2 WATERLOO

Data-Intensive Distributed Computing
CS 451/651 431/631 (Winter 2018)

Part 3: Analyzing Text (1/2)
January 25,2018

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at http://lintool.github.io/bigdata-20 | 8w/

‘@ ®®@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details




Structure of the Course

“Core” framework features
and algorithm design




Data-Parallel Dataflow Languages

We have a collection of records,
want to apply a bunch of operations
to compute some result

What are the dataflow operators?
Spark is a better MapReduce with a few more “niceties”!

Moving forward: generic reference to “mapper” and “reducers”



Structure of the Course

Analyzing Text
Analyzing Graphs
Analyzing
Relational Data
Data Mining

“Core” framework features
and algorithm design




Source:

http://www flickr.com/photos/guvnah/7861418602/

Count.



Count
(Efficiently)

class Mapper {
def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
emit(word, 1)
ki
¥
¥

class Reducer {
def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value
ki
emit(key, sum)
}
ki



Divide.

Source: http://www.flickr.com/photos/guvnah/7861418602/ https://twitter.com/mrogati/status/481927908802322433



Pairs. Stripes.
Seems pretty trivial...

More than a “toy problem’?
Answer: language models



Language Models

P(wy,wa, ..., wr)

What are they?
How do we build them?
How are they useful?



Language Models

P(wy,wa, ..., wr)

— P(wl)P(w2|w1)P(w3|w1, ”LUQ) ce P(wT|w1, cee ,’U)T_l)

[chain rule]

Is this tractable?



Approximating Probabilities: N-Grams

Basic idea: limit history to fixed number of (N — |) words
(Markov Assumption)

P(wg|wy, ..., wg—1) = P(wg|wg—N+1,. .., Wk—_1)
N=1:Unigram Language Model

P(wg|wy, ..., wg—1) = P(wg)

= P(wy,ws,...,wr) ~ P(w)P(ws) ... P(wr)



Approximating Probabilities: N-Grams

Basic idea: limit history to fixed number of (N — |) words
(Markov Assumption)

P(wg|wy, ..., wg—1) = P(wg|wg—N+1,. .., Wk—_1)
N=2: Bigram Language Model

P(wg|wy, ..., wk—1) ~ P(wg|wg_1)

= P(wy,ws, ..., wr) ~ P(w|< S >)P(ws|wy) ... P(wr|lwr_q)



Approximating Probabilities: N-Grams

Basic idea: limit history to fixed number of (N — |) words
(Markov Assumption)

P(wg|wy, ..., wg—1) = P(wg|wg—N+1,. .., Wk—_1)
N=3:Trigram Language Model

P(wg|wy, ..., wr_1) ~ Pwg|wg_2, wr_1)

= P(wy,ws,...,wr) ~ P(w|< S ><S>)... Plwp|lwr_swr_1)



Building N-Gram Language Models

Compute maximum likelihood estimates (MLE) for
Individual n-gram probabilities

Unigram  P(w;) = Clwi) Fancy way of saying:
A + divide
count
C(u_,!,,;, wj)

Bigram P(w;,w;) = N

P(‘zm, u}j) _ C(wz’, u.vj) 2 C(wi’ (U-/‘j)
P(’U)L) Z’LL.‘ C(UJ“ ,u‘) . C(?L,L)
Minor detail here...

P(wj|wi) =

Generalizes to higher-order n-grams
State of the art models use ~5-grams

We already know how to do this in MapReduce!



' The two commandments of estimating
probability distributions...

‘Source: Wikipedia (Moses)



Probabilities must sum up to one

ﬁ: http://www.flickr.com/photos/37680518@N03/7746322384/






. | ~
B

Source: https://www.flichilcom/ph‘u101 2/




P(@) > P (@)
F(®@ @) ’'P(® @)



Example: Bigram Language Model

<s> | am Sam </s>
<s> Sam | am </s>
<s> | do not like green eggs and ham </s>

Training Corpus

P(I|<s>)=2/3=0.67 P(Sam | <s>) = 1/3 = 0.33
P(am [1)=2/3 = 0.67 P(do|1)=1/3=0.33

P( </s>| Sam )= 1/2 = 0.50 P( Sam | am) = 1/2 =0.50

Bigram Probability Estimates
Note:We don’t ever cross sentence boundaries



Data Sparsity

P(l|<s>)=2/3=0.67 P(Sam | <s>) =1/3 =0.33
P(am|1)=2/3=0.67 P(do|1l)=1/3=0.33
P( </s>|Sam )= 1/2 =0.50 P(Sam | am) = 1/2 =0.50

Bigram Probability Estimates

P(l like ham)

=P( 1] <s>) P(like | I') P( ham | like ) P( </s> | ham)
=0

Why is this b2

Issue: Sparsity!



Thou shalt smooth!

Zeros are bad for any statistical estimator

Need better estimators because MLEs give us a lot of zeros
A distribution without zeros is “smoother”

The Robin Hood Philosophy: Take from the rich (seen n-grams)

and give to the poor (unseen n-grams)
Need better estimators because MLEs give us a lot of zeros
A distribution without zeros is “smoother”

Lots of techniques:

Laplace, Good-Turing, Katz backoff, Jelinek-Mercer
Kneser-Ney represents best practice



Laplace Smoothing

Learn fancy words
for simple ideas:

Simplest and oldest smoothing technique
Just add | to all n-gram counts including the unseen ones
So, what do the revised estimates look like?



Laplace Smoothing

Unigrams
Pyre(w;) = % —  Prap(w;) = vai ; 1
Bigrams
P]\,.x[LE(w,i:wj) — C(w]i;wj) > Prap(w;,w;) = C(Uji;)fi/)72+ !

Careful, don’t confuse the N’s!

What if we don’t know V?



Jelinek-Mercer Smoothing: Interpolation

Mix higher-order with lower-order models to defeat sparsity
Mix = Weighted Linear Combination

P(wg|wg _swp_1) =

M P(wg|wg _swg_1) + Ao P(wg|wr_1) + A3 P(wy)

D<=\, <=1 Z)\Z:1



Kneser-Ney Smoothing

Interpolate discounted model with a

special “continuation” n-gram model

Based on appearance of n-grams in different contexts
Excellent performance, state of the art

C(wk_lwk) — D
C(wg—1)
Pecont(w;) = Z]\f(]:,(u:izu,)

Py N (wg|wi—1) = + B(wi) Peont (w)

N(e w;) = number of different contexts w, has appeared in



Kneser-Ney Smoothing: Intuition

| can’t see without my
“San Francisco” occurs a lot
| can’t see without my Francisco!




Stupid Backoff

Let’s break all the rules:

. f(w;:—k+1) T i
S(wz"w;:;lﬁﬂ) = fwilg) if f(wi_j11) >0
O‘S(wz"wf:#&) otherwise
f(wz)
S(w;) = ~

But throw lots of data at the problem!

Source: Brants et al. (EMNLP 2007)



.)c~. B
»




Stupid Backoff Implementation: Pairs!

Straightforward approach: count each order separately
A B <€—— remember this value
ABC S(C|AB) = f(A B C)/f(A B)
ABD S(D|AB) = f(A B D)/f(A B)
ABE  S(E|A B) = f(A B E)/f(A B)

More clever approach: count all orders together

AB <€<—— remember this value
ABC <€<—— remember this value
ABCP
ABCQ
ABD <—— remember this value
ABDX

ABDY



Stupid Backoff: Additional Optimizations

Replace strings with integers
Assign ids based on frequency (better compression using vbyte)

Partition by bigram for better load balancing
Replicate all unigram counts



State of the art smoothing (less data)

vs. Count and divide (more data)



i o
vy
n

“wa

Source: Wiléipe:dia (Roé.é:tiaSt



Statistical Machine Translation

. Word Alignment Phrase Extraction
Training Data
Qe D¢

N X %@&,30 o
i saw the small table I’i e (r"' saw) _— | bl
vi la mesa pequefia —> mesz [ ] 5 —> (la mesa pequena, the small table)
Parallel Sentences pequefia e \L
he sat at the table S Language Translation
the service was good Model Model
Target-Language Text \l l/

Decoder
\%
maria no daba una bofetada a la bruja verde mary did not slap the green witch
Foreign Input Sentence English Output Sentence

el = argIInaX[P(ef Iflj)]= argrlnax[P(ef)P(flJ Iell)]

1 1



Translation as a Tiling Problem

Maria no dio una bofetada a la bruja verde
== Mary |4 not give a slap to the witch green
I
I
L did not = a slap by r green witch
I I
I I
no L slap | to the :
1 1
1 [
did not give : to I
: I
. I
- the "
slap the witch

el = argrlnax[P(ef | £/ )]= argIInaX[P(ef YP(f e )]



Results: Running Time

target webnews | web
# tokens 23 TM 31G 1.8T
vocab size 200k SM 16M
# n-grams 257M 21G 300G
LM ssize (SB) | 2G 89G 1.8T

time (SB) 20 min 8 hours 1 day
time (KN) 2.5 hours | 2 days —
# machines 100 400 1500

Source: Brants et al. (EMNLP 2007)



Results: Translation Quality

0.44 P |
+0.51 BP.’x2 .
,gﬂ' +0.15BP/x2
0.42 1 i ¥ +0.39BPA2 1
- +0. 568P/x2#
- A
a 04 ¢ ol _
0 70BP/x2
3]
: -
w 0.38 -+0.62BP/x2 -
o Ve target KN ——
= e +ldchews KN -———x—
0.36 / ag +webnews KN %
//z target SB ~-—-e-—
o +0.66BP/x2 +ldchews SB —=—
0.34 + +webnews SB -~ _
. C o .., *webSB e
10 100 1000 10000 100000 1e+06
LM training data size in million tokens

Source: Brants et al. (EMNLP 2007)



P(e) - P(fle)
21
arg max P(e)P(f|e)




speech
ice beac




P(e) - P(fle)
21
arg max P(e)P(f|e)




Neural Networks
Have taken over...



Source:

http://www flickr.com/photos/guvnah/7861418602/

Search!



First, nomenclature...

Search and information retrieval (IR)

Focus on textual information (= text/document retrieval)
Other possibilities include image, video, music, ...

What do we search?

Generically, “collections”
Less-frequently used, “corpora”

What do we find?

Generically, “documents”
Though “documents” may refer to web pages, PDFs, PowerPoint, etc.



The Central Problem in Search

Author

Searcher

‘)

Concepts Concepts
Query Terms Document Terms
“tragic love story” “fateful star-crossed romance”

Do these represent the same concepts!?



Abstract IR Architecture

Query Documents

document
A'eh Cr

acquisito”
aW\\ng)

| online' offline | &

A

Representation
Function

1

Query Representation

Representation
Function

!

Document Representation

|

Comparison
Function

Index

1

Hits



How do we represent text!
Remember: computers don’t “understand” anything!

“Bag of words”

Treat all the words in a document as index terms
Assign a “weight” to each term based on “importance”
(or, in simplest case, presence/absence of word)
Disregard order, structure, meaning, etc. of the words
Simple, yet effective!

Assumptions
Term occurrence is independent
Document relevance is independent
“Words” are well-defined



What’s a word?

Gy doladBy - anly (bl
bl L il - g8 ggitd o
Bk (A Buall aghuuy Bl
Al Algh sl s L g
dabilal camll 1982

REBBRA B iRk R E B E A EERT,
R A4 55— B [RARAR R B
Ao o Galgasd Al

BbicTtynas B MewaHckom cyae MockBbl akc-rnasa FOKOCa
3aABUI1 He coBepLuan HU4Yero NPOTUBO3aKOHHOrO, B YeM

oOBUHSAET ero reHnpokKyparypa Poccun
R TR o IYTH TR # afddT agw 2005-06 H A1
FRet 3PN aT FTRT F T Thera H1AT § 3N F IR WIAR

g
T—IF—UHBRERE
| el A EO| " l™HEZSMETI T A" 40t
M- o|2tn HICH= LB A =9

H kHEA THIESEIC L.,
25 O
M2

EM B 7|Xt= MEA=
off Chall "2t s S 2ls)
Felgict.

HCE



Sample Document

McDonald's slims down
spuds

Fast-food chain to reduce certain types of fat
in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as it
moves to make all its fried menu items healthier.

But does that mean the popular shoestring fries won't
taste the same? The company says no. "It's a win-win
for our customers because they are getting the same
great french-fry taste along with an even healthier
nutrition profile," said Mike Roberts, president of
McDonald's USA.

But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use, but
at least one nutrition expert says playing with the
formula could mean a different taste.

Shares of Oak Brook, lll.-based McDonald's (MCD:
down $0.54 to $23.22, Research, Estimates) were
lower Tuesday afternoon. It was unclear Tuesday
whether competitors Burger King and Wendy's
International (WEN: down $0.80 to $34.91, Research,
Estimates) would follow suit. Neither company could
immediately be reached for comment.

“Bag of Words”

|4 x McDonalds

|2 x fat

|l x fries

8 X new

7 x french

6 X company, said, nutrition

5 x food, oil, percent, reduce,
taste, Tuesday



Documents

¥

Bag of
Words

i

Y
.

Inverted
Index

N

Counting Words...

case folding, tokenization, stopword removal, stemming

s% serr%s, word k%dge, etc.



Source:

http://www flickr.com/photos/guvnah/7861418602/

Count.



Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish  red fish, blue fish cat in the hat green eggs and ham

blue | What goes in each cell?

cat I boolean
positions

fish || I

green I

ham |

hat |

one |

red |

two |




Abstract IR Architecture

Query Documents
T = oy —
| online| offline -~ RS
: ! ’ : N
Representation i ,~ | Representation AR
Function i / Function \\
| I \
| . ) \
Query Representation ! | Document Representation ‘I
v
. 1
Retmeval o T Lo l I
- S v\ I
’ S I \ I
4 : S I \ /
" Comparison \ - \ y;
: : x Index /
\ Function / ; \ Vs
AN ] s ' RN /s’
~ ’ ! N ’
\hn__ __’-" : \QN ¢r{
1 ~--_— .
\ndex\“%

Hits



Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish  red fish, blue fish cat in the hat green eggs and ham

I 2 3 4
blue | Indexing: building this structure
cat ' Retrieval: manipulating this structure
egs |
fish || 1
green |
ham I

hat |

one |

red |

Where have we seen this before?

two |




Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish  red fish, blue fish cat in the hat green eggs and ham

I 2 3 4
blue I blue — 2
cat I cat — 3
egg | egg —> 4
fish || I fish — | —» 2
green I green — 4
ham I ham —» 4
hat I hat — 3
one I one — |
red I red —» 2
two I two — |




Indexing: Performance Analysis

Fundamentally, a large sorting problem

Terms usually fit in memory
Postings usually don’t

How is it done on a single machine!?
How can it be done with MapReduce!?

First, let’s characterize the problem size:

Size of vocabulary
Size of postings



Vocabulary Size: Heaps’ Law

M is vocabulary size

M — ka T is collection size (number of documents)

k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

Heaps’ Law: linear in log-log space

Surprise: Vocabulary size grows unbounded!



Heaps’ Law for RCV |

k = 44
b = 0.49

log10 M

000,020 terms:
- Predicted = 38,323
Actual = 38,365

Reuters-RCV | collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Manning, Raghavan, Schiitze, Introduction to Information Retrieval (2008)



Postings Size: Zipf's Law

1/ks N number of elements
f(k’ 5 N) — k rank
27]7\,[:1 (1/n3) s characteristic exponent

Zipf's Law: (also) linear in log-log space
Specific case of Power Law distributions

In other words:

A few elements occur very frequently
Many elements occur very infrequently



Zipf's Law for RCV

5 7] Fit isn’t that good...
g . but good enough!
o 1 2 s 4 s s 7
log10 rank

Reuters-RCV | collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Manning, Raghavan, Schiitze, Introduction to Information Retrieval (2008)



Zipf's Law for Wikipedia

14 Zipf's law
l I I I ~—— Esperanto German
~—— Latin Malay
—— Ukrainian English
~—— Czech Slovak
—— ltalian Romanian
- Spanish Polish
Slovene Uzbek
Finnish French
Hebrew —— Basque
Turkish ~—— Serbian
Hungarian -~ Dutch
Galician —— Catalan
Danish ~—— Indonesian
Belarusian ~—— Lithuanian
Portuguese - Croatian

log(frecuency)

0 2 4 6 8 10 12 14
log(rank)

Rank versus frequency for the first |0m words in 30 Wikipedias (dumps from October 2015)



10° 10% 10* 10° 10° 10°
word frequency citations

d 10*

100 .

10°

10 o '7

107

1 T

10° 10’ 1 7

o° 100 100 10° 2 :
books sold telephone calls 1‘ecei\éq etal quake magnitude
a"e (h) 1004 (1)

", ® ‘\
. . r Lao 1 ",
We 2 10 5 *,
(@) 10° ]
10'
10 L A R R 1 B I T
0.01 0.1 1 100 100 10t 100 1 10 100
crater diameter in km peak intensity intensity
~.. ORET ®)
100 \
\‘\ 2
10 N 10
1 ""Ig B T 100 I4l I6"
10 10 100 100 10
net worth in US dollars name frequency population of city

Figure from: Newman, M. E. J. (2005) “Power laws, Pareto
distributions and Zipf's law.” Contemporary Physics 46:323-351.



MapReduce: Index Construction

Map over all documents

Emit term as key, (docid, tf) as value
Emit other information as necessary (e.g., term position)

Sort/shuffle: group postings by term

Reduce

Gather and sort the postings (typically by docid)
Write postings to disk

MapReduce does all the heavy lifting!



Inverted Indexing with MapReduce

Doc | Doc 2 Doc 3
one fish, two fish red fish, blue fish cat in the hat

one I. red Z. cat z.
Map two | - blue 2 . hat 3 .
fish  [1]2] fish [2]2]

Shuffle and Sort: aggregate values by keys

cat

blue Z.
Reduce fish 2 [2] e [0
-

red

an
2]
2 [IT]




Inverted Indexing: Pseudo-Code

class Mapper {
def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {
counts(term) += 1
Y
for ((term, tf) <- counts) {
emit(term, (docid, tf))
}
}
}

class Reducer {
def reduce(term: String, postings: Iterable[(docid, tf)]) = {
val p = new List()
for _Ldocid L) < p_o_stm s) {
( p append((docid, tfl):) hat’s the problem?

} ______________
p.sort()

emit(term, p)

}

} Stay tuned...






