
Chapter 6

Processing Relational Data

NOTE: This chapter represents a work in progress!

One popular application of Hadoop is data-warehousing. In an enterprise
setting, a data warehouse serves as a vast repository of data, holding everything
from sales transactions to product inventories. Typically, the data is relational
in nature, but increasingly data warehouses are used to store semi-structured
data (e.g., query logs) as well as unstructured data. Data warehouses form a
foundation for business intelligence applications designed to provide decision
support. It is widely believed that insights gained by mining historical, current,
and prospective data can yield competitive advantages in the marketplace.

Traditionally, data warehouses have been implemented through relational
databases, particularly those optimized for a specific workload known as online
analytical processing (OLAP). A number of vendors offer parallel databases,
but customers find that they often cannot cost-effectively scale to the crushing
amounts of data an organization needs to deal with today. Parallel databases
are often quite expensive—on the order of tens of thousands of dollars per
terabyte of user data. Over the past few years, Hadoop has gained popularity
as a platform for data-warehousing. Hammerbacher [68], for example, discussed
Facebook’s experiences with scaling up business intelligence applications with
Oracle databases, which they ultimately abandoned in favor of a Hadoop-based
solution developed in-house called Hive (which is now an open-source project).
Pig [114] is a platform for massive data analytics built on Hadoop and capable of
handling structured as well as semi-structured data. It was originally developed
by Yahoo, but is now also an open-source project.

Given successful applications of Hadoop to data-warehousing and complex
analytical queries that are prevalent in such an environment, it makes sense to
examine MapReduce algorithms for manipulating relational data. This section
focuses specifically on performing relational joins in MapReduce. We should
stress here that even though Hadoop has been applied to process relational
data, Hadoop is not a database. There is an ongoing debate between advo-
cates of parallel databases and proponents of MapReduce regarding the merits
of both approaches for OLAP-type workloads. Dewitt and Stonebraker, two

107



well-known figures in the database community, famously decried MapReduce
as “a major step backwards” in a controversial blog post.1 With colleagues,
they ran a series of benchmarks that demonstrated the supposed superiority
of column-oriented parallel databases over Hadoop [120, 144]. However, see
Dean and Ghemawat’s counterarguments [47] and recent attempts at hybrid
architectures [1].

We shall refrain here from participating in this lively debate, and instead
focus on discussing algorithms. From an application point of view, it is highly
unlikely that an analyst interacting with a data warehouse will ever be called
upon to write MapReduce programs (and indeed, Hadoop-based systems such
as Hive and Pig present a much higher-level language for interacting with large
amounts of data). Nevertheless, it is instructive to understand the algorithms
that underlie basic relational operations.

6.1 Relational Joins

This section presents three different strategies for performing relational joins
on two datasets (relations), generically named S and T . Let us suppose that
relation S looks something like the following:

(k1, s1,S1)
(k2, s2,S2)
(k3, s3,S3)
. . .

where k is the key we would like to join on, sn is a unique id for the tuple,
and the Sn after sn denotes other attributes in the tuple (unimportant for the
purposes of the join). Similarly, suppose relation T looks something like this:

(k1, t1,T1)
(k3, t2,T2)
(k8, t3,T3)
. . .

where k is the join key, tn is a unique id for the tuple, and the Tn after tn
denotes other attributes in the tuple.

To make this task more concrete, we present one realistic scenario: S might
represent a collection of user profiles, in which case k could be interpreted as the
primary key (i.e., user id). The tuples might contain demographic information
such as age, gender, income, etc. The other dataset, T , might represent logs
of online activity. Each tuple might correspond to a page view of a particular
URL and may contain additional information such as time spent on the page,
ad revenue generated, etc. The k in these tuples could be interpreted as the
foreign key that associates each individual page view with a user. Joining these
two datasets would allow an analyst, for example, to break down online activity
in terms of demographics.

1 http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/



Reduce-Side Join

The first approach to relational joins is what’s known as a reduce-side join.
The idea is quite simple: we map over both datasets and emit the join key
as the intermediate key, and the tuple itself as the intermediate value. Since
MapReduce guarantees that all values with the same key are brought together,
all tuples will be grouped by the join key—which is exactly what we need to
perform the join operation. This approach is known as a parallel sort-merge
join in the database community [134]. In more detail, there are three different
cases to consider.

The first and simplest is a one-to-one join, where at most one tuple from
S and one tuple from T share the same join key (but it may be the case that
no tuple from S shares the join key with a tuple from T , or vice versa). In
this case, the algorithm sketched above will work fine. The reducer will be
presented keys and lists of values along the lines of the following:

k23 → [(s64,S64), (t84,T84)]
k37 → [(s68,S68)]
k59 → [(t97,T97), (s81,S81)]
k61 → [(t99,T99)]
. . .

Since we’ve emitted the join key as the intermediate key, we can remove it
from the value to save a bit of space.2 If there are two values associated
with a key, then we know that one must be from S and the other must be
from T . However, recall that in the basic MapReduce programming model,
no guarantees are made about value ordering, so the first value might be from
S or from T . We can proceed to join the two tuples and perform additional
computations (e.g., filter by some other attribute, compute aggregates, etc.).
If there is only one value associated with a key, this means that no tuple in the
other dataset shares the join key, so the reducer does nothing.

Let us now consider the one-to-many join. Assume that tuples in S have
unique join keys (i.e., k is the primary key in S), so that S is the “one” and T
is the “many”. The above algorithm will still work, but when processing each
key in the reducer, we have no idea when the value corresponding to the tuple
from S will be encountered, since values are arbitrarily ordered. The easiest
solution is to buffer all values in memory, pick out the tuple from S, and then
cross it with every tuple from T to perform the join. However, as we have seen
several times already, this creates a scalability bottleneck since we may not
have sufficient memory to hold all the tuples with the same join key.

This is a problem that requires a secondary sort, and the solution lies in
the value-to-key conversion design pattern we just presented. In the mapper,
instead of simply emitting the join key as the intermediate key, we instead
create a composite key consisting of the join key and the tuple id (from either
S or T ). Two additional changes are required: First, we must define the sort

2Not very important if the intermediate data is compressed.



order of the keys to first sort by the join key, and then sort all tuple ids from
S before all tuple ids from T . Second, we must define the partitioner to pay
attention to only the join key, so that all composite keys with the same join
key arrive at the same reducer.

After applying the value-to-key conversion design pattern, the reducer will
be presented with keys and values along the lines of the following:

(k82, s105)→ [(S105)]
(k82, t98)→ [(T98)]
(k82, t101)→ [(T101)]
(k82, t137)→ [(T137)]
. . .

Since both the join key and the tuple id are present in the intermediate key, we
can remove them from the value to save a bit of space.3 Whenever the reducer
encounters a new join key, it is guaranteed that the associated value will be the
relevant tuple from S. The reducer can hold this tuple in memory and then
proceed to cross it with tuples from T in subsequent steps (until a new join
key is encountered). Since the MapReduce execution framework performs the
sorting, there is no need to buffer tuples (other than the single one from S).
Thus, we have eliminated the scalability bottleneck.

Finally, let us consider the many-to-many join case. Assuming that S is the
smaller dataset, the above algorithm works as well. Consider what happens at
the reducer:

(k82, s105)→ [(S105)]
(k82, s124)→ [(S124)]
. . .
(k82, t98)→ [(T98)]
(k82, t101)→ [(T101)]
(k82, t137)→ [(T137)]
. . .

All the tuples from S with the same join key will be encountered first, which
the reducer can buffer in memory. As the reducer processes each tuple from
T , it is crossed with all the tuples from S. Of course, we are assuming that
the tuples from S (with the same join key) will fit into memory, which is a
limitation of this algorithm (and why we want to control the sort order so that
the smaller dataset comes first).

The basic idea behind the reduce-side join is to repartition the two datasets
by the join key. The approach isn’t particularly efficient since it requires shuf-
fling both datasets across the network. This leads us to the map-side join.

3Once again, not very important if the intermediate data is compressed.



Map-Side Join

Suppose we have two datasets that are both sorted by the join key. We can per-
form a join by scanning through both datasets simultaneously—this is known
as a merge join in the database community. We can parallelize this by par-
titioning and sorting both datasets in the same way. For example, suppose
S and T were both divided into ten files, partitioned in the same manner by
the join key. Further suppose that in each file, the tuples were sorted by the
join key. In this case, we simply need to merge join the first file of S with the
first file of T , the second file with S with the second file of T , etc. This can
be accomplished in parallel, in the map phase of a MapReduce job—hence, a
map-side join. In practice, we map over one of the datasets (the larger one)
and inside the mapper read the corresponding part of the other dataset to per-
form the merge join.4 No reducer is required, unless the programmer wishes
to repartition the output or perform further processing.

A map-side join is far more efficient than a reduce-side join since there is
no need to shuffle the datasets over the network. But is it realistic to expect
that the stringent conditions required for map-side joins are satisfied? In many
cases, yes. The reason is that relational joins happen within the broader context
of a workflow, which may include multiple steps. Therefore, the datasets that
are to be joined may be the output of previous processes (either MapReduce
jobs or other code). If the workflow is known in advance and relatively static
(both reasonable assumptions in a mature workflow), we can engineer the pre-
vious processes to generate output sorted and partitioned in a way that makes
efficient map-side joins possible (in MapReduce, by using a custom partitioner
and controlling the sort order of key-value pairs). For ad hoc data analysis,
reduce-side joins are a more general, albeit less efficient, solution. Consider the
case where datasets have multiple keys that one might wish to join on—then
no matter how the data is organized, map-side joins will require repartitioning
of the data. Alternatively, it is always possible to repartition a dataset using
an identity mapper and reducer. But of course, this incurs the cost of shuffling
data over the network.

There is a final restriction to bear in mind when using map-side joins with
the Hadoop implementation of MapReduce. We assume here that the datasets
to be joined were produced by previous MapReduce jobs, so this restriction
applies to keys the reducers in those jobs may emit. Hadoop permits reducers to
emit keys that are different from the input key whose values they are processing
(that is, input and output keys need not be the same, nor even the same
type).5 However, if the output key of a reducer is different from the input key,
then the output dataset from the reducer will not necessarily be partitioned
in a manner consistent with the specified partitioner (because the partitioner
applies to the input keys rather than the output keys). Since map-side joins
depend on consistent partitioning and sorting of keys, the reducers used to

4Note that this almost always implies a non-local read.
5In contrast, recall from Section 2.2 that in Google’s implementation, reducers’ output

keys must be exactly same as their input keys.



generate data that will participate in a later map-side join must not emit any
key but the one they are currently processing.

Memory-Backed Join

In addition to the two previous approaches to joining relational data that lever-
age the MapReduce framework to bring together tuples that share a common
join key, there is a family of approaches we call memory-backed joins based on
random access probes. The simplest version is applicable when one of the two
datasets completely fits in memory on each node. In this situation, we can load
the smaller dataset into memory in every mapper, populating an associative
array to facilitate random access to tuples based on the join key. The mapper
initialization API hook (see Section 3.1) can be used for this purpose. Map-
pers are then applied to the other (larger) dataset, and for each input key-value
pair, the mapper probes the in-memory dataset to see if there is a tuple with
the same join key. If there is, the join is performed. This is known as a simple
hash join by the database community [51].

What if neither dataset fits in memory? The simplest solution is to divide
the smaller dataset, let’s say S, into n partitions, such that S = S1∪S2∪. . .∪Sn.
We can choose n so that each partition is small enough to fit in memory, and
then run n memory-backed hash joins. This, of course, requires streaming
through the other dataset n times.

There is an alternative approach to memory-backed joins for cases where
neither datasets fit into memory. A distributed key-value store can be used
to hold one dataset in memory across multiple machines while mapping over
the other. The mappers would then query this distributed key-value store in
parallel and perform joins if the join keys match.6 The open-source caching
system memcached can be used for exactly this purpose, and therefore we’ve
dubbed this approach memcached join. For more information, this approach
is detailed in a technical report [95].

6In order to achieve good performance in accessing distributed key-value stores, it is
often necessary to batch queries before making synchronous requests (to amortize latency
over many requests) or to rely on asynchronous requests.


