from the TREC 2009 web track. We had previously participated in the
evaluation, reporting competitive results, which we were able to replicate.

Scaling characteristics of both indexing algorithms are presented in Figure 5; in addition to plot-
ting the above results, we also show running times for half of the first ClueWeb09 segment (25.1m
documents), the first and half of the second segment (76.0m documents), and the first two segments
(101.8m documents). We emphasize that in all cases we are constructing a single monolithic (i.e., non-
partitioned) index. The figure shows three trials each for the IP and LP algorithms. The graph also
shows linear regressions through the running times: very high R2 values demonstrate that both algo-
rithms scale linearly with collection size, which is a very desirable property. We did not examine even
larger collections because real-world retrieval engines adopt a document-partitioned architecture [2, 36],
such that the bottleneck is in building the index for a single partition—building multiple partitions
is parallelizable. Partition sizes, of course, are collection specific, but we find it unrealistic that one
would in reality want to build even larger partitions (since query evaluation time would be dominated
by traversal of the longest posting).

5 To Seek or Not To Seek?

Having indexed the document collection, researchers can proceed to focus on the central problem in IR:
ranking documents in response to a user’s query based on a particular retrieval model. An empirical
discipline built around test collections is at the core of our field. The basic experimental cycle consists
of developing or modifying the retrieval model, running a batch of ad hoc queries, and evaluating the
quality of results based on some standard metric such as mean average precision. Traditionally, batch
evaluation is performed sequentially, one query at a time, and the evaluation of each query consists of
fetching postings that correspond to the query terms and traversing the postings to compute query–
document scores.

How long does a retrieval experiment take? We started with an index of the first ClueWeb09 segment
(50.2 million documents), copied it out of Hadoop’s distributed file system (HDFS) onto the local disk

12

Alg. Time Intermediate Pairs Intermediate Size

IP 38.5 min 13⇥ 109 306⇥ 109 bytes
LP 29.6 min 614⇥ 106 85⇥ 109 bytes

Table 1: Comparison of the IP and LP indexing algorithms on the first ClueWeb09 segment.

(totaling 1.53 TB uncompressed, 247 GB compressed) and the second contains 51.6m documents (to-
taling 1.44 TB uncompressed, 225 GB compressed).

4.2 Preprocessing

Prior to indexing, we first preprocessed the collection. This consisted of three major stages, all conceived
as MapReduce jobs implemented in Java. In the first stage, all documents were parsed into document
vectors (with stemming and stopword removal), represented as associative arrays from terms to term
frequencies. At the same time we built a table of document lengths, necessary for retrieval later. In
the second stage, we constructed a mapping from terms to integers (term ids), sorted by ascending
document frequency, i.e., term 1 was the term with the highest df, term 2 was the term with the
second highest df, etc. In this process, we discarded all terms that occurred ten or fewer times in the
collection, since these rare terms are mostly misspelled words and are unlikely to be part of real-world
user queries. The resulting dictionary was then compressed with front-coding [34]. Finally, in the third
stage a new set of document vectors were generated in which terms were replaced with the integer
term ids. Furthermore, within each document the terms were sorted in increasing term id, so that we
were able to encode gap di↵erences (using � codes). The final result is a compact representation of the
original document collection. The first and third stages are parallel operations with mappers and no
reducers; the second stage uses a single reducer to build the term id mapping.

There were three primary reasons for building and separately storing this compressed representation
of the document collection. First, for evaluating indexing performance, we wished to factor out the
time taken to process the documents: parsing, tokenization, stemming, etc. Second, materializing
the document vectors is necessary if the retrieval model performs relevance feedback. Third, this
representation serves as the input to the brute force query-evaluation algorithm we describe in Section 6.

For the first English segment of ClueWeb09, the entire preprocessing pipeline took 54.3 minutes
(averaged over two trials): 19.6 minutes for the first stage, 8.0 minutes for the second stage, and 26.7
minutes for the third. The parsed document vectors were 115 GB; replacing terms with term ids and
gap compression reduced the size down to 64 GB.

4.3 E�ciency Results

We have implemented both the IP and LP indexing algorithms in Java. Starting from the compact
representation of the collection, the running times of the IP and LP algorithms on the first English
segment of ClueWeb09 are shown in Table 1, each averaged over three trials (cf. Figure 5). The third
and fourth columns of the table show the number of intermediate key-value pairs and the total size
of the intermediate data generated by the two approaches. The final size of postings lists is 64 GB,
containing full positional information. Both algorithms construct a single, monolithic index (i.e., the
document collection is not partitioned). We can see that the LP algorithm is relatively space e�cient,
generating only about a third more intermediate data than the final size of the postings, whereas the
IP algorithm generates nearly five times more intermediate data.

For both algorithms, the MapReduce job decomposed into 2901 map tasks and 200 reduce tasks,
each utilizing an allocated maximum heap size of 2 GB. Note that in the reduce phase we do not take
advantage of all available cluster capacity. For the LP algorithm, mappers were set to flush postings

11

From: Elsayed et al., Brute-Force Approaches to Batch Retrieval: 
Scalable Indexing with MapReduce, or Why Bother? 2010

Experiments on ClueWeb09 collection: segments 1 + 2
101.8m documents (472 GB compressed, 2.97 TB uncompressed)

LP vs. IP?



class Mapper {
val m = new Map()

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {
counts(term) += 1

}
for ((term, tf) <- counts) {
m(term).append((docid, tf))

}
if memoryFull()
flush()

}

def cleanup() = {
flush()

}

def flush() = {
for (term <- m.keys) {
emit(term, new PostingsList(m(term)))

}
m.clear()

}
}

class Reducer {
def reduce(term: String, lists: Iterable[PostingsList]) = {
val f = new PostingsList()
for (list <- lists) {
f = f + list

}
emit(term, f)

}
}

RDD[(K, V)]

aggregateByKey
seqOp: (U, V) ⇒ U, 
combOp: (U, U) ⇒ U

RDD[(K, U)]

Another Look at LP
flatMap: emit singleton postings

reduceByKey: ⊕



Exploit associativity and commutativity
via commutative monoids (if you can)

Source: Wikipedia (Walnut)

Exploit framework-based sorting to 
sequence computations (if you can’t)

Algorithm design in a nutshell…
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MapReduce it?

The indexing problem
Scalability is critical

Must be relatively fast, but need not be real time
Fundamentally a batch operation

Incremental updates may or may not be important
For the web, crawling is a challenge in itself

The retrieval problem
Must have sub-second response time

For the web, only need relatively few results



Assume everything fits in memory on a single machine…
(For now)



Boolean Retrieval

Users express queries as a Boolean expression
AND, OR, NOT

Can be arbitrarily nested

Retrieval is based on the notion of sets
Any query divides the collection into two sets: retrieved, not-retrieved

Pure Boolean systems do not define an ordering of the results



( blue AND fish ) OR ham

blue fish

ANDham

OR

1

2blue

fish 2

1ham 3

3 5 6 7 8 9

4 5

5 9

Boolean Retrieval

To execute a Boolean query:

Build query syntax tree

For each clause, look 
up postings

Traverse postings and apply Boolean operator
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What’s RPN?

Efficiency analysis?

Term-at-a-Time
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Efficiency analysis?
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Boolean Retrieval

Users express queries as a Boolean expression
AND, OR, NOT

Can be arbitrarily nested

Retrieval is based on the notion of sets
Any query divides the collection into two sets: retrieved, not-retrieved

Pure Boolean systems do not define an ordering of the results



Ranked Retrieval

Order documents by how likely they are to be relevant
Estimate relevance(q, di)

Sort documents by relevance

How do we estimate relevance?
Take “similarity” as a proxy for relevance



Assumption: Documents that are “close together” 
in vector space “talk about” the same things

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

Therefore, retrieve documents based on how close the 
document is to the query (i.e., similarity ~ “closeness”)

Vector Space Model



dj = [wj,1, wj,2, wj,3, . . . wj,n]
dk = [wk,1, wk,2, wk,3, . . . wk,n]

cos ✓ =

dj · dk
|dj ||dk|

sim(dj , dk) =
dj · dk
|dj ||dk|

=

Pn
i=0 wj,iwk,iqPn

i=0 w
2
j,i

qPn
i=0 w

2
k,i

sim(dj , dk) = dj · dk =
nX

i=0

wj,iwk,i

Similarity Metric

Use “angle” between the vectors:

Or, more generally, inner products:



Term Weighting

Term weights consist of two components
Local: how important is the term in this document?
Global: how important is the term in the collection?

Here’s the intuition:
Terms that appear often in a document should get high weights
Terms that appear in many documents should get low weights

How do we capture this mathematically?
Term frequency (local)

Inverse document frequency (global)



i
jiji n

Nw logtf ,, ×=

jiw , 

ji ,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

TF.IDF Term Weighting



Look up postings lists corresponding to query terms

Traverse postings for each query term

Store partial query-document scores in accumulators

Select top k results to return

Retrieval in a Nutshell



fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …

Accumulators
(e.g. min heap)

Document score in top k?

Yes: Insert document score, extract-min if heap too large
No: Do nothing

Retrieval: Document-at-a-Time

Tradeoffs:
Small memory footprint (good)

Skipping possible to avoid reading all postings (good)
More seeks and irregular data accesses (bad)

Evaluate documents one at a time (score all query terms)



fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …
Accumulators

(e.g., hash)
Score{q=x}(doc n) = s

Retrieval: Term-At-A-Time

Tradeoffs:
Early termination heuristics (good)

Large memory footprint (bad), but filtering heuristics possible

Evaluate documents one query term at a time
Usually, starting from most rare term (often with tf-sorted postings)
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Why store df as part of postings?



Assume everything fits in memory on a single machine…
Okay, let’s relax this assumption now



The rest is just details!

Partitioning (for scalability)

Replication (for redundancy)

Caching (for speed)

Routing (for load balancing)

Important Ideas
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Partitioning (for scalability)

Replication (for redundancy)

Caching (for speed)

Routing (for load balancing)

Important Ideas



Source: Wikipedia (Japanese rock garden)

Questions?


