Chapter 5

Graph Algorithms

Graphs are ubiquitous in modern society: examples encountered by almost ev-
eryone on a daily basis include the hyperlink structure of the web (simply
known as the web graph), social networks (manifest in the flow of email, phone
call patterns, connections on social networking sites, etc.), and transportation
networks (roads, bus routes, flights, etc.). Our very own existence is dependent
on an intricate metabolic and regulatory network, which can be characterized
as a large, complex graph involving interactions between genes, proteins, and
other cellular products. This chapter focuses on graph algorithms in Map-
Reduce. Although most of the content has nothing to do with text processing
per se, documents frequently exist in the context of some underlying network,
making graph analysis an important component of many text processing ap-
plications. Perhaps the best known example is PageRank, a measure of web
page quality based on the structure of hyperlinks, which is used in ranking re-
sults for web search. As one of the first applications of MapReduce, PageRank
exemplifies a large class of graph algorithms that can be concisely captured in
the programming model. We will discuss PageRank in detail later this chapter.

In general, graphs can be characterized by nodes (or vertices) and links
(or edges) that connect pairs of nodes.! These connections can be directed
or undirected. In some graphs, there may be an edge from a node to itself,
resulting in a self loop; in others, such edges are disallowed. We assume that
both nodes and links may be annotated with additional metadata: as a simple
example, in a social network where nodes represent individuals, there might
be demographic information (e.g., age, gender, location) attached to the nodes
and type information attached to the links (e.g., indicating type of relationship
such as “friend” or “spouse”).

Mathematicians have always been fascinated with graphs, dating back to
Euler’s paper on the Seven Bridges of Konigsberg in 1736. Over the past few
centuries, graphs have been extensively studied, and today much is known
about their properties. Far more than theoretical curiosities, theorems and

IThroughout this chapter, we use node interchangeably with vertez and similarly with
link and edge.

87

algorithms on graphs can be applied to solve many real-world problems:

e Graph search and path planning. Search algorithms on graphs are in-
voked millions of times a day, whenever anyone searches for directions on
the web. Similar algorithms are also involved in friend recommendations
and expert-finding in social networks. Path planning problems involv-
ing everything from network packets to delivery trucks represent another
large class of graph search problems.

Graph clustering. Can a large graph be divided into components that
are relatively disjoint (for example, as measured by inter-component
links [59])? Among other applications, this task is useful for identify-
ing communities in social networks (of interest to sociologists who wish
to understand how human relationships form and evolve) and for parti-
tioning large graphs (of interest to computer scientists who seek to better
parallelize graph processing). See [158] for a survey.

Minimum spanning trees. A minimum spanning tree for a graph G with
weighted edges is a tree that contains all vertices of the graph and a
subset of edges that minimizes the sum of edge weights. A real-world
example of this problem is a telecommunications company that wishes to
lay optical fiber to span a number of destinations at the lowest possible
cost (where weights denote costs). This approach has also been applied
to wide variety of problems, including social networks and the migration
of Polynesian islanders [64].

Bipartite graph matching. A bipartite graph is one whose vertices can
be divided into two disjoint sets. Matching problems on such graphs can
be used to model job seekers looking for employment or singles looking
for dates.

Maximum flow. In a weighted directed graph with two special nodes
called the source and the sink, the max flow problem involves computing
the amount of “traffic” that can be sent from source to sink given var-
ious flow capacities defined by edge weights. Transportation companies
(airlines, shipping, etc.) and network operators grapple with complex
versions of these problems on a daily basis.

Identifying “special” nodes. There are many ways to define what special
means, including metrics based on node in-degree, average distance to
other nodes, and relationship to cluster structure. These special nodes
are important to investigators attempting to break up terrorist cells, epi-
demiologists modeling the spread of diseases, advertisers trying to pro-
mote products, and many others.

A common feature of these problems is the scale of the datasets on which
the algorithms must operate: for example, the hyperlink structure of the web,
which contains billions of pages, or social networks that contain hundreds of

n,
n, n, n; n, n;

n| 01010 n, [n,nj]
n,| 0[O0 1]0[1 n, [n3 ng
n;|0|0|0]|1]0 n; [n]
ng|O0OfOf[O]|O]|1 ny [ng]
ng
ns | 1 1 1 oo ns [ng, N, nyl
n, adjacency matrix adjacency lists

Figure 5.1: A simple directed graph (left) represented as an adjacency matrix
(middle) and with adjacency lists (right).

millions of individuals. Clearly, algorithms that run on a single machine and
depend on the entire graph residing in memory are not scalable. We’d like to
put MapReduce to work on these challenges.?

This chapter is organized as follows: we begin in Section 5.1 with an in-
troduction to graph representations, and then explore two classic graph algo-
rithms in MapReduce: parallel breadth-first search (Section 5.2) and PageRank
(Section 5.3). Before concluding with a summary and pointing out additional
readings, Section 5.4 discusses a number of general issue that affect graph pro-
cessing with MapReduce.

5.1 Graph Representations

One common way to represent graphs is with an adjacency matrix. A graph
with n nodes can be represented as an n x n square matrix M, where a value
in cell m;; indicates an edge from node n; to node n;. In the case of graphs
with weighted edges, the matrix cells contain edge weights; otherwise, each cell
contains either a one (indicating an edge), or a zero (indicating none). With
undirected graphs, only half the matrix is used (e.g., cells above the diagonal).
For graphs that allow self loops (a directed edge from a node to itself), the di-
agonal might be populated; otherwise, the diagonal remains empty. Figure 5.1
provides an example of a simple directed graph (left) and its adjacency matrix
representation (middle).

Although mathematicians prefer the adjacency matrix representation of
graphs for easy manipulation with linear algebra, such a representation is far
from ideal for computer scientists concerned with efficient algorithmic imple-
mentations. Most of the applications discussed in the chapter introduction
involve sparse graphs, where the number of actual edges is far smaller than the

2As a side note, Google recently published a short description of a system called
Pregel [98], based on Valiant’s Bulk Synchronous Parallel model [148], for large-scale graph
algorithms; a longer description is anticipated in a forthcoming paper [99]

number of possible edges.®> For example, in a social network of n individuals,
there are n(n — 1) possible “friendships” (where n may be on the order of hun-
dreds of millions). However, even the most gregarious will have relatively few
friends compared to the size of the network (thousands, perhaps, but still far
smaller than hundreds of millions). The same is true for the hyperlink struc-
ture of the web: each individual web page links to a minuscule portion of all
the pages on the web. In this chapter, we assume processing of sparse graphs,
although we will return to this issue in Section 5.4.

The major problem with an adjacency matrix representation for sparse
graphs is its O(n?) space requirement. Furthermore, most of the cells are
zero, by definition. As a result, most computational implementations of graph
algorithms operate over adjacency lists, in which a node is associated with
neighbors that can be reached via outgoing edges. Figure 5.1 also shows the
adjacency list representation of the graph under consideration (on the right).
For example, since ny is connected by directed edges to ny and ny4, those two
nodes will be on the adjacency list of ni. There are two options for encoding
undirected graphs: one could simply encode each edge twice (if n; and n; are
connected, each appears on each other’s adjacency list). Alternatively, one
could order the nodes (arbitrarily or otherwise) and encode edges only on the
adjacency list of the node that comes first in the ordering (i.e., if i < j, then
n; is on the adjacency list of n;, but not the other way around).

Note that certain graph operations are easier on adjacency matrices than
on adjacency lists. In the first, operations on incoming links for each node
translate into a column scan on the matrix, whereas operations on outgoing
links for each node translate into a row scan. With adjacency lists, it is natural
to operate on outgoing links, but computing anything that requires knowledge
of the incoming links of a node is difficult. However, as we shall see, the shuffle
and sort mechanism in MapReduce provides an easy way to group edges by
their destination nodes, thus allowing us to compute over incoming edges with
in the reducer. This property of the execution framework can also be used to
invert the edges of a directed graph, by mapping over the nodes’ adjacency
lists and emitting key—value pairs with the destination node id as the key and
the source node id as the value.*

5.2 Parallel Breadth-First Search

One of the most common and well-studied problems in graph theory is the
single-source shortest path problem, where the task is to find shortest paths
from a source node to all other nodes in the graph (or alternatively, edges
can be associated with costs or weights, in which case the task is to compute

3Unfortunately, there is no precise definition of sparseness agreed upon by all, but one
common definition is that a sparse graph has O(n) edges, where n is the number of vertices.

4This technique is used in anchor text inversion, where one gathers the anchor text
of hyperlinks pointing to a particular page. It is common practice to enrich a web page’s
standard textual representation with all of the anchor text associated with its incoming
hyperlinks (e.g., [107]).

Algorithm 5.1 Dijkstra’s algorithm
Dijkstra’s algorithm is based on maintaining a global priority queue of nodes
with priorities equal to their distances from the source node. At each itera-
tion, the algorithm expands the node with the shortest distance and updates
distances to all reachable nodes.
DUKSTRA(G, w, s)
d[s] <0
for all vertex v € V' do
d[v] - 0o
Q< A{V}
while @ # () do
u < EXTRACTMIN(Q)
for all vertex v € u.ADJACENCYLIST do
if d[v] > d[u] + w(u, v) then
d[v] < du] + w(u,v)

[y

=
14

lowest-cost or lowest-weight paths). Such problems are a staple in undergradu-
ate algorithm courses, where students are taught the solution using Dijkstra’s
algorithm. However, this famous algorithm assumes sequential processing—
how would we solve this problem in parallel, and more specifically, with Map-
Reduce?

As a refresher and also to serve as a point of comparison, Dijkstra’s algo-
rithm is shown in Algorithm 5.1, adapted from Cormen, Leiserson, and Rivest’s
classic algorithms textbook [41] (often simply known as CLR). The input to the
algorithm is a directed, connected graph G = (V, F) represented with adjacency
lists, w containing edge distances such that w(u,v) > 0, and the source node
s. The algorithm begins by first setting distances to all vertices d[v],v € V to
00, except for the source node, whose distance to itself is zero. The algorithm
maintains @, a global priority queue of vertices with priorities equal to their
distance values d.

Dijkstra’s algorithm operates by iteratively selecting the node with the
lowest current distance from the priority queue (initially, this is the source
node). At each iteration, the algorithm “expands” that node by traversing the
adjacency list of the selected node to see if any of those nodes can be reached
with a path of a shorter distance. The algorithm terminates when the priority
queue @ is empty, or equivalently, when all nodes have been considered. Note
that the algorithm as presented in Algorithm 5.1 only computes the shortest
distances. The actual paths can be recovered by storing “backpointers” for
every node indicating a fragment of the shortest path.

A sample trace of the algorithm running on a simple graph is shown in
Figure 5.2 (example also adapted from CLR). We start out in (a) with ny
having a distance of zero (since it’s the source) and all other nodes having a
distance of co. In the first iteration (a), n; is selected as the node to expand
(indicated by the thicker border). After the expansion, we see in (b) that nq

Figure 5.2: Example of Dijkstra’s algorithm applied to a simple graph with
five nodes, with ny as the source and edge distances as indicated. Parts (a)—(e)
show the running of the algorithm at each iteration, with the current distance
inside the node. Nodes with thicker borders are those being expanded; nodes
that have already been expanded are shown in black.

and n3 can be reached at a distance of 10 and 5, respectively. Also, we see in
(b) that ns is the next node selected for expansion. Nodes we have already
considered for expansion are shown in black. Expanding n3, we see in (c) that
the distance to ns has decreased because we’ve found a shorter path. The
nodes that will be expanded next, in order, are ns, no, and ny. The algorithm
terminates with the end state shown in (f), where we’ve discovered the shortest
distance to all nodes.

The key to Dijkstra’s algorithm is the priority queue that maintains a
globally-sorted list of nodes by current distance. This is not possible in Map-
Reduce, as the programming model does not provide a mechanism for exchang-
ing global data. Instead, we adopt a brute force approach known as parallel
breadth-first search. First, as a simplification let us assume that all edges have
unit distance (modeling, for example, hyperlinks on the web). This makes the
algorithm easier to understand, but we’ll relax this restriction later.

The intuition behind the algorithm is this: the distance of all nodes con-
nected directly to the source node is one; the distance of all nodes directly
connected to those is two; and so on. Imagine water rippling away from a rock
dropped into a pond—that’s a good image of how parallel breadth-first search
works. However, what if there are multiple paths to the same node? Suppose
we wish to compute the shortest distance to node n. The shortest path must

Algorithm 5.2 Parallel breath-first search

The mappers emit distances to reachable nodes, while the reducers select the
minimum of those distances for each destination node. Each iteration (one
MapReduce job) of the algorithm expands the “search frontier” by one hop.

1: class MAPPER

2 method MAP(nid n,node N)

3: d < N.DISTANCE

4: EMIT(nid n, N) > Pass along graph structure
5: for all nodeid m € N.ADJACENCYLIST do

6 EmIiT(nid m,d + 1) > Emit distances to reachable nodes

class REDUCER
method REDUCE(nid m, [dy,dz, .. .])
dmin — o0
M« 0
for all d € counts [dy,ds,...] do
if ISNODE(d) then
M+ d > Recover graph structure
else if d < d,,,;, then > Look for shorter distance
M.DISTANCE < dpin > Update shortest distance
EMIT(nid m, node M)

—
—= O

go through one of the nodes in M that contains an outgoing edge to n: we need
to examine all m € M to find mg, the node with the shortest distance. The
shortest distance to n is the distance to mg plus one.

Pseudo-code for the implementation of the parallel breadth-first search al-
gorithm is provided in Algorithm 5.2. As with Dijkstra’s algorithm, we assume
a connected, directed graph represented as adjacency lists. Distance to each
node is directly stored alongside the adjacency list of that node, and initialized
to oo for all nodes except for the source node. In the pseudo-code, we use n
to denote the node id (an integer) and N to denote the node’s corresponding
data structure (adjacency list and current distance). The algorithm works by
mapping over all nodes and emitting a key-value pair for each neighbor on the
node’s adjacency list. The key contains the node id of the neighbor, and the
value is the current distance to the node plus one. This says: if we can reach
node n with a distance d, then we must be able to reach all the nodes that are
connected to n with distance d+ 1. After shuffle and sort, reducers will receive
keys corresponding to the destination node ids and distances corresponding to
all paths leading to that node. The reducer will select the shortest of these
distances and then update the distance in the node data structure.

It is apparent that parallel breadth-first search is an iterative algorithm,
where each iteration corresponds to a MapReduce job. The first time we run the
algorithm, we “discover” all nodes that are connected to the source. The second
iteration, we discover all nodes connected to those, and so on. Each iteration

of the algorithm expands the “search frontier” by one hop, and, eventually,
all nodes will be discovered with their shortest distances (assuming a fully-
connected graph). Before we discuss termination of the algorithm, there is
one more detail required to make the parallel breadth-first search algorithm
work. We need to “pass along” the graph structure from one iteration to the
next. This is accomplished by emitting the node data structure itself, with the
node id as a key (Algorithm 5.2, line 4 in the mapper). In the reducer, we
must distinguish the node data structure from distance values (Algorithm 5.2,
lines 5-6 in the reducer), and update the minimum distance in the node data
structure before emitting it as the final value. The final output is now ready
to serve as input to the next iteration.’

So how many iterations are necessary to compute the shortest distance to
all nodes? The answer is the diameter of the graph, or the greatest distance
between any pair of nodes. This number is surprisingly small for many real-
world problems: the saying “six degrees of separation” suggests that everyone
on the planet is connected to everyone else by at most six steps (the people
a person knows are one step away, people that they know are two steps away,
etc.). If this is indeed true, then parallel breadth-first search on the global
social network would take at most six MapReduce iterations. For more serious
academic studies of “small world” phenomena in networks, we refer the reader
to a number of publications [61, 62, 152, 2]. In practical terms, we iterate the
algorithm until there are no more node distances that are co. Since the graph
is connected, all nodes are reachable, and since all edge distances are one, all
discovered nodes are guaranteed to have the shortest distances (i.e., there is
not a shorter path that goes through a node that hasn’t been discovered).

The actual checking of the termination condition must occur outside of
MapReduce. Typically, execution of an iterative MapReduce algorithm re-
quires a non-MapReduce “driver” program, which submits a MapReduce job
to iterate the algorithm, checks to see if a termination condition has been met,
and if not, repeats. Hadoop provides a lightweight API for constructs called
“counters”, which, as the name suggests, can be used for counting events that
occur during execution, e.g., number of corrupt records, number of times a
certain condition is met, or anything that the programmer desires. Counters
can be defined to count the number of nodes that have distances of co: at the
end of the job, the driver program can access the final counter value and check
to see if another iteration is necessary.

Finally, as with Dijkstra’s algorithm in the form presented earlier, the par-
allel breadth-first search algorithm only finds the shortest distances, not the
actual shortest paths. However, the path can be straightforwardly recovered.
Storing “backpointers” at each node, as with Dijkstra’s algorithm, will work,
but may not be efficient since the graph needs to be traversed again to re-
construct the path segments. A simpler approach is to emit paths along with

5Note that in this algorithm we are overloading the value type, which can either be a
distance (integer) or a complex data structure representing a node. The best way to achieve
this in Hadoop is to create a wrapper object with an indicator variable specifying what the
content is.

N _ search frontier
N

Figure 5.3: In the single source shortest path problem with arbitrary edge
distances, the shortest path from source s to node r may go outside the current
search frontier, in which case we will not find the shortest distance to r until
the search frontier expands to cover q.

distances in the mapper, so that each node will have its shortest path easily
accessible at all times. The additional space requirements for shuffling these
data from mappers to reducers are relatively modest, since for the most part
paths (i.e., sequence of node ids) are relatively short.

Up until now, we have been assuming that all edges are unit distance. Let us
relax that restriction and see what changes are required in the parallel breadth-
first search algorithm. The adjacency lists, which were previously lists of node
ids, must now encode the edge distances as well. In line 6 of the mapper code
in Algorithm 5.2, instead of emitting d+1 as the value, we must now emit d+w
where w is the edge distance. No other changes to the algorithm are required,
but the termination behavior is very different. To illustrate, consider the graph
fragment in Figure 5.3, where s is the source node, and in this iteration, we just
“discovered” node r for the very first time. Assume for the sake of argument
that we’ve already discovered the shortest distance to node p, and that the
shortest distance to r so far goes through p. This, however, does not guarantee
that we’ve discovered the shortest distance to r, since there may exist a path
going through ¢ that we haven’t encountered yet (because it lies outside the
search frontier).® However, as the search frontier expands, we’ll eventually
cover g and all other nodes along the path from p to ¢ to r—which means that
with sufficient iterations, we will discover the shortest distance to r. But how
do we know that we’ve found the shortest distance to p? Well, if the shortest
path to p lies within the search frontier, we would have already discovered it.
And if it doesn’t, the above argument applies. Similarly, we can repeat the
same argument for all nodes on the path from s to p. The conclusion is that,
with sufficient iterations, we’ll eventually discover all the shortest distances.

So exactly how many iterations does “eventually” mean? In the worst case,
we might need as many iterations as there are nodes in the graph minus one.

6Note that the same argument does not apply to the unit edge distance case: the shortest
path cannot lie outside the search frontier since any such path would necessarily be longer.

1
n(;1 n, 1
ng
10 O
ny
1\‘ 1
O
n, 1\0/’
n

ny
Figure 5.4: A sample graph that elicits worst-case behavior for parallel breadth-
first search. Eight iterations are required to discover shortest distances to all
nodes from n;.

In fact, it is not difficult to construct graphs that will elicit this worse-case
behavior: Figure 5.4 provides an example, with n; as the source. The parallel
breadth-first search algorithm would not discover that the shortest path from
n1 to ng goes through ng, ng, and ns until the fifth iteration. Three more
iterations are necessary to cover the rest of the graph. Fortunately, for most
real-world graphs, such extreme cases are rare, and the number of iterations
necessary to discover all shortest distances is quite close to the diameter of the
graph, as in the unit edge distance case.

In practical terms, how do we know when to stop iterating in the case
of arbitrary edge distances? The algorithm can terminate when shortest dis-
tances at every node no longer change. Once again, we can use counters to
keep track of such events. Every time we encounter a shorter distance in the
reducer, we increment a counter. At the end of each MapReduce iteration, the
driver program reads the counter value and determines if another iteration is
necessary.

Compared to Dijkstra’s algorithm on a single processor, parallel breadth-
first search in MapReduce can be characterized as a brute force approach that
“wastes” a lot of time performing computations whose results are discarded. At
each iteration, the algorithm attempts to recompute distances to all nodes, but
in reality only useful work is done along the search frontier: inside the search
frontier, the algorithm is simply repeating previous computations.” Outside the
search frontier, the algorithm hasn’t discovered any paths to nodes there yet,
so no meaningful work is done. Dijkstra’s algorithm, on the other hand, is far
more efficient. Every time a node is explored, we’re guaranteed to have already
found the shortest path to it. However, this is made possible by maintaining a
global data structure (a priority queue) that holds nodes sorted by distance—
this is not possible in MapReduce because the programming model does not

"Unless the algorithm discovers an instance of the situation described in Figure 5.3, in
which case, updated distances will propagate inside the search frontier.

provide support for global data that is mutable and accessible by the mappers
and reducers. These inefficiencies represent the cost of parallelization.

The parallel breadth-first search algorithm is instructive in that it represents
the prototypical structure of a large class of graph algorithms in MapReduce.
They share in the following characteristics:

e The graph structure is represented with adjacency lists, which is part of
some larger node data structure that may contain additional information
(variables to store intermediate output, features of the nodes). In many
cases, features are attached to edges as well (e.g., edge weights).

e The MapReduce algorithm maps over the node data structures and per-
forms a computation that is a function of features of the node, interme-
diate output attached to each node, and features of the adjacency list
(outgoing edges and their features). In other words, computations can
only involve a node’s internal state and its local graph structure. The re-
sults of these computations are emitted as values, keyed with the node ids
of the neighbors (i.e., those nodes on the adjacency lists). Conceptually,
we can think of this as “passing” the results of the computation along
outgoing edges. In the reducer, the algorithm receives all partial results
that have the same destination node, and performs another computation
(usually, some form of aggregation).

e In addition to computations, the graph itself is also passed from the
mapper to the reducer. In the reducer, the data structure corresponding
to each node is updated and written back to disk.

e Graph algorithms in MapReduce are generally iterative, where the out-
put of the previous iteration serves as input to the next iteration. The
process is controlled by a non-MapReduce driver program that checks for
termination.

For parallel breadth-first search, the mapper computation is the current dis-
tance plus edge distance (emitting distances to neighbors), while the reducer
computation is the MIN function (selecting the shortest path). As we will see
in the next section, the MapReduce algorithm for PageRank works in much
the same way.

5.3 PageRank

PageRank [117] is a measure of web page quality based on the structure of the
hyperlink graph. Although it is only one of thousands of features that is taken
into account in Google’s search algorithm, it is perhaps one of the best known
and most studied.

A vivid way to illustrate PageRank is to imagine a random web surfer: the
surfer visits a page, randomly clicks a link on that page, and repeats ad infini-
tum. PageRank is a measure of how frequently a page would be encountered

by our tireless web surfer. More precisely, PageRank is a probability distribu-
tion over nodes in the graph representing the likelihood that a random walk
over the link structure will arrive at a particular node. Nodes that have high
in-degrees tend to have high PageRank values, as well as nodes that are linked
to by other nodes with high PageRank values. This behavior makes intuitive
sense: if PageRank is a measure of page quality, we would expect high-quality
pages to contain “endorsements” from many other pages in the form of hyper-
links. Similarly, if a high-quality page links to another page, then the second
page is likely to be high quality also. PageRank represents one particular ap-
proach to inferring the quality of a web page based on hyperlink structure;
two other popular algorithms, not covered here, are SALSA [88] and HITS [84]
(also known as “hubs and authorities”).

The complete formulation of PageRank includes an additional component.
As it turns out, our web surfer doesn’t just randomly click links. Before the
surfer decides where to go next, a biased coin is flipped—heads, the surfer
clicks on a random link on the page as usual. Tails, however, the surfer ignores
the links on the page and randomly “jumps” or “teleports” to a completely
different page.

But enough about random web surfing. Formally, the PageRank P of a
page n is defined as follows:

B 1 P(m)
P(n)=« (|G|> +(1-a) Z Cm) (5.1)

meL(n)

where |G| is the total number of nodes (pages) in the graph, « is the random
jump factor, L(n) is the set of pages that link to n, and C(m) is the out-degree
of node m (the number of links on page m). The random jump factor « is
sometimes called the “teleportation” factor; alternatively, (1 — «) is referred to
as the “damping” factor.

Let us break down each component of the formula in detail. First, note
that PageRank is defined recursively—this gives rise to an iterative algorithm
we will detail in a bit. A web page n receives PageRank “contributions” from
all pages that link to it, L(n). Let us consider a page m from the set of pages
L(n): a random surfer at m will arrive at n with probability 1/C(m) since a
link is selected at random from all outgoing links. Since the PageRank value
of m is the probability that the random surfer will be at m, the probability of
arriving at n from m is P(m)/C(m). To compute the PageRank of n, we need
to sum contributions from all pages that link to n. This is the summation in
the second half of the equation. However, we also need to take into account the
random jump: there is a 1/|G| chance of landing at any particular page, where
|G| is the number of nodes in the graph. Of course, the two contributions need
to be combined: with probability a the random surfer executes a random jump,
and with probability 1 — a the random surfer follows a hyperlink.

Note that PageRank assumes a community of honest users who are not
trying to “game” the measure. This is, of course, not true in the real world,
where an adversarial relationship exists between search engine companies and

Iteration 1 n,(0.2) n, (0.166)
(()

n; (0.166)

n,(0.2) n, (0.3)

Iteration 2 2 (0.166)

n; (0.166) n; (0.183)

n,(0.3)

Figure 5.5: PageRank toy example showing two iterations, top and bottom.
Left graphs show PageRank values at the beginning of each iteration and how
much PageRank mass is passed to each neighbor. Right graphs show updated
PageRank values at the end of each iteration.

a host of other organizations and individuals (marketers, spammers, activists,
etc.) who are trying to manipulate search results—to promote a cause, product,
or service, or in some cases, to trap and intentionally deceive users (see, for
example, [12, 63]). A simple example is a so-called “spider trap”, a infinite
chain of pages (e.g., generated by CGI) that all link to a single page (thereby
artificially inflating its PageRank). For this reason, PageRank is only one of
thousands of features used in ranking web pages.

The fact that PageRank is recursively defined translates into an iterative
algorithm which is quite similar in basic structure to parallel breadth-first
search. We start by presenting an informal sketch. At the beginning of each
iteration, a node passes its PageRank contributions to other nodes that it is
connected to. Since PageRank is a probability distribution, we can think of
this as spreading probability mass to neighbors via outgoing links. To conclude
the iteration, each node sums up all PageRank contributions that have been
passed to it and computes an updated PageRank score. We can think of this
as gathering probability mass passed to a node via its incoming links. This
algorithm iterates until PageRank values don’t change anymore.

Figure 5.5 shows a toy example that illustrates two iterations of the algo-
rithm. As a simplification, we ignore the random jump factor for now (i.e.,
a = 0) and further assume that there are no dangling nodes (i.e., nodes with
no outgoing edges). The algorithm begins by initializing a uniform distribution
of PageRank values across nodes. In the beginning of the first iteration (top,
left), partial PageRank contributions are sent from each node to its neighbors
connected via outgoing links. For example, n; sends 0.1 PageRank mass to ng
and 0.1 PageRank mass to n4. This makes sense in terms of the random surfer
model: if the surfer is at n; with a probability of 0.2, then the surfer could end
up either in ny or ny with a probability of 0.1 each. The same occurs for all
the other nodes in the graph: note that n; must split its PageRank mass three
ways, since it has three neighbors, and n4 receives all the mass belonging to
ns because n3 isn’t connected to any other node. The end of the first iteration
is shown in the top right: each node sums up PageRank contributions from its
neighbors. Note that since n; has only one incoming link, from n3, its updated
PageRank value is smaller than before, i.e., it “passed along” more PageRank
mass than it received. The exact same process repeats, and the second iteration
in our toy example is illustrated by the bottom two graphs. At the beginning
of each iteration, the PageRank values of all nodes sum to one. PageRank mass
is preserved by the algorithm, guaranteeing that we continue to have a valid
probability distribution at the end of each iteration.

Pseudo-code of the MapReduce PageRank algorithm is shown in Algo-
rithm 5.3; it is simplified in that we continue to ignore the random jump factor
and assume no dangling nodes (complications that we will return to later). An
illustration of the running algorithm is shown in Figure 5.6 for the first itera-
tion of the toy graph in Figure 5.5. The algorithm maps over the nodes, and for
each node computes how much PageRank mass needs to be distributed to its
neighbors (i.e., nodes on the adjacency list). Each piece of the PageRank mass
is emitted as the value, keyed by the node ids of the neighbors. Conceptually,
we can think of this as passing PageRank mass along outgoing edges.

In the shuffle and sort phase, the MapReduce execution framework groups
values (piece of PageRank mass) passed along the graph edges by destination
node (i.e., all edges that point to the same node). In the reducer, PageRank
mass contributions from all incoming edges are summed to arrive at the up-
dated PageRank value for each node. As with the parallel breadth-first search
algorithm, the graph structure itself must be passed from iteration to iteration.
Each node data structure is emitted in the mapper and written back out to
disk in the reducer. All PageRank mass emitted by the mappers are accounted
for in the reducer: since we begin with the sum of PageRank values across all
nodes equal to one, the sum of all the updated PageRank values should remain
a valid probability distribution.

Having discussed the simplified PageRank algorithm in MapReduce, let us
now take into account the random jump factor and dangling nodes: as it turns
out both are treated similarly. Dangling nodes are nodes in the graph that
have no outgoing edges, i.e., their adjacency lists are empty. In the hyperlink
graph of the web, these might correspond to pages in a crawl that have not

Algorithm 5.3 PageRank (simplified)

In the map phase we evenly divide up each node’s PageRank mass and pass
each piece along outgoing edges to neighbors. In the reduce phase PageRank
contributions are summed up at each destination node. Each MapReduce job
corresponds to one iteration of the algorithm. This algorithm does not handle
dangling nodes and the random jump factor.

1: class MAPPER
2: method MAP(nid n,node N)
p < N.PAGERANK/|N.ADJACENCYLIST|
EmIT(nid n, N) > Pass along graph structure
for all nodeid m € N.ADJACENCYLIST do
EMIT(nid m, p) > Pass PageRank mass to neighbors

class REDUCER
method REDUCE(nid m, [p1,pa, .. .])
M+ 0
for all p € counts [p1, pa,...] do
if ISNODE(p) then
M <+ p > Recover graph structure
else
s s+p > Sum incoming PageRank contributions

M.PAGERANK ¢ s
10: EmIT(nid m,node M)

been downloaded yet. If we simply run the algorithm in Algorithm 5.3 on
graphs with dangling nodes, the total PageRank mass will not be conserved,
since no key-value pairs will be emitted when a dangling node is encountered
in the mappers.

The proper treatment of PageRank mass “lost” at the dangling nodes is
to redistribute it across all nodes in the graph evenly (cf. [22]). There are
many ways to determine the missing PageRank mass. One simple approach
is by instrumenting the algorithm in Algorithm 5.3 with counters: whenever
the mapper processes a node with an empty adjacency list, it keeps track
of the node’s PageRank value in the counter. At the end of the iteration,
we can access the counter to find out how much PageRank mass was lost at
the dangling nodes.® Another approach is to reserve a special key for storing
PageRank mass from dangling nodes. When the mapper encounters a dangling
node, its PageRank mass is emitted with the special key; the reducer must be
modified to contain special logic for handling the missing PageRank mass. Yet
another approach is to write out the missing PageRank mass as “side data” for
each map task (using the in-mapper combining technique for aggregation); a
final pass in the driver program is needed to sum the mass across all map tasks.

8In Hadoop, counters are 8-byte integers: a simple workaround is to multiply PageRank
values by a large constant, and then cast as an integer.

ny[ny ny ny [ns, ngl ng[ng] ny[ng] ns [ny, ny, ngl

“ NN oo

o] [o]
Reduce | | | | I\ \Z | |\ \Z

ny[ny ng nyng ng ng[n,] ny[ns] ns[ny, ny, ngl

Figure 5.6: Illustration of the MapReduce PageRank algorithm corresponding
to the first iteration in Figure 5.5. The size of each box is proportion to its
PageRank value. During the map phase, PageRank mass is distributed evenly
to nodes on each node’s adjacency list (shown at the very top). Intermedi-
ate values are keyed by node (shown inside the boxes). In the reduce phase,
all partial PageRank contributions are summed together to arrive at updated
values.

Either way, we arrive at the amount of PageRank mass lost at the dangling
nodes—this then must be redistribute evenly across all nodes.

This redistribution process can be accomplished by mapping over all nodes
again. At the same time, we can take into account the random jump factor.
For each node, its current PageRank value p is updated to the final PageRank
value p’ according to the following formula:

Y =a (|é|) +(1-a) <|Z| +p> (5.2)

where m is the missing PageRank mass, and |G| is the number of nodes in the
entire graph. We add the PageRank mass from link traversal (p, computed
from before) to the share of the lost PageRank mass that is distributed to
each node (m/|G|). Finally, we take into account the random jump factor:
with probability a the random surfer arrives via jumping, and with probability
1 — a the random surfer arrives via incoming links. Note that this MapReduce
job requires no reducers.

Putting everything together, one iteration of PageRank requires two Map-
Reduce jobs: the first to distribute PageRank mass along graph edges, and the
second to take care of dangling nodes and the random jump factor. At end
of each iteration, we end up with exactly the same data structure as the be-
ginning, which is a requirement for the iterative algorithm to work. Also, the
PageRank values of all nodes sum up to one, which ensures a valid probability
distribution.

Typically, PageRank is iterated until convergence, i.e., when the PageRank
values of nodes no longer change (within some tolerance, to take into account,
for example, floating point precision errors). Therefore, at the end of each
iteration, the PageRank driver program must check to see if convergence has
been reached. Alternative stopping criteria include running a fixed number of
iterations (useful if one wishes to bound algorithm running time) or stopping
when the ranks of PageRank values no longer change. The latter is useful
for some applications that only care about comparing the PageRank of two
arbitrary pages and do not need the actual PageRank values. Rank stability
is obtained faster than the actual convergence of values.

In absolute terms, how many iterations are necessary for PageRank to con-
verge? This is a difficult question to precisely answer since it depends on many
factors, but generally, fewer than one might expect. In the original PageRank
paper [117], convergence on a graph with 322 million edges was reached in
52 iterations (see also Bianchini et al. [22] for additional discussion). On to-
day’s web, the answer is not very meaningful due to the adversarial nature
of web search as previously discussed—the web is full of spam and populated
with sites that are actively trying to “game” PageRank and related hyperlink-
based metrics. As a result, running PageRank in its unmodified form presented
here would yield unexpected and undesirable results. Of course, strategies de-
veloped by web search companies to combat link spam are proprietary (and
closely-guarded secrets, for obvious reasons)—but undoubtedly these algorith-
mic modifications impact convergence behavior. A full discussion of the es-
calating “arms race” between search engine companies and those that seek to
promote their sites is beyond the scope of this book.?

5.4 Issues with Graph Processing

The biggest difference between MapReduce graph algorithms and single-machine
graph algorithms is that with the latter, it is usually possible to maintain global
data structures in memory for fast, random access. For example, Dijkstra’s al-
gorithm uses a global priority queue that guides the expansion of nodes. This,
of course, is not possible with MapReduce—the programming model does not
provide any built-in mechanism for communicating global state. Since the most
natural representation of large sparse graphs is with adjacency lists, communi-
cation can only occur from a node to the nodes it links to, or to a node from
nodes linked to it—in other words, passing information is only possible within
the local graph structure.'”

9For the interested reader, the proceedings of a workshop series on Adversarial Informa-
tion Retrieval (AIRWeb) provide great starting points into the literature.

100f course, it is perfectly reasonable to compute derived graph structures in a pre-
processing step. For example, if one wishes to propagate information from a node to all
nodes that are within two links, one could process graph G to derive graph G’, where there
would exist a link from node n; to n; if n; was reachable within two link traversals of n; in
the original graph G.

This restriction gives rise to the structure of many graph algorithms in
MapReduce: local computation is performed on each node, the results of which
are “passed” to its neighbors. With multiple iterations, convergence on the
global graph is possible. The passing of partial results along a graph edge is
accomplished by the shuffling and sorting provided by the MapReduce execu-
tion framework. The amount of intermediate data generated is on the order of
the number of edges, which explains why all the algorithms we have discussed
assume sparse graphs. For dense graphs, MapReduce running time would be
dominated by copying intermediate data across the network, which in the worst
case is O(n?) in the number of nodes in the graph. Since MapReduce clusters
are designed around commodity networks (e.g., gigabit Ethernet), MapReduce
algorithms are often impractical on large, dense graphs.

Combiners and the in-mapper combining pattern described in Section 3.1
can be used to decrease the running time of graph iterations. It is straight-
forward to use combiners for both parallel breadth-first search and PageRank
since MIN and sum, used in the two algorithms, respectively, are both asso-
ciative and commutative. However, combiners are only effective to the extent
that there are opportunities for partial aggregation—unless there are nodes
pointed to by multiple nodes being processed by an individual map task, com-
biners are not very useful. This implies that it would be desirable to partition
large graphs into smaller components where there are many intra-component
links and fewer inter-component links. This way, we can arrange the data such
that nodes in the same component are handled by the same map task—thus
maximizing opportunities for combiners to perform local aggregation.

Unfortunately, this sometimes creates a chick-and-egg problem. It would
be desirable to partition a large graph to facilitate efficient processing by Map-
Reduce. But the graph may be so large that we can’t partition it except with
MapReduce algorithms! Fortunately, in many cases there are simple solutions
around this problem in the form of “cheap” partitioning heuristics based on
reordering the data [106]. For example, in a social network, we might sort
nodes representing users by zip code, as opposed to by last name—based on
the observation that friends tend to live close to each other. Sorting by an
even more cohesive property such as school would be even better (if available):
the probability of any two random students from the same school knowing each
other is much higher than two random students from different schools. Another
good example is to partition the web graph by the language of the page (since
pages in one language tend to link mostly to other pages in that language)
or by domain name (since inter-domain links are typically much denser than
intra-domain links). Resorting records using MapReduce is both easy to do
and a relatively cheap operation—however, whether the efficiencies gained by
this crude form of partitioning are worth the extra time taken in performing the
resort is an empirical question that will depend on the actual graph structure
and algorithm.

Finally, there is a practical consideration to keep in mind when implement-
ing graph algorithms that estimate probability distributions over nodes (such
as PageRank). For large graphs, the probability of any particular node is

often so small that it underflows standard floating point representations. A
very common solution to this problem is to represent probabilities using their
logarithms. When probabilities are stored as logs, the product of two val-
ues is simply their sum. However, addition of probabilities is also necessary,
for example, when summing PageRank contribution for a node. This can be
implemented with reasonable precision as follows:

[b+log(l+e*%) a<b
aEBb—{ a+log(l+e"~%) a>b

Furthermore, many math libraries include a loglp function which computes
log(1+x) with higher precision than the naive implementation would have when
x is very small (as is often the case when working with probabilities). Its use
may further improve the accuracy of implementations that use log probabilities.

5.5 Summary and Additional Readings

This chapter covers graph algorithms in MapReduce, discussing in detail par-
allel breadth-first search and PageRank. Both are instances of a large class of
iterative algorithms that share the following characteristics:

e The graph structure is represented with adjacency lists.

e Algorithms map over nodes and pass partial results to nodes on their ad-
jacency lists. Partial results are aggregated for each node in the reducer.

e The graph structure itself is passed from the mapper to the reducer, such
that the output is in the same form as the input.

e Algorithms are iterative and under the control of a non-MapReduce driver
program, which checks for termination at the end of each iteration.

The MapReduce programming model does not provide a mechanism to main-
tain global data structures accessible and mutable by all the mappers and re-
ducers.!! One implication of this is that communication between pairs of arbi-
trary nodes is difficult to accomplish. Instead, information typically propagates
along graph edges—which gives rise to the structure of algorithms discussed
above.

Additional Readings. The ubiquity of large graphs translates into sub-
stantial interest in scalable graph algorithms using MapReduce in industry,
academia, and beyond. There is, of course, much beyond what has been covered
in this chapter. For additional material, we refer readers to the following: Kang
et al. [80] presented an approach to estimating the diameter of large graphs
using MapReduce and a library for graph mining [81]; Cohen [39] discussed

HHowever, maintaining globally-synchronized state may be possible with the assistance
of other tools (e.g., a distributed database).

a number of algorithms for processing undirected graphs, with social network
analysis in mind; Rao and Yarowsky [128] described an implementation of la-
bel propagation, a standard algorithm for semi-supervised machine learning,
on graphs derived from textual data; Schatz [132] tackled the problem of DNA
sequence alignment and assembly with graph algorithms in MapReduce. Fi-
nally, it is easy to forget that parallel graph algorithms have been studied by
computer scientists for several decades, particular in the PRAM model [77, 60].
It is not clear, however, to what extent well-known PRAM algorithms translate
naturally into the MapReduce framework.

