
Chapter 1

Introduction

This is a post-production manuscript of: Jimmy Lin and Chris Dyer. Data-Intensive

Text Processing with MapReduce. Morgan & Claypool Publishers, 2010. This ver-

sion was compiled on December 25, 2017.

MapReduce [45] is a programming model for expressing distributed computa-
tions on massive amounts of data and an execution framework for large-scale
data processing on clusters of commodity servers. It was originally developed
by Google and built on well-known principles in parallel and distributed pro-
cessing dating back several decades. MapReduce has since enjoyed widespread
adoption via an open-source implementation called Hadoop, whose develop-
ment was led by Yahoo (now an Apache project). Today, a vibrant software
ecosystem has sprung up around Hadoop, with significant activity in both in-
dustry and academia.

This book is about scalable approaches to processing large amounts of text
with MapReduce. Given this focus, it makes sense to start with the most basic
question: Why? There are many answers to this question, but we focus on two.
First, “big data” is a fact of the world, and therefore an issue that real-world
systems must grapple with. Second, across a wide range of text processing
applications, more data translates into more effective algorithms, and thus it
makes sense to take advantage of the plentiful amounts of data that surround
us.

Modern information societies are defined by vast repositories of data, both
public and private. Therefore, any practical application must be able to scale
up to datasets of interest. For many, this means scaling up to the web, or
at least a non-trivial fraction thereof. Any organization built around gath-
ering, analyzing, monitoring, filtering, searching, or organizing web content
must tackle large-data problems: “web-scale” processing is practically synony-
mous with data-intensive processing. This observation applies not only to well-
established internet companies, but also countless startups and niche players
as well. Just think, how many companies do you know that start their pitch
with “we’re going to harvest information on the web and. . . ”?



Another strong area of growth is the analysis of user behavior data. Any
operator of a moderately successful website can record user activity and in
a matter of weeks (or sooner) be drowning in a torrent of log data. In fact,
logging user behavior generates so much data that many organizations simply
can’t cope with the volume, and either turn the functionality off or throw away
data after some time. This represents lost opportunities, as there is a broadly-
held belief that great value lies in insights derived from mining such data.
Knowing what users look at, what they click on, how much time they spend on
a web page, etc. leads to better business decisions and competitive advantages.
Broadly, this is known as business intelligence, which encompasses a wide range
of technologies including data warehousing, data mining, and analytics.

How much data are we talking about? A few examples: Google grew from
processing 100 TB of data a day with MapReduce in 2004 [45] to processing
20 PB a day with MapReduce in 2008 [46]. In April 2009, a blog post1 was
written about eBay’s two enormous data warehouses: one with 2 petabytes of
user data, and the other with 6.5 petabytes of user data spanning 170 trillion
records and growing by 150 billion new records per day. Shortly thereafter,
Facebook revealed2 similarly impressive numbers, boasting of 2.5 petabytes of
user data, growing at about 15 terabytes per day. Petabyte datasets are rapidly
becoming the norm, and the trends are clear: our ability to store data is fast
overwhelming our ability to process what we store. More distressing, increases
in capacity are outpacing improvements in bandwidth such that our ability to
even read back what we store is deteriorating [91]. Disk capacities have grown
from tens of megabytes in the mid-1980s to about a couple of terabytes today
(several orders of magnitude). On the other hand, latency and bandwidth
have improved relatively little: in the case of latency, perhaps 2× improvement
during the last quarter century, and in the case of bandwidth, perhaps 50×.
Given the tendency for individuals and organizations to continuously fill up
whatever capacity is available, large-data problems are growing increasingly
severe.

Moving beyond the commercial sphere, many have recognized the impor-
tance of data management in many scientific disciplines, where petabyte-scale
datasets are also becoming increasingly common [21]. For example:

• The high-energy physics community was already describing experiences
with petabyte-scale databases back in 2005 [20]. Today, the Large Hadron
Collider (LHC) near Geneva is the world’s largest particle accelerator,
designed to probe the mysteries of the universe, including the fundamen-
tal nature of matter, by recreating conditions shortly following the Big
Bang. When it becomes fully operational, the LHC will produce roughly
15 petabytes of data a year.3

1http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/
2http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/
3http://public.web.cern.ch/public/en/LHC/Computing-en.html



• Astronomers have long recognized the importance of a “digital observa-
tory” that would support the data needs of researchers across the globe—
the Sloan Digital Sky Survey [145] is perhaps the most well known of these
projects. Looking into the future, the Large Synoptic Survey Telescope
(LSST) is a wide-field instrument that is capable of observing the entire
sky every few days. When the telescope comes online around 2015 in
Chile, its 3.2 gigapixel primary camera will produce approximately half
a petabyte of archive images every month [19].

• The advent of next-generation DNA sequencing technology has created a
deluge of sequence data that needs to be stored, organized, and delivered
to scientists for further study. Given the fundamental tenant in modern
genetics that genotypes explain phenotypes, the impact of this technol-
ogy is nothing less than transformative [103]. The European Bioinfor-
matics Institute (EBI), which hosts a central repository of sequence data
called EMBL-bank, has increased storage capacity from 2.5 petabytes in
2008 to 5 petabytes in 2009 [142]. Scientists are predicting that, in the
not-so-distant future, sequencing an individual’s genome will be no more
complex than getting a blood test today—ushering a new era of person-
alized medicine, where interventions can be specifically targeted for an
individual.

Increasingly, scientific breakthroughs will be powered by advanced comput-
ing capabilities that help researchers manipulate, explore, and mine massive
datasets [72]—this has been hailed as the emerging “fourth paradigm” of sci-
ence [73] (complementing theory, experiments, and simulations). In other areas
of academia, particularly computer science, systems and algorithms incapable
of scaling to massive real-world datasets run the danger of being dismissed as
“toy systems” with limited utility. Large data is a fact of today’s world and
data-intensive processing is fast becoming a necessity, not merely a luxury or
curiosity.

Although large data comes in a variety of forms, this book is primarily con-
cerned with processing large amounts of text, but touches on other types of data
as well (e.g., relational and graph data). The problems and solutions we dis-
cuss mostly fall into the disciplinary boundaries of natural language processing
(NLP) and information retrieval (IR). Recent work in these fields is dominated
by a data-driven, empirical approach, typically involving algorithms that at-
tempt to capture statistical regularities in data for the purposes of some task
or application. There are three components to this approach: data, represen-
tations of the data, and some method for capturing regularities in the data.
Data are called corpora (singular, corpus) by NLP researchers and collections
by those from the IR community. Aspects of the representations of the data
are called features, which may be “superficial” and easy to extract, such as the
words and sequences of words themselves, or “deep” and more difficult to ex-
tract, such as the grammatical relationship between words. Finally, algorithms
or models are applied to capture regularities in the data in terms of the ex-



tracted features for some application. One common application, classification,
is to sort text into categories. Examples include: Is this email spam or not
spam? Is this word part of an address or a location? The first task is easy to
understand, while the second task is an instance of what NLP researchers call
named-entity detection [138], which is useful for local search and pinpointing
locations on maps. Another common application is to rank texts according
to some criteria—search is a good example, which involves ranking documents
by relevance to the user’s query. Another example is to automatically situ-
ate texts along a scale of “happiness”, a task known as sentiment analysis or
opinion mining [118], which has been applied to everything from understand-
ing political discourse in the blogosphere to predicting the movement of stock
prices.

There is a growing body of evidence, at least in text processing, that of the
three components discussed above (data, features, algorithms), data probably
matters the most. Superficial word-level features coupled with simple models in
most cases trump sophisticated models over deeper features and less data. But
why can’t we have our cake and eat it too? Why not both sophisticated models
and deep features applied to lots of data? Because inference over sophisticated
models and extraction of deep features are often computationally intensive,
they don’t scale well.

Consider a simple task such as determining the correct usage of easily con-
fusable words such as “than” and “then” in English. One can view this as a
supervised machine learning problem: we can train a classifier to disambiguate
between the options, and then apply the classifier to new instances of the prob-
lem (say, as part of a grammar checker). Training data is fairly easy to come
by—we can just gather a large corpus of texts and assume that most writers
make correct choices (the training data may be noisy, since people make mis-
takes, but no matter). In 2001, Banko and Brill [14] published what has become
a classic paper in natural language processing exploring the effects of training
data size on classification accuracy, using this task as the specific example.
They explored several classification algorithms (the exact ones aren’t impor-
tant, as we shall see), and not surprisingly, found that more data led to better
accuracy. Across many different algorithms, the increase in accuracy was ap-
proximately linear in the log of the size of the training data. Furthermore, with
increasing amounts of training data, the accuracy of different algorithms con-
verged, such that pronounced differences in effectiveness observed on smaller
datasets basically disappeared at scale. This led to a somewhat controversial
conclusion (at least at the time): machine learning algorithms really don’t mat-
ter, all that matters is the amount of data you have. This resulted in an even
more controversial recommendation, delivered somewhat tongue-in-cheek: we
should just give up working on algorithms and simply spend our time gather-
ing data (while waiting for computers to become faster so we can process the
data).

As another example, consider the problem of answering short, fact-based
questions such as “Who shot Abraham Lincoln?” Instead of returning a list of
documents that the user would then have to sort through, a question answer-



ing (QA) system would directly return the answer: John Wilkes Booth. This
problem gained interest in the late 1990s, when natural language processing
researchers approached the challenge with sophisticated linguistic processing
techniques such as syntactic and semantic analysis. Around 2001, researchers
discovered a far simpler approach to answering such questions based on pattern
matching [27, 53, 92]. Suppose you wanted the answer to the above question.
As it turns out, you can simply search for the phrase “shot Abraham Lincoln”
on the web and look for what appears to its left. Or better yet, look through
multiple instances of this phrase and tally up the words that appear to the left.
This simple strategy works surprisingly well, and has become known as the
redundancy-based approach to question answering. It capitalizes on the insight
that in a very large text collection (i.e., the web), answers to commonly-asked
questions will be stated in obvious ways, such that pattern-matching techniques
suffice to extract answers accurately.

Yet another example concerns smoothing in web-scale language models [25].
A language model is a probability distribution that characterizes the likelihood
of observing a particular sequence of words, estimated from a large corpus of
texts. They are useful in a variety of applications, such as speech recognition
(to determine what the speaker is more likely to have said) and machine trans-
lation (to determine which of possible translations is the most fluent, as we will
discuss in Section 7.4). Since there are infinitely many possible strings, and
probabilities must be assigned to all of them, language modeling is a more chal-
lenging task than simply keeping track of which strings were seen how many
times: some number of likely strings will never be encountered, even with lots
and lots of training data! Most modern language models make the Markov
assumption: in a n-gram language model, the conditional probability of a word
is given by the n − 1 previous words. Thus, by the chain rule, the proba-
bility of a sequence of words can be decomposed into the product of n-gram
probabilities. Nevertheless, an enormous number of parameters must still be
estimated from a training corpus: potentially V n parameters, where V is the
number of words in the vocabulary. Even if we treat every word on the web
as the training corpus from which to estimate the n-gram probabilities, most
n-grams—in any language, even English—will never have been seen. To cope
with this sparseness, researchers have developed a number of smoothing tech-
niques [35, 102, 79], which all share the basic idea of moving probability mass
from observed to unseen events in a principled manner. Smoothing approaches
vary in effectiveness, both in terms of intrinsic and application-specific metrics.
In 2007, Brants et al. [25] described language models trained on up to two tril-
lion words.4 Their experiments compared a state-of-the-art approach known as
Kneser-Ney smoothing [35] with another technique the authors affectionately
referred to as “stupid backoff”.5 Not surprisingly, stupid backoff didn’t work
as well as Kneser-Ney smoothing on smaller corpora. However, it was simpler

4As an aside, it is interesting to observe the evolving definition of large over the years.
Banko and Brill’s paper in 2001 was titled Scaling to Very Very Large Corpora for Natural
Language Disambiguation, and dealt with a corpus containing a billion words.

5As in, so stupid it couldn’t possibly work.



and could be trained on more data, which ultimately yielded better language
models. That is, a simpler technique on more data beat a more sophisticated
technique on less data.

Recently, three Google researchers summarized this data-driven philosophy
in an essay titled The Unreasonable Effectiveness of Data [65].6 Why is this so?
It boils down to the fact that language in the wild, just like human behavior
in general, is messy. Unlike, say, the interaction of subatomic particles, human
use of language is not constrained by succinct, universal “laws of grammar”.
There are of course rules that govern the formation of words and sentences—for
example, that verbs appear before objects in English, and that subjects and
verbs must agree in number in many languages—but real-world language is
affected by a multitude of other factors as well: people invent new words and
phrases all the time, authors occasionally make mistakes, groups of individuals
write within a shared context, etc. The Argentine writer Jorge Luis Borges
wrote a famous allegorical one-paragraph story about a fictional society in
which the art of cartography had gotten so advanced that their maps were as
big as the lands they were describing.7 The world, he would say, is the best
description of itself. In the same way, the more observations we gather about
language use, the more accurate a description we have of language itself. This,
in turn, translates into more effective algorithms and systems.

So, in summary, why large data? In some ways, the first answer is similar
to the reason people climb mountains: because they’re there. But the second
answer is even more compelling. Data represent the rising tide that lifts all
boats—more data lead to better algorithms and systems for solving real-world
problems. Now that we’ve addressed the why, let’s tackle the how. Let’s start
with the obvious observation: data-intensive processing is beyond the capability
of any individual machine and requires clusters—which means that large-data
problems are fundamentally about organizing computations on dozens, hun-
dreds, or even thousands of machines. This is exactly what MapReduce does,
and the rest of this book is about the how.

1.1 Computing in the Clouds

For better or for worse, it is often difficult to untangle MapReduce and large-
data processing from the broader discourse on cloud computing. True, there is
substantial promise in this new paradigm of computing, but unwarranted hype
by the media and popular sources threatens its credibility in the long run. In
some ways, cloud computing is simply brilliant marketing. Before clouds, there

6This title was inspired by a classic article titled The Unreasonable Effectiveness of
Mathematics in the Natural Sciences [155]. This is somewhat ironic in that the original article
lauded the beauty and elegance of mathematical models in capturing natural phenomena,
which is the exact opposite of the data-driven approach.

7On Exactitude in Science [23]. A similar exchange appears in Chapter XI of Sylvie and
Bruno Concluded by Lewis Carroll (1893).



were grids,8 and before grids, there were vector supercomputers, each having
claimed to be the best thing since sliced bread.

So what exactly is cloud computing? This is one of those questions where
ten experts will give eleven different answers; in fact, countless papers have been
written simply to attempt to define the term (e.g., [9, 31, 149], just to name
a few examples). Here we offer up our own thoughts and attempt to explain
how cloud computing relates to MapReduce and data-intensive processing.

At the most superficial level, everything that used to be called web applica-
tions has been rebranded to become “cloud applications”, which includes what
we have previously called “Web 2.0” sites. In fact, anything running inside
a browser that gathers and stores user-generated content now qualifies as an
example of cloud computing. This includes social-networking services such as
Facebook, video-sharing sites such as YouTube, web-based email services such
as Gmail, and applications such as Google Docs. In this context, the cloud
simply refers to the servers that power these sites, and user data is said to
reside “in the cloud”. The accumulation of vast quantities of user data creates
large-data problems, many of which are suitable for MapReduce. To give two
concrete examples: a social-networking site analyzes connections in the enor-
mous globe-spanning graph of friendships to recommend new connections. An
online email service analyzes messages and user behavior to optimize ad selec-
tion and placement. These are all large-data problems that have been tackled
with MapReduce.9

Another important facet of cloud computing is what’s more precisely known
as utility computing [129, 31]. As the name implies, the idea behind utility com-
puting is to treat computing resource as a metered service, like electricity or
natural gas. The idea harkens back to the days of time-sharing machines, and
in truth isn’t very different from this antiquated form of computing. Under
this model, a “cloud user” can dynamically provision any amount of comput-
ing resources from a “cloud provider” on demand and only pay for what is
consumed. In practical terms, the user is paying for access to virtual machine
instances that run a standard operating system such as Linux. Virtualization
technology (e.g., [15]) is used by the cloud provider to allocate available physi-
cal resources and enforce isolation between multiple users that may be sharing
the same hardware. Once one or more virtual machine instances have been
provisioned, the user has full control over the resources and can use them for

8What is the difference between cloud computing and grid computing? Although both
tackle the fundamental problem of how best to bring computational resources to bear on large
and difficult problems, they start with different assumptions. Whereas clouds are assumed
to be relatively homogeneous servers that reside in a datacenter or are distributed across a
relatively small number of datacenters controlled by a single organization, grids are assumed
to be a less tightly-coupled federation of heterogeneous resources under the control of distinct
but cooperative organizations. As a result, grid computing tends to deal with tasks that
are coarser-grained, and must deal with the practicalities of a federated environment, e.g.,
verifying credentials across multiple administrative domains. Grid computing has adopted a
middleware-based approach for tackling many of these challenges.

9The first example is Facebook, a well-known user of Hadoop, in exactly the manner
as described [68]. The second is, of course, Google, which uses MapReduce to continuously
improve existing algorithms and to devise new algorithms for ad selection and placement.



arbitrary computation. Virtual machines that are no longer needed are de-
stroyed, thereby freeing up physical resources that can be redirected to other
users. Resource consumption is measured in some equivalent of machine-hours
and users are charged in increments thereof.

Both users and providers benefit in the utility computing model. Users are
freed from upfront capital investments necessary to build datacenters and sub-
stantial reoccurring costs in maintaining them. They also gain the important
property of elasticity—as demand for computing resources grow, for example,
from an unpredicted spike in customers, more resources can be seamlessly al-
located from the cloud without an interruption in service. As demand falls,
provisioned resources can be released. Prior to the advent of utility computing,
coping with unexpected spikes in demand was fraught with challenges: under-
provision and run the risk of service interruptions, or over-provision and tie up
precious capital in idle machines that are depreciating.

From the utility provider point of view, this business also makes sense be-
cause large datacenters benefit from economies of scale and can be run more
efficiently than smaller datacenters. In the same way that insurance works by
aggregating risk and redistributing it, utility providers aggregate the computing
demands for a large number of users. Although demand may fluctuate signif-
icantly for each user, overall trends in aggregate demand should be smooth
and predictable, which allows the cloud provider to adjust capacity over time
with less risk of either offering too much (resulting in inefficient use of capi-
tal) or too little (resulting in unsatisfied customers). In the world of utility
computing, Amazon Web Services currently leads the way and remains the
dominant player, but a number of other cloud providers populate a market
that is becoming increasingly crowded. Most systems are based on proprietary
infrastructure, but there is at least one, Eucalyptus [111], that is available
open source. Increased competition will benefit cloud users, but what direct
relevance does this have for MapReduce? The connection is quite simple: pro-
cessing large amounts of data with MapReduce requires access to clusters with
sufficient capacity. However, not everyone with large-data problems can afford
to purchase and maintain clusters. This is where utility computing comes in:
clusters of sufficient size can be provisioned only when the need arises, and
users pay only as much as is required to solve their problems. This lowers
the barrier to entry for data-intensive processing and makes MapReduce much
more accessible.

A generalization of the utility computing concept is “everything as a ser-
vice”, which is itself a new take on the age-old idea of outsourcing. A cloud
provider offering customers access to virtual machine instances is said to be
offering infrastructure as a service, or IaaS for short. However, this may be too
low level for many users. Enter platform as a service (PaaS), which is a rebrand-
ing of what used to be called hosted services in the “pre-cloud” era. Platform
is used generically to refer to any set of well-defined services on top of which
users can build applications, deploy content, etc. This class of services is best
exemplified by Google App Engine, which provides the backend datastore and
API for anyone to build highly-scalable web applications. Google maintains



the infrastructure, freeing the user from having to backup, upgrade, patch, or
otherwise maintain basic services such as the storage layer or the programming
environment. At an even higher level, cloud providers can offer software as a
service (SaaS), as exemplified by Salesforce, a leader in customer relationship
management (CRM) software. Other examples include outsourcing an entire
organization’s email to a third party, which is commonplace today.

What does this proliferation of services have to do with MapReduce? No
doubt that “everything as a service” is driven by desires for greater business
efficiencies, but scale and elasticity play important roles as well. The cloud
allows seamless expansion of operations without the need for careful planning
and supports scales that may otherwise be difficult or cost-prohibitive for an
organization to achieve. Cloud services, just like MapReduce, represents the
search for an appropriate level of abstraction and beneficial divisions of labor.
IaaS is an abstraction over raw physical hardware—an organization might lack
the capital, expertise, or interest in running datacenters, and therefore pays a
cloud provider to do so on its behalf. The argument applies similarly to PaaS
and SaaS. In the same vein, the MapReduce programming model is a powerful
abstraction that separates the what from the how of data-intensive processing.

1.2 Big Ideas

Tackling large-data problems requires a distinct approach that sometimes runs
counter to traditional models of computing. In this section, we discuss a num-
ber of “big ideas” behind MapReduce. To be fair, all of these ideas have been
discussed in the computer science literature for some time (some for decades),
and MapReduce is certainly not the first to adopt these ideas. Nevertheless,
the engineers at Google deserve tremendous credit for pulling these various
threads together and demonstrating the power of these ideas on a scale previ-
ously unheard of.

Scale “out”, not “up”. For data-intensive workloads, a large number of
commodity low-end servers (i.e., the scaling “out” approach) is preferred over
a small number of high-end servers (i.e., the scaling “up” approach). The lat-
ter approach of purchasing symmetric multi-processing (SMP) machines with a
large number of processor sockets (dozens, even hundreds) and a large amount
of shared memory (hundreds or even thousands of gigabytes) is not cost effec-
tive, since the costs of such machines do not scale linearly (i.e., a machine with
twice as many processors is often significantly more than twice as expensive).
On the other hand, the low-end server market overlaps with the high-volume
desktop computing market, which has the effect of keeping prices low due to
competition, interchangeable components, and economies of scale.

Barroso and Hölzle’s recent treatise of what they dubbed “warehouse-scale
computers” [18] contains a thoughtful analysis of the two approaches. The
Transaction Processing Council (TPC) is a neutral, non-profit organization
whose mission is to establish objective database benchmarks. Benchmark data



submitted to that organization are probably the closest one can get to a fair
“apples-to-apples” comparison of cost and performance for specific, well-defined
relational processing applications. Based on TPC-C benchmark results from
late 2007, a low-end server platform is about four times more cost efficient
than a high-end shared memory platform from the same vendor. Excluding
storage costs, the price/performance advantage of the low-end server increases
to about a factor of twelve.

What if we take into account the fact that communication between nodes
in a high-end SMP machine is orders of magnitude faster than communica-
tion between nodes in a commodity network-based cluster? Since workloads
today are beyond the capability of any single machine (no matter how power-
ful), the comparison is more accurately between a smaller cluster of high-end
machines and a larger cluster of low-end machines (network communication is
unavoidable in both cases). Barroso and Hölzle model these two approaches
under workloads that demand more or less communication, and conclude that
a cluster of low-end servers approaches the performance of the equivalent clus-
ter of high-end servers—the small performance gap is insufficient to justify
the price premium of the high-end servers. For data-intensive applications,
the conclusion appears to be clear: scaling “out” is superior to scaling “up”,
and therefore most existing implementations of the MapReduce programming
model are designed around clusters of low-end commodity servers.

Capital costs in acquiring servers is, of course, only one component of the
total cost of delivering computing capacity. Operational costs are dominated by
the cost of electricity to power the servers as well as other aspects of datacenter
operations that are functionally related to power: power distribution, cooling,
etc. [67, 18]. As a result, energy efficiency has become a key issue in building
warehouse-scale computers for large-data processing. Therefore, it is important
to factor in operational costs when deploying a scale-out solution based on large
numbers of commodity servers.

Datacenter efficiency is typically factored into three separate components
that can be independently measured and optimized [18]. The first component
measures how much of a building’s incoming power is actually delivered to
computing equipment, and correspondingly, how much is lost to the building’s
mechanical systems (e.g., cooling, air handling) and electrical infrastructure
(e.g., power distribution inefficiencies). The second component measures how
much of a server’s incoming power is lost to the power supply, cooling fans, etc.
The third component captures how much of the power delivered to computing
components (processor, RAM, disk, etc.) is actually used to perform useful
computations.

Of the three components of datacenter efficiency, the first two are relatively
straightforward to objectively quantify. Adoption of industry best-practices
can help datacenter operators achieve state-of-the-art efficiency. The third
component, however, is much more difficult to measure. One important issue
that has been identified is the non-linearity between load and power draw.
That is, a server at 10% utilization may draw slightly more than half as much
power as a server at 100% utilization (which means that a lightly-loaded server



is much less efficient than a heavily-loaded server). A survey of five thousand
Google servers over a six-month period shows that servers operate most of the
time at between 10% and 50% utilization [17], which is an energy-inefficient
operating region. As a result, Barroso and Hölzle have advocated for research
and development in energy-proportional machines, where energy consumption
would be proportional to load, such that an idle processor would (ideally) con-
sume no power, but yet retain the ability to power up (nearly) instantaneously
in response to demand.

Although we have provided a brief overview here, datacenter efficiency is a
topic that is beyond the scope of this book. For more details, consult Barroso
and Hölzle [18] and Hamilton [67], who provide detailed cost models for typical
modern datacenters. However, even factoring in operational costs, evidence
suggests that scaling out remains more attractive than scaling up.

Assume failures are common. At warehouse scale, failures are not only
inevitable, but commonplace. A simple calculation suffices to demonstrate:
let us suppose that a cluster is built from reliable machines with a mean-
time between failures (MTBF) of 1000 days (about three years). Even with
these reliable servers, a 10,000-server cluster would still experience roughly 10
failures a day. For the sake of argument, let us suppose that a MTBF of 10,000
days (about thirty years) were achievable at realistic costs (which is unlikely).
Even then, a 10,000-server cluster would still experience one failure daily. This
means that any large-scale service that is distributed across a large cluster
(either a user-facing application or a computing platform like MapReduce)
must cope with hardware failures as an intrinsic aspect of its operation [66].
That is, a server may fail at any time, without notice. For example, in large
clusters disk failures are common [123] and RAM experiences more errors than
one might expect [135]. Datacenters suffer from both planned outages (e.g.,
system maintenance and hardware upgrades) and unexpected outages (e.g.,
power failure, connectivity loss, etc.).

A well-designed, fault-tolerant service must cope with failures up to a point
without impacting the quality of service—failures should not result in inconsis-
tencies or indeterminism from the user perspective. As servers go down, other
cluster nodes should seamlessly step in to handle the load, and overall perfor-
mance should gracefully degrade as server failures pile up. Just as important,
a broken server that has been repaired should be able to seamlessly rejoin the
service without manual reconfiguration by the administrator. Mature imple-
mentations of the MapReduce programming model are able to robustly cope
with failures through a number of mechanisms such as automatic task restarts
on different cluster nodes.

Move processing to the data. In traditional high-performance computing
(HPC) applications (e.g., for climate or nuclear simulations), it is commonplace
for a supercomputer to have “processing nodes” and “storage nodes” linked to-
gether by a high-capacity interconnect. Many data-intensive workloads are not



very processor-demanding, which means that the separation of compute and
storage creates a bottleneck in the network. As an alternative to moving data
around, it is more efficient to move the processing around. That is, MapReduce
assumes an architecture where processors and storage (disk) are co-located. In
such a setup, we can take advantage of data locality by running code on the
processor directly attached to the block of data we need. The distributed file
system is responsible for managing the data over which MapReduce operates.

Process data sequentially and avoid random access. Data-intensive
processing by definition means that the relevant datasets are too large to fit in
memory and must be held on disk. Seek times for random disk access are fun-
damentally limited by the mechanical nature of the devices: read heads can only
move so fast and platters can only spin so rapidly. As a result, it is desirable
to avoid random data access, and instead organize computations so that data
is processed sequentially. A simple scenario10 poignantly illustrates the large
performance gap between sequential operations and random seeks: assume a 1
terabyte database containing 1010 100-byte records. Given reasonable assump-
tions about disk latency and throughput, a back-of-the-envelop calculation will
show that updating 1% of the records (by accessing and then mutating each
record) will take about a month on a single machine. On the other hand, if one
simply reads the entire database and rewrites all the records (mutating those
that need updating), the process would finish in under a work day on a single
machine. Sequential data access is, literally, orders of magnitude faster than
random data access.11

The development of solid-state drives is unlikely to change this balance for
at least two reasons. First, the cost differential between traditional magnetic
disks and solid-state disks remains substantial: large-data will for the most part
remain on mechanical drives, at least in the near future. Second, although solid-
state disks have substantially faster seek times, order-of-magnitude differences
in performance between sequential and random access still remain.

MapReduce is primarily designed for batch processing over large datasets.
To the extent possible, all computations are organized into long streaming
operations that take advantage of the aggregate bandwidth of many disks in
a cluster. Many aspects of MapReduce’s design explicitly trade latency for
throughput.

Hide system-level details from the application developer. According
to many guides on the practice of software engineering written by experienced
industry professionals, one of the key reasons why writing code is difficult is be-
cause the programmer must simultaneously keep track of many details in short
term memory—ranging from the mundane (e.g., variable names) to the sophis-
ticated (e.g., a corner case of an algorithm that requires special treatment).

10Adapted from a post by Ted Dunning on the Hadoop mailing list.
11For more detail, Jacobs [76] provides real-world benchmarks in his discussion of large-

data problems.



This imposes a high cognitive load and requires intense concentration, which
leads to a number of recommendations about a programmer’s environment
(e.g., quiet office, comfortable furniture, large monitors, etc.). The challenges
in writing distributed software are greatly compounded—the programmer must
manage details across several threads, processes, or machines. Of course, the
biggest headache in distributed programming is that code runs concurrently in
unpredictable orders, accessing data in unpredictable patterns. This gives rise
to race conditions, deadlocks, and other well-known problems. Programmers
are taught to use low-level devices such as mutexes and to apply high-level “de-
sign patterns” such as producer–consumer queues to tackle these challenges,
but the truth remains: concurrent programs are notoriously difficult to reason
about and even harder to debug.

MapReduce addresses the challenges of distributed programming by provid-
ing an abstraction that isolates the developer from system-level details (e.g.,
locking of data structures, data starvation issues in the processing pipeline,
etc.). The programming model specifies simple and well-defined interfaces be-
tween a small number of components, and therefore is easy for the programmer
to reason about. MapReduce maintains a separation of what computations are
to be performed and how those computations are actually carried out on a
cluster of machines. The first is under the control of the programmer, while
the second is exclusively the responsibility of the execution framework or “run-
time”. The advantage is that the execution framework only needs to be de-
signed once and verified for correctness—thereafter, as long as the developer
expresses computations in the programming model, code is guaranteed to be-
have as expected. The upshot is that the developer is freed from having to
worry about system-level details (e.g., no more debugging race conditions and
addressing lock contention) and can instead focus on algorithm or application
design.

Seamless scalability. For data-intensive processing, it goes without saying
that scalable algorithms are highly desirable. As an aspiration, let us sketch
the behavior of an ideal algorithm. We can define scalability along at least
two dimensions.12 First, in terms of data: given twice the amount of data, the
same algorithm should take at most twice as long to run, all else being equal.
Second, in terms of resources: given a cluster twice the size, the same algorithm
should take no more than half as long to run. Furthermore, an ideal algorithm
would maintain these desirable scaling characteristics across a wide range of
settings: on data ranging from gigabytes to petabytes, on clusters consisting of
a few to a few thousand machines. Finally, the ideal algorithm would exhibit
these desired behaviors without requiring any modifications whatsoever, not
even tuning of parameters.

Other than for embarrassingly parallel problems, algorithms with the char-
acteristics sketched above are, of course, unobtainable. One of the fundamental

12See also DeWitt and Gray [50] for slightly different definitions in terms of speedup and
scaleup.



assertions in Fred Brook’s classic The Mythical Man-Month [28] is that adding
programmers to a project behind schedule will only make it fall further be-
hind. This is because complex tasks cannot be chopped into smaller pieces
and allocated in a linear fashion, and is often illustrated with a cute quote:
“nine women cannot have a baby in one month”. Although Brook’s obser-
vations are primarily about software engineers and the software development
process, the same is also true of algorithms: increasing the degree of paralleliza-
tion also increases communication costs. The algorithm designer is faced with
diminishing returns, and beyond a certain point, greater efficiencies gained by
parallelization are entirely offset by increased communication requirements.

Nevertheless, these fundamental limitations shouldn’t prevent us from at
least striving for the unobtainable. The truth is that most current algorithms
are far from the ideal. In the domain of text processing, for example, most
algorithms today assume that data fits in memory on a single machine. For
the most part, this is a fair assumption. But what happens when the amount
of data doubles in the near future, and then doubles again shortly thereafter?
Simply buying more memory is not a viable solution, as the amount of data is
growing faster than the price of memory is falling. Furthermore, the price of a
machine does not scale linearly with the amount of available memory beyond a
certain point (once again, the scaling “up” vs. scaling “out” argument). Quite
simply, algorithms that require holding intermediate data in memory on a single
machine will simply break on sufficiently-large datasets—moving from a single
machine to a cluster architecture requires fundamentally different algorithms
(and reimplementations).

Perhaps the most exciting aspect of MapReduce is that it represents a small
step toward algorithms that behave in the ideal manner discussed above. Re-
call that the programming model maintains a clear separation between what
computations need to occur with how those computations are actually orches-
trated on a cluster. As a result, a MapReduce algorithm remains fixed, and it is
the responsibility of the execution framework to execute the algorithm. Amaz-
ingly, the MapReduce programming model is simple enough that it is actually
possible, in many circumstances, to approach the ideal scaling characteristics
discussed above. We introduce the idea of the “tradeable machine hour”, as a
play on Brook’s classic title. If running an algorithm on a particular dataset
takes 100 machine hours, then we should be able to finish in an hour on a
cluster of 100 machines, or use a cluster of 10 machines to complete the same
task in ten hours.13 With MapReduce, this isn’t so far from the truth, at least
for some applications.

1.3 Why Is This Different?

“Due to the rapidly decreasing cost of processing, memory, and
communication, it has appeared inevitable for at least two decades

13Note that this idea meshes well with utility computing, where a 100-machine cluster
running for one hour would cost the same as a 10-machine cluster running for ten hours.



that parallel machines will eventually displace sequential ones in
computationally intensive domains. This, however, has not hap-
pened.” — Leslie Valiant [148]14

For several decades, computer scientists have predicted that the dawn of the
age of parallel computing was “right around the corner” and that sequential
processing would soon fade into obsolescence (consider, for example, the above
quote). Yet, until very recently, they have been wrong. The relentless progress
of Moore’s Law for several decades has ensured that most of the world’s prob-
lems could be solved by single-processor machines, save the needs of a few
(scientists simulating molecular interactions or nuclear reactions, for example).
Couple that with the inherent challenges of concurrency, and the result has
been that parallel processing and distributed systems have largely been con-
fined to a small segment of the market and esoteric upper-level electives in the
computer science curriculum.

However, all of that changed around the middle of the first decade of this
century. The manner in which the semiconductor industry had been exploiting
Moore’s Law simply ran out of opportunities for improvement: faster clocks,
deeper pipelines, superscalar architectures, and other tricks of the trade reached
a point of diminishing returns that did not justify continued investment. This
marked the beginning of an entirely new strategy and the dawn of the multi-
core era [115]. Unfortunately, this radical shift in hardware architecture was
not matched at that time by corresponding advances in how software could
be easily designed for these new processors (but not for lack of trying [104]).
Nevertheless, parallel processing became an important issue at the forefront of
everyone’s mind—it represented the only way forward.

At around the same time, we witnessed the growth of large-data problems.
In the late 1990s and even during the beginning of the first decade of this
century, relatively few organizations had data-intensive processing needs that
required large clusters: a handful of internet companies and perhaps a few dozen
large corporations. But then, everything changed. Through a combination of
many different factors (falling prices of disks, rise of user-generated web con-
tent, etc.), large-data problems began popping up everywhere. Data-intensive
processing needs became widespread, which drove innovations in distributed
computing such as MapReduce—first by Google, and then by Yahoo and the
open source community. This in turn created more demand: when organiza-
tions learned about the availability of effective data analysis tools for large
datasets, they began instrumenting various business processes to gather even
more data—driven by the belief that more data leads to deeper insights and
greater competitive advantages. Today, not only are large-data problems ubiq-
uitous, but technological solutions for addressing them are widely accessible.
Anyone can download the open source Hadoop implementation of MapReduce,
pay a modest fee to rent a cluster from a utility cloud provider, and be hap-
pily processing terabytes upon terabytes of data within the week. Finally, the

14Guess when this was written? You may be surprised.



computer scientists are right—the age of parallel computing has begun, both
in terms of multiple cores in a chip and multiple machines in a cluster (each of
which often has multiple cores).

Why is MapReduce important? In practical terms, it provides a very ef-
fective tool for tackling large-data problems. But beyond that, MapReduce
is important in how it has changed the way we organize computations at a
massive scale. MapReduce represents the first widely-adopted step away from
the von Neumann model that has served as the foundation of computer sci-
ence over the last half plus century. Valiant called this a bridging model [148],
a conceptual bridge between the physical implementation of a machine and
the software that is to be executed on that machine. Until recently, the von
Neumann model has served us well: Hardware designers focused on efficient im-
plementations of the von Neumann model and didn’t have to think much about
the actual software that would run on the machines. Similarly, the software
industry developed software targeted at the model without worrying about the
hardware details. The result was extraordinary growth: chip designers churned
out successive generations of increasingly powerful processors, and software en-
gineers were able to develop applications in high-level languages that exploited
those processors.

Today, however, the von Neumann model isn’t sufficient anymore: we can’t
treat a multi-core processor or a large cluster as an agglomeration of many
von Neumann machine instances communicating over some interconnect. Such
a view places too much burden on the software developer to effectively take
advantage of available computational resources—it simply is the wrong level of
abstraction. MapReduce can be viewed as the first breakthrough in the quest
for new abstractions that allow us to organize computations, not over individual
machines, but over entire clusters. As Barroso puts it, the datacenter is the
computer [18, 119].

To be fair, MapReduce is certainly not the first model of parallel com-
putation that has been proposed. The most prevalent model in theoretical
computer science, which dates back several decades, is the PRAM [77, 60].15

In the model, an arbitrary number of processors, sharing an unboundedly large
memory, operate synchronously on a shared input to produce some output.
Other models include LogP [43] and BSP [148]. For reasons that are beyond
the scope of this book, none of these previous models have enjoyed the success
that MapReduce has in terms of adoption and in terms of impact on the daily
lives of millions of users.16

MapReduce is the most successful abstraction over large-scale computa-
tional resources we have seen to date. However, as anyone who has taken an
introductory computer science course knows, abstractions manage complexity

15More than a theoretical model, the PRAM has been recently prototyped in hard-
ware [153].

16Nevertheless, it is important to understand the relationship between MapReduce and
existing models so that we can bring to bear accumulated knowledge about parallel algo-
rithms; for example, Karloff et al. [82] demonstrated that a large class of PRAM algorithms
can be efficiently simulated via MapReduce.



by hiding details and presenting well-defined behaviors to users of those ab-
stractions. They, inevitably, are imperfect—making certain tasks easier but
others more difficult, and sometimes, impossible (in the case where the detail
suppressed by the abstraction is exactly what the user cares about). This cri-
tique applies to MapReduce: it makes certain large-data problems easier, but
suffers from limitations as well. This means that MapReduce is not the final
word, but rather the first in a new class of programming models that will allow
us to more effectively organize computations at a massive scale.

So if MapReduce is only the beginning, what’s next beyond MapReduce?
We’re getting ahead of ourselves, as we can’t meaningfully answer this question
before thoroughly understanding what MapReduce can and cannot do well.
This is exactly the purpose of this book: let us now begin our exploration.

1.4 What This Book Is Not

Actually, not quite yet. . . A final word before we get started. This book is about
MapReduce algorithm design, particularly for text processing (and related)
applications. Although our presentation most closely follows the Hadoop open-
source implementation of MapReduce, this book is explicitly not about Hadoop
programming. We don’t for example, discuss APIs, command-line invocations
for running jobs, etc. For those aspects, we refer the reader to Tom White’s
excellent book, “Hadoop: The Definitive Guide”, published by O’Reilly [154].


