2 WATERLOO

Data-Intensive Distributed Computing
CS 451/651 431/631 (Winter 2018)

Part 3: Analyzing Text (2/2)
January 30,2018

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at http://lintool.github.io/bigdata-20 | 8w/

‘@ ®®@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source:

http://www flickr.com/photos/guvnah/7861418602/

Search!

Abstract IR Architecture

Query Documents
T = oy —
| online| offline -~ RS
: ! ’ : N
Representation i ,~ | Representation AR
Function i / Function \\
| I \
| .) \
Query Representation ! | Document Representation ‘I
v
. 1
Retmeval o T Lo l I
- S v\ I
’ S I \ I
4 : S I \ /
" Comparison \ - \ y;
: : x Index /
\ Function / ; \ Vs
AN] s ' RN /s’
~ ’ ! N ’
\hn__ __’-" : \QN ¢r{
1 ~--_— .
\ndex\“%

Hits

Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham

blue | What goes in each cell?

cat I boolean
positions

fish || I

green I

ham |

hat |

one |

red |

two |

Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham

blue | Indexing: building this structure

cat |

Retrieval: manipulating this structure

egg I

fish || I

green I

ham |

hat |

one |

red |

two |

Doc 1

one fish, two fish

blue

cat

€gg

fish

green

ham

hat

one

red

two

red fish, blue fish

cat in the hat

blue

cat

€gg

fish

green

ham

hat

one

red

two

Doc 4
green eggs and ham

| A S A A A A A

sungs st 4 order)
(always I ° *

Doc 1 Doc 2 Doc 3
one fish, two fish red fish, blue fish cat in the hat

Doc 4

green eggs and ham

tf
I 2 3 4 df
blue I I blue
cat I I cat
egg || I egg
fish 2|2 2 fish
green I] 1 green
ham I] 1 ham
hat I I hat
one I I one
red I I red
two I I two

v
v .Y Y v v v vy v v v

Doc 1

one fish, two fish

blue

cat

€gg

fish

green

ham

hat

one

red

two

4

red fish, blue fish

df

cat in the hat

blue

cat

€gg

fish

green

ham

hat

one

red

two

Doc 4

green eggs and ham

—» | —»
= | —»
= | —»
—» 2 —»
= | —»
= | —»
= | —»
= | —»
= | —»
= | —»

(3]

(1]

(2]

[2,4] —P

(1]

(3]

(2]

(1]

(1]

(3]

[24]

Inverted Indexing with MapReduce

Doc | Doc 2 Doc 3
one fish, two fish red fish, blue fish cat in the hat

one I. red Z. cat z.
Map two | - blue 2 . hat 3 .
fish [1]2] fish [2]2]

Shuffle and Sort: aggregate values by keys

cat

blue Z.
Reduce fish 2 [2] e [0
-

red

an
2]
2 [IT]

Inverted Indexing: Pseudo-Code

class Mapper {
def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {
counts(term) += 1
Y
for ((term, tf) <- counts) {
emit(term, (docid, tf))
}
}
}

class Reducer {
def reduce(term: String, postings: Iterable[(docid, tf)]) = {
val p = new List()
for ((docid, tf) <- postings) {
p.append((docid, tf))
}
p.sort()
emit(term, p)

Doc |

Positional Indexes

Doc 2

one fish, two fish

one

M aP two

fish

(1]

:

[3]

| . [2,4]

red fish, blue fish

red 2 . [
blue 2 . [3]

fish 2 . [2,4]

Doc 3
cat in the hat

cat 3 . [1]

hat 3 . 2]

Shuffle and Sort: aggregate values by keys

Reduce

cat

fish

one

red

2 . [2,4]

blue
hat

two

Inverted Indexing: Pseudo-Code

class Mapper {
def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {
counts(term) += 1
Y
for ((term, tf) <- counts) {
emit(term, (docid, tf))
}
}
}

class Reducer {
def reduce(term: String, postings: Iterable[(docid, tf)]) = {
val p = new List()
for _Ldocid L) < postm s) {

¢« p append ((docid, tf)) »VVhat’s the problem?

} ___________ _——

p.sort()
emit(term, p)
}
¥

Another Try...

(key) (values) (keys) (values)

fish | . fish |
34 1| fish | 9

21 3] fish | 21

35 2| :> fish |34
80 | 3| fish | 35
9 [1] fish [80

How is this different?
Let the framework do the sorting!

Where have we seen this before?

Inverted Indexing: Pseudo-Code

class Mapper {
def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {
counts(term) += 1
}
for ((term, tf) <- counts) {
emit((term, docid), tf)
}
}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {
emit(prev, postings)
postings.reset ()
CBaetings append (key docid, £ F1r30) !
ostings.appen ey.doci irs 4

) Wait, how’

def cleanup() = {
emit(prev, postings)
Y
} What else do we need to do?

Postings Encoding

Conceptually:

34 135 2]

In Practice:

Don’t encode docids, encode gaps (or d-gaps)
But it’s not obvious that this save space...

fish L2 s [l 2 3]s][0 T2 a5 3] -

= delta encoding, delta compression, gap compression

Overview of Integer Compression

Byte-aligned technique
VByte

Bit-aligned
Unary codes
v/0 codes
Golomb codes (local Bernoulli model)

Word-aligned
Simple family
Bit packing family (PForDelta, etc.)

VByte

Simple idea: use only as many bytes as needed

Need to reserve one bit per byte as the “continuation bit”
Use remaining bits for encoding value

7 bits
|4 bits

21| bits

Works okay, easy to implement...

Beware of branch mispredicts!

Simple-9
How many different ways can we divide up 28 bits!?

OEOEOOEEEEEEEEEE 28 1-bit numbers
[()) e Y Y Y

(S () () [() (] [|4 2-bit numbers
(S ()) [() (] [

(LTI T T T TICTT T
“selectors” L T T

(9 total ways)

9 3-bit numbers

7 4-bit numbers

Efficient decompression with hard-coded decoders
Simple Family — general idea applies to 64-bit words, etc.

Beware of branch mispredicts?

Bit Packing

What’s the smallest number of bits we need
to code a block (=128) of integers?

s

|
I
|
: |

-

Efficient decompression with hard-coded decoders
PForDelta — bit packing + separate storage of “overflow” bits

Beware of branch mispredicts?

Golomb Codes

x = |, parameter b:

g+t lin unary,whereq=|_(x- I)/bJ
rin binary, wherer=x-gb - |, in |_Iog bl or |_Iog b| bits

Example:

b=3,r=0,1,2(0, 10, I1)
b=6r=0,1,2,3,4,5(00,01, 100, I0I, 110, I11)
x=9,b=3:9q=2,r=2,code=110:11
x=9,b=6:9g=1,r=2,code =10:100

Punch line: optimal b ~ 0.69 (N/df)

Different b for every term!

Inverted Indexing: Pseudo-Code

class Mapper {
def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {
counts(term) += 1
}
for ((term, tf) <- counts) {
emit((term, docid), tf)
}
}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {
emit(prev, postings)
postings.reset ()
Ao T~
,_E95t1ngs.append(key.doc1d, tf.f1riﬁl_} \“
}

def cleanup() = {
emit(prev, postings)

}

}

Chicken and Egg!?

(key) (value)
fish | | 2
fish | 9 |
fish | 21 3
fish | 34 2
fish | 35 3
fish | 80 |

But wait! How do we set
the Golomb parameter b!?

Recall: optimal b ~ 0.69 (N/df)
We need the df to set b...

But we don’t know the df until
we'’ve seen all postings!

\4

Write postings compressed

Sound familiar?

Getting the df

In the mapper:
Emit “special” key-value pairs to keep track of df

In the reducer:
Make sure “special” key-value pairs come first: process them to determine df

Remember: proper partitioning!

Getting the df: Modified Mapper

Doc |
one fish, two fish Input document...

(key) (value)

fish | | 2 Emit normal key-value pairs...

one | |

two | | |

fish | * I Emit “special” key-value pairs to keep track of df...

one | * |

two | % |

Getting the df: Modified Reducer

(key) (value)
fish | * I
fish | | 2
fish | 9 |
fish | 21 3
fish | 34 2
fish | 35 3
fish | 80 I

First, compute the df by summing contributions
from all “special” key-value pair...

Compute b from df

Important: properly define sort order to make
sure “special” key-value pairs come first!

v Write postings compressed

Where have we seen this before?

But | don’t care about Golomb Codes!

tf
I 2 3 4 df
blue | | blue > 1 {2 1]
cat I I cat - | >3 I
egg | | | egg > | >4 I
fish 2| 2 2 ish 201222
green | | | green > | >4 I
ham | | | ham > | >4 I
hat I I hat - | >3 I
one I I one = | = | I
red I I red > | =2 I
two I I two > | = | I

Basic Inverted Indexer: Reducer

(key) (value)
fish | * I
fish | | 2
fish | 9 |
fish | 21 3
fish | 34 2
fish | 35 3
fish | 80 |

Compute the df by summing contributions
from all “special” key-value pair...

Write the df

v Write postings compressed

Inverted Indexing: IP (~Pairs)

class Mapper {
def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {
counts(term) += 1
}
for ((term, tf) <- counts) {
emit((term, docid), tf)
}
}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {
emit(key.term, postings)
postings.reset ()

Jmmm e e e e e e o

« n!
on:
S t\\e assumP“
(4 post1ngs append(key.docid, tf. f1rst) EUL

}

def cleanup() = {
emit(prev, postings)

}

}

Merging Postings

Let’s define an operation © on postings lists P:

Postings(1, 15,22, 39, 54) ® Postings(2, 46)
= Postings(1, 2, 15,22, 39, 46, 54)

° t 1

What have

Then we can rewrite our indexing algorithm!
flatMap: emit singleton postings
reduceByKey: ©

What’s the issue!?

Postings, ® Postings, = Postings,,

Solution: apply compression as needed!

Inverted Indexing: LP (~Stripes)

Slightly less elegant implementation... but uses same idea

class Mapper {
val m = new Map()

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {
counts(term) +=1
}
for ((term, tf) <- counts) {
m(term) .append((docid, tf))

}
if memoryFull()
flush()
}
def cleanup() = {
flush()
}

def flush() = {
for (term <- m.keys) {
emit(term, new PostingsList(m(term)))

) \What's hapP

m.clear ()

}
}

: !
ening here

Inverted Indexing: LP (~Stripes)

class Reducer {

def reduce(term: String, lists: Iterable[PostingsList]) = {
var f = new PostingsList()

for (list <- lists) {

f =1+ list . :
! \What's happening here!
emit(term, f)
}

LP vs. IP?

Indexing Time (minutes)

80

70

60

50

40

30

20

10

Experiments on ClueWeb09 collection: segments | + 2
101.8m documents (472 GB compressed, 2.97 TB uncompressed)

IP algorithm @
LP algorithm ¢
2‘0 4‘10 (;O 8;0 160
Number of Documents (millions)
Alg. | Time Intermediate Pairs | Intermediate Size
IP | 38.5 min 13 x 107 | 306 x 10” bytes
LP | 29.6 min 614 x 106 85 x 10? bytes

From: Elsayed et al., Brute-Force Approaches to Batch Retrieval:

Scalable Indexing with MapReduce, or Why Bother? 2010

Another Look at LP

val m = new Map() flatMap: emit singleton postings
def map(docid: Long, doc: String) = { reduceByKey: ®

val counts = new Map()

for (term <- tokenize(doc)) {
counts(term) +=1

}

for ((term, tf) <- counts) {
m(term) .append((docid, tf))

}
if memoryFull() H 7
er : ¢
} flush() Remind YOU of anythlng N Spar\
deilslﬁa(l;lup() = { RDD [(K, V)]

}

def flush() = {
for (term <- m.keys) {
emit(term, new PostingsList(m(term)))

}

, et aggregateByKey
' seqOp: (U, V) = U,
class Reducer { combOp: (U, U) = U

def reduce(term: String, lists: Iterable[PostingsList]) = {
val f = new PostingsList()
for (list <- lists) {
f=f+ list
}
emit(term, f)
}
} RDD[(K, U)]

A"x s

utatlons—(nf you can't)

/’..,/",'f".’ / \ \q" » ol \

Source: Wikipedia (Walnut)

Abstract IR Architecture

Query Documents
T = oy —
| online| offline -~ RS
: ! ’ : N
Representation i ,~ | Representation AR
Function i / Function \\
| I \
| .) \
Query Representation ! | Document Representation ‘I
v
. 1
Retmeval o T Lo l I
- S v\ I
’ S I \ I
4 : S I \ /
" Comparison \ - \ y;
: : x Index /
\ Function / ; \ Vs
AN] s ' RN /s’
~ ’ ! N ’
\hn__ __’-" : \QN ¢r{
1 ~--_— .
\ndex\“%

Hits

MapReduce it?

Perfe
The indexing probler(;\t for MaPReduce!
Scalability is critical
Must be relatively fast, but need not be real time
Fundamentally a batch operation
Incremental updates may or may not be important
For the web, crawling is a challenge in itself

The retrieval problem

Must have sub-second response time
For the web, only need relatively few results

Uh... not so good...

Assume everything fits in memory on a single machine...
(For now)

Boolean Retrieval

Users express queries as a Boolean expression

AND, OR, NOT
Can be arbitrarily nested

Retrieval is based on the notion of sets

Any query divides the collection into two sets: retrieved, not-retrieved
Pure Boolean systems do not define an ordering of the results

Boolean Retrieval

To execute a Boolean query:

OR
. /\
Build query syntax tree (blue AND fish) OR ham ham AND
/\

blue fish

For each clause, look blue —> 2 5 9

up postings Tl > 1 2+ >3 —>5 67 >89

ham —» 1 3 4 5

Traverse postings and apply Boolean operator

Term-at-a-Time

OR blue 2 5 9
/\
ham AND fish > 1 2 3 5 6 —>7|—8 9
/\ ham > 1 3—>4 5
blue fish
AND 5 9
/\
blue fish
Efficiency analysis?
OR 2 31— 4 5 9
/\
ham AND
/\
blue

What’s RPN?

Document-at-a-Time

OR blue 2 5 9
/\
ham AND fish > 1 2 3 5 6
N ham w1345

blue fish
blue > 2 5
fish » 1 —»2—>3 S—>»6 —>7 —
ham > 1 3 4 5

Tradeoffs?

Efficiency analysis!?

Boolean Retrieval

Users express queries as a Boolean expression

AND, OR, NOT
Can be arbitrarily nested

Retrieval is based on the notion of sets

Any query divides the collection into two sets: retrieved, not-retrieved
Pure Boolean systems do not define an ordering of the results

cne!
What's the ssuet

Ranked Retrieval

Order documents by how likely they are to be relevant

Estimate relevance(q, d)
Sort documents by relevance

How do we estimate relevance!
Take “similarity” as a proxy for relevance

Vector Space Model

Assumption: Documents that are “close together”
in vector space “talk about” the same things

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~ “closeness”)

Similarity Metric

Use “angle” between the vectors:

dj = wj1,Wwj2,W;3, ... Wjy]
dr = Wk 1, Wk 2, Wk.3, - - - W.n]
d: - d,
cosfh = —2
dj|d|
d.: - d " . .
sim(d;, dy) = —2 5= 2iz0 Wi Wkt

dilldel S [T,

Or, more generally, inner products:

sim(d;,di) = d; - di, = ij,iwk,i
i=0

Term Weighting

Term weights consist of two components

Local: how important is the term in this document!?
Global: how important is the term in the collection?

Here’s the intuition:

Terms that appear often in a document should get high weights
Terms that appear in many documents should get low weights

How do we capture this mathematically?

Term frequency (local)
Inverse document frequency (global)

TF.IDF Term Weighting

N
W, =tfi’j-log;

l

Wi,j weight assigned to term i in document j

tfl- ; number of occurrence of term i in document |
N number of documents in entire collection

n. number of documents with term i

Retrieval in a Nutshell

Look up postings lists corresponding to query terms
Traverse postings for each query term
Store partial query-document scores in accumulators

Select top k results to return

Retrieval: Document-at-a-Time

Evaluate documents one at a time (score all query terms)

blue 9 2 21 | 35 |

fish I 2, 9 1,21 3,34 1] 35 2/ 8 3| ..

Document score in top k?

Accumulators

Yes: Insert document score, extract-min if heap too large
(e.g. min heap)

No: Do nothing

Tradeoffs:

Small memory footprint (good)
Skipping possible to avoid reading all postings (good)
More seeks and irregular data accesses (bad)

Retrieval: Term-At-A-Time

Evaluate documents one query term at a time
Usually, starting from most rare term (often with tf-sorted postings)

blue 9 2 21 1 35 1

_ Accumulators
S(:or'e{q=x}(Ck)c n) =S [(e.g., hash)]

fish 29 1,21 3,34 | 35 2| 8 3

Tradeoffs:

Early termination heuristics (good)
Large memory footprint (bad), but filtering heuristics possible

Why store df as part of postings!?

N

blue |

cat

€gg

fish 2|2

green

ham

hat

one |

red |

two |

df

blue

cat

€gg

fish

green

ham

hat

one

red

two

) 15) I) I

Assume everything fits in memory on a single machine...
Okay, let’s relax this assumption now

Important ldeas

Partitioning (for scalability)
Replication (for redundancy)
Caching (for speed)

Routing (for load balancing)

The rest is just details!

Term vs. Document Partitioning

D
T,
D T,
Term
Partitioning T,
Document
Partitioning T

]FE

brokers

partitions

Ll

~

sedljdau

_

ayoed

Datacenter Datacenter Datac
brokers brokers
4 partitions N\ 4 partitions N\ 4 par
5 -1 lg 5 -1 lg 5]
a A = gl 8 = i
ol o ol o
7 7
- % - % - _
4 partitions N\ 4 partitions N\ 4 par
B =] 0 B =] 0 B [
ol o ol o
7 7
- % - % -
4 partitions N\ 4 partitions N\ 4 par
B =] 0 B =] 0 B [
ol o ol o
7 7
- % - % -

Important ldeas

Partitioning (for scalability)
Replication (for redundancy)
Caching (for speed)

Routing (for load balancing)

