
Data-Intensive Distributed Computing

Part 1: MapReduce Algorithm Design (3/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 431/631 (Winter 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

January 11, 2018

These slides are available at http://lintool.github.io/bigdata-2018w/

Agenda for Today

Cloud computing
Datacenter architectures

Hadoop cluster architecture
MapReduce physical execution

Source: Wikipedia (The Scream)

Remember: Assignment 0 due 1pm Tuesday, January16 –
You must tell us if you wish to take the late penalty.

Today

Execution
Infrastructure

Analytics
Infrastructure

Data Science
Tools

Th
is	
Co

ur
se

“big data stack”

Source: Wikipedia (Clouds)

Aside: Cloud Computing

The best thing since sliced bread?

Before clouds…
Grids

Connection machine
Vector supercomputers

…

Cloud computing means many different things:
Big data

Rebranding of web 2.0
Utility computing

Everything as a service

Rebranding of web 2.0

Rich, interactive web applications
Clouds refer to the servers that run them

Javascript! (ugh)
Examples: Facebook, YouTube, Gmail, …

“The network is the computer”: take two
User data is stored “in the clouds”

Rise of the tablets, smartphones, etc. (“thin clients”)
Browser is the OS

Source: Wikipedia (Electricity meter)

Utility Computing

What?
Computing resources as a metered service (“pay as you go”)

Why?
Cost: capital vs. operating expenses

Scalability: “infinite” capacity
Elasticity: scale up or down on demand

Does it make sense?
Benefits to cloud users

Business case for cloud providers

I think there is a world
market for about five
computers.

Hardware

Operating System

App App App

Traditional Stack

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

Evolution of the Stack

Hardware

Container

App App App

Operating System

Container Container

Containerized Stack

Everything as a Service

Infrastructure as a Service (IaaS)
Why buy machines when you rent them instead?

Examples: Amazon EC2, Microsoft Azure, Google Compute

Platform as a Service (PaaS)
Give me nice platform and take care of maintenance, upgrades, …

Example: Google App Engine, Altiscale

Software as a Service (SaaS)
Just run the application for me!

Example: Gmail, Salesforce

Everything as a Service

Database as a Service
Run a database for me

Examples: Amazon RDS, Microsoft Azure SQL

Container as a Service
Run this container for me

Example: Amazon EC2 Container Service, Google Container Engine

Function as a Service
Run this function for me

Example: Amazon Lambda, Google Cloud Functions

Who cares?

A source of problems…
Cloud-based services generate big data

Clouds make it easier to start companies that generate big data

As well as a solution…
Ability to provision clusters on-demand in the cloud

Commoditization and democratization of big data capabilities

Source: Wikipedia (Clouds)

So, what is the cloud?

What is the Matrix?

Source: The Matrix - PPC Wiki - Wikia

Source: The Matrix

Source: Wikipedia (The Dalles, Oregon)

Source: Google

Source: Google

Source: Bonneville Power Administration

Source: Barroso and Urs Hölzle (2009)

Building Blocks

Source: Google

Source: Google

Source: Facebook

Source: Barroso and Urs Hölzle (2013)

Anatomy of a Datacenter

Source: Barroso and Urs Hölzle (2013)

Datacenter cooling
What’s a computer?

Source: Google

Source: Google

Source: CumminsPower

Source: Google

Source: Google

How much is 30 MW?

Source: Barroso and Urs Hölzle (2013)

Datacenter Organization

The datacenter is the computer!

It’s all about the right level of abstraction
Moving beyond the von Neumann architecture

What’s the “instruction set” of the datacenter computer?

Hide system-level details from the developers
No more race conditions, lock contention, etc.

No need to explicitly worry about reliability, fault tolerance, etc.

Separating the what from the how
Developer specifies the computation that needs to be performed

Execution framework (“runtime”) handles actual execution

Mechanical Sympathy

Execution
Infrastructure

Analytics
Infrastructure

Data Science
Tools

Th
is	
Co

ur
se

“big data stack”

“You don’t have to be an engineer to be
be a racing driver, but you do have to
have mechanical sympathy”

– Formula One driver Jackie Stewart

Intuitions of time and space

How long does it take to read 100 TBs from 100 hard drives?

How long will it take to exchange 1b key-value pairs:

Now, what about SSDs?

Between machines on the same rack?
Between datacenters across the Atlantic?

Storage Hierarchy

Local Machine
L1/L2/L3 cache, memory, SSD, magnetic disks

capacity, latency, bandwidth

Remote Machine
Same Rack

Remote Machine
Different Rack

Remote Machine
Different Datacenter

Numbers Everyone Should Know

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 100 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 10,000 ns

Send 2K bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns

Disk seek 10,000,000 ns

Read 1 MB sequentially from network 10,000,000 ns

Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

According to Jeff Dean

Source: Google

Hadoop Cluster Architecture

How do we get data to the workers?
Let’s consider a typical supercomputer…

Compute Nodes

SAN

Sequoia
16.32 PFLOPS
98,304 nodes with 1,572,864 million cores
1.6 petabytes of memory
7.9 MWatts total power
Deployed in 2012, still #6 in TOP500 List (November 2017)

Source: LLNL

1.6 PB RAM

55 PB ZFS

Compute-Intensive vs. Data-Intensive

Why does this make sense for compute-intensive tasks?
What’s the issue for data-intensive tasks?

Compute Nodes

SAN

Compute Nodes

SAN

What’s the solution?
Don’t move data to workers… move workers to the data!

Key idea: co-locate storage and compute
Start up worker on nodes that hold the data

What’s the solution?
Don’t move data to workers… move workers to the data!

Key idea: co-locate storage and compute
Start up worker on nodes that hold the data

We need a distributed file system for managing this
GFS (Google File System) for Google’s MapReduce

HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions

Commodity hardware over “exotic” hardware
Scale “out”, not “up”

High component failure rates
Inexpensive commodity components fail all the time

“Modest” number of huge files
Multi-gigabyte files are common, if not encouraged

Files are write-once, mostly appended to
Logs are a common case

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

Large streaming reads over random access
Design for high sustained throughput over low latency

GFS: Design Decisions

Files stored as chunks
Fixed size (64MB)

Reliability through replication
Each chunk replicated across 3+ chunkservers

Single master to coordinate access and hold metadata
Simple centralized management

No data caching
Little benefit for streaming reads over large datasets

Simplify the API: not POSIX!
Push many issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

From GFS to HDFS

Terminology differences:
GFS master = Hadoop namenode

GFS chunkservers = Hadoop datanodes

Implementation differences:
Different consistency model for file appends

Implementation language
Performance

For the most part, we’ll use Hadoop terminology…

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

Namenode Responsibilities

Managing the file system namespace
Holds file/directory structure, file-to-block mapping,

metadata (ownership, access permissions, etc.)

Coordinating file operations
Directs clients to datanodes for reads and writes

No data is moved through the namenode

Maintaining overall health
Periodic communication with the datanodes

Block re-replication and rebalancing
Garbage collection

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3 * Important detail: reducers
process keys in sorted order

Logical View

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

Physical View

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

datanode daemon

Linux file system

…

tasktracker daemon

worker node

datanode daemon

Linux file system

…

tasktracker daemon

worker node

datanode daemon

Linux file system

…

tasktracker daemon

worker node

namenode (NN)

namenode daemon

jobtracker (JT)

jobtracker daemon

Putting everything together…

* Not quite… leaving aside YARN for now

Basic Cluster Components

Namenode (NN)
Master for HDFS

On each of the worker machines:
Tasktracker (TT): contains multiple task slots

Datanode (DN): serves HDFS data blocks

*

Jobtracker (JT)
Coordinator for MapReduce jobs

InputSplit

Source: redrawn from a slide by Cloduera, cc-licensed

InputSplit InputSplit

Input File Input File

InputSplit InputSplit

RecordReader RecordReader RecordReader RecordReader RecordReader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
pu

tF
or

m
at

What are these input split?

… …

InputSplit InputSplit InputSplit

Client

Records

Mapper

RecordReader

Mapper

RecordReader

Mapper

RecordReader

What are these input split?

Source: redrawn from a slide by Cloduera, cc-licensed

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here) What’s going on here?

Distributed Group By in MapReduce

Map side
Map outputs are buffered in memory in a circular buffer

When buffer reaches threshold, contents are “spilled” to disk
Spills are merged into a single, partitioned file (sorted within each partition)

Combiner runs during the merges

Reduce side
First, map outputs are copied over to reducer machine

“Sort” is a multi-pass merge of map outputs (happens in memory and on disk)
Combiner runs during the merges

Final merge pass goes directly into reducer

Mapper

Reducer

other mappers

other reducers

circular buffer
(in memory)

spills (on disk)

merged spills
(on disk)

intermediate files
(on disk)

Combiner

Combiner

Distributed Group By in MapReduce

Barrier between map and reduce phases
But runtime can begin copying intermediate data earlier

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3 * Important detail: reducers
process keys in sorted order

Why?

Law of Leaky Abstractions

All non-trivial abstractions, to some degree, are leaky.
Joel Spolsky

Remember logical vs. physical?

Source: Wikipedia (The Scream)

Questions?

Remember: Assignment 0 due next session –
you must tell us if you wish to take the late penalty.

