
Scaling Big Data Mining Infrastructure:
The Twitter Experience

Jimmy Lin and Dmitriy Ryaboy
Twitter, Inc.

@lintool @squarecog

ABSTRACT

The analytics platform at Twitter has experienced tremen-
dous growth over the past few years in terms of size, com-
plexity, number of users, and variety of use cases. In this
paper, we discuss the evolution of our infrastructure and the
development of capabilities for data mining on “big data”.
One important lesson is that successful big data mining in
practice is about much more than what most academics
would consider data mining: life“in the trenches” is occupied
by much preparatory work that precedes the application of
data mining algorithms and followed by substantial effort to
turn preliminary models into robust solutions. In this con-
text, we discuss two topics: First, schemas play an impor-
tant role in helping data scientists understand petabyte-scale
data stores, but they’re insufficient to provide an overall “big
picture” of the data available to generate insights. Second,
we observe that a major challenge in building data analytics
platforms stems from the heterogeneity of the various com-
ponents that must be integrated together into production
workflows—we refer to this as “plumbing”. This paper has
two goals: For practitioners, we hope to share our experi-
ences to flatten bumps in the road for those who come after
us. For academic researchers, we hope to provide a broader
context for data mining in production environments, point-
ing out opportunities for future work.

1. INTRODUCTION
The analytics platform at Twitter has experienced tremen-

dous growth over the past few years in terms of size, com-
plexity, number of users, and variety of use cases. In 2010,
there were approximately 100 employees in the entire com-
pany and the analytics team consisted of four people—the
only people to use our 30-node Hadoop cluster on a daily ba-
sis. Today, the company has over one thousand employees.
There are thousands of Hadoop nodes across multiple dat-
acenters. Each day, around one hundred terabytes of raw
data are ingested into our main Hadoop data warehouse;
engineers and data scientists from dozens of teams run tens
of thousands of Hadoop jobs collectively. These jobs ac-
complish everything from data cleaning to simple aggrega-
tions and report generation to building data-powered prod-
ucts to training machine-learned models for promoted prod-
ucts, spam detection, follower recommendation, and much,
much more. We’ve come a long way, and in this paper, we
share experiences in scaling Twitter’s analytics infrastruc-
ture over the past few years. Our hope is to contribute to a
set of emerging “best practices” for building big data analyt-
ics platforms for data mining from a case study perspective.

A little about our backgrounds: The first author is an As-
sociate Professor at the University of Maryland who spent an
extended sabbatical from 2010 to 2012 at Twitter, primar-
ily working on relevance algorithms and analytics infrastruc-
ture. The second author joined Twitter in early 2010 and
was first a tech lead, then the engineering manager of the
analytics infrastructure team. Together, we hope to provide
a blend of the academic and industrial perspectives—a bit
of ivory tower musings mixed with “in the trenches” practi-
cal advice. Although this paper describes the path we have
taken at Twitter and is only one case study, we believe our
recommendations align with industry consensus on how to
approach a particular set of big data challenges.

The biggest lesson we wish to share with the community
is that successful big data mining is about much more than
what most academics would consider data mining. A sig-
nificant amount of tooling and infrastructure is required to
operationalize vague strategic directives into concrete, solv-
able problems with clearly-defined metrics of success. A data
scientist spends a significant amount of effort performing
exploratory data analysis to even figure out “what’s there”;
this includes data cleaning and data munging not directly
related to the problem at hand. The data infrastructure en-
gineers work to make sure that productionized workflows op-
erate smoothly, efficiently, and robustly, reporting errors and
alerting responsible parties as necessary. The “core” of what
academic researchers think of as data mining—translating
domain insight into features and training models for various
tasks—is a comparatively small, albeit critical, part of the
overall insight-generation lifecycle.

In this context, we discuss two topics: First, with a certain
amount of bemused ennui, we explain that schemas play an
important role in helping data scientists understand peta-
byte-scale data stores, but that schemas alone are insuffi-
cient to provide an overall “big picture” of the data avail-
able and how they can be mined for insights. We’ve fre-
quently observed that data scientists get stuck before they
even begin—it’s surprisingly difficult in a large production
environment to understand what data exist, how they are
structured, and how they relate to each other. Our discus-
sion is couched in the context of user behavior logs, which
comprise the bulk of our data. We share a number of ex-
amples, based on our experience, of what doesn’t work and
how to fix it.

Second, we observe that a major challenge in building data
analytics platforms comes from the heterogeneity of the var-
ious components that must be integrated together into pro-
duction workflows. Much complexity arises from impedance

��������	
�������� ������������������ ������



mismatches at the interface between different components.
A production system must run like clockwork, splitting out
aggregated reports every hour, updating data products every
three hours, generating new classifier models daily, etc. Get-
ting a bunch of heterogeneous components to operate as a
synchronized and coordinated workflow is challenging. This
is what we fondly call “plumbing”—the not-so-sexy pieces of
software (and duct tape and chewing gum) that ensure ev-
erything runs together smoothly is part of the “black magic”
of converting data to insights.

This paper has two goals: For practitioners, we hope to
share our experiences to flatten bumps in the road for those
who come after us. Scaling big data infrastructure is a com-
plex endeavor, and we point out potential pitfalls along the
way, with possible solutions. For academic researchers, we
hope to provide a broader context for data mining in produc-
tion environments—to help academics understand how their
research is adapted and applied to solve real-world problems
at scale. In addition, we identify opportunities for future
work that could contribute to streamline big data mining
infrastructure.

2. HOW WE GOT HERE
We begin by situating the Twitter analytics platform in

the broader context of “big data” for commercial enterprises.
The“fourth paradigm”of how big data is reshaping the phys-
ical and natural sciences [23] (e.g., high-energy physics and
bioinformatics) is beyond the scope of this paper.

The simple idea that an organization should retain data
that result from carrying out its mission and exploit those
data to generate insights that benefit the organization is of
course not new. Commonly known as business intelligence,
among other monikers, its origins date back several decades.
In this sense, the “big data” hype is simply a rebranding of
what many organizations have been doing all along.

Examined more closely, however, there are three major
trends that distinguish insight-generation activities today
from, say, the 1990s. First, we have seen a tremendous ex-
plosion in the sheer amount of data—orders of magnitude
increase. In the past, enterprises have typically focused on
gathering data that are obviously valuable, such as business
objects representing customers, items in catalogs, purchases,
contracts, etc. Today, in addition to such data, organiza-
tions also gather behavioral data from users. In the online
setting, these include web pages that users visit, links that
they click on, etc. The advent of social media and user-
generated content, and the resulting interest in encouraging
such interactions, further contributes to the amount of data
that is being accumulated.

Second, and more recently, we have seen increasing sophis-
tication in the types of analyses that organizations perform
on their vast data stores. Traditionally, most of the infor-
mation needs fall under what is known as online analytical
processing (OLAP). Common tasks include ETL (extract,
transform, load) from multiple data sources, creating joined
views, followed by filtering, aggregation, or cube materializa-
tion. Statisticians might use the phrase descriptive statistics
to describe this type of analysis. These outputs might feed
report generators, front-end dashboards, and other visual-
ization tools to support common “roll up” and “drill down”
operations on multi-dimensional data. Today, however, a
new breed of “data scientists” want to do far more: they
are interested in predictive analytics. These include, for ex-

ample, using machine learning techniques to train predic-
tive models of user behavior—whether a piece of content is
spam, whether two users should become “friends”, the like-
lihood that a user will complete a purchase or be interested
in a related product, etc. Other desired capabilities include
mining large (often unstructured) data for statistical regu-
larities, using a wide range of techniques from simple (e.g.,
k-means clustering) to complex (e.g., latent Dirichlet alloca-
tion or other Bayesian approaches). These techniques might
surface “latent” facts about the users—such as their interest
and expertise—that they do not explicitly express.

To be fair, some types of predictive analytics have a long
history—for example, credit card fraud detection and mar-
ket basket analysis. However, we believe there are several
qualitative differences. The application of data mining on
behavioral data changes the scale at which algorithms need
to operate, and the generally weaker signals present in such
data require more sophisticated algorithms to produce in-
sights. Furthermore, expectations have grown—what were
once cutting-edge techniques practiced only by a few innova-
tive organizations are now routine, and perhaps even neces-
sary for survival in today’s competitive environment. Thus,
capabilities that may have previously been considered luxu-
ries are now essential.

Finally, open-source software is playing an increasingly
important role in today’s ecosystem. A decade ago, no
credible open-source, enterprise-grade, distributed data an-
alytics platform capable of handling large data volumes ex-
isted. Today, the Hadoop open-source implementation of
MapReduce [11] lies at the center of a de facto platform
for large-scale data analytics, surrounded by complementary
systems such as HBase, ZooKeeper, Pig, Hive, and many
others. The importance of Hadoop is validated not only
by adoption in countless startups, but also the endorsement
of industry heavyweights such as IBM, Microsoft, Oracle,
and EMC. Of course, Hadoop is not a panacea and is not
an adequate solution for many problems, but a strong case
can be made for Hadoop supplementing (and in some cases,
replacing) existing data management systems.

Analytics at Twitter lies at the intersection of these three
developments. The social media aspect is of course obvi-
ous. Like Facebook [20], LinkedIn, and many other compa-
nies, Twitter has eschewed, to the extent practical, costly
proprietary systems in favor of building around the Hadoop
open-source platform. Finally, like other organizations, ana-
lytics at Twitter range widely in sophistication, from simple
aggregations to training machine-learned models.

3. THE BIG DATA MINING CYCLE
In production environments, effective big data mining at

scale doesn’t begin or end with what academics would con-
sider data mining. Most of the research literature (e.g., KDD
papers) focus on better algorithms, statistical models, or
machine learning techniques—usually starting with a (rela-
tively) well-defined problem, clear metrics for success, and
existing data. The criteria for publication typically involve
improvements in some figure of merit (hopefully statistically
significant): the new proposed method is more accurate, runs
faster, requires less memory, is more robust to noise, etc.

In contrast, the problems we grapple with on a daily ba-
sis are far more “messy”. Let us illustrate with a realistic
but hypothetical scenario. We typically begin with a poorly
formulated problem, often driven from outside engineering

��������	
�������� ������������������ ����� 



and aligned with strategic objectives of the organization,
e.g., “we need to accelerate user growth”. Data scientists
are tasked with executing against the goal—and to opera-
tionalize the vague directive into a concrete, solvable prob-
lem requires exploratory data analysis. Consider the follow-
ing sample questions:

• When do users typically log in and out?

• How frequently?

• What features of the product do they use?

• Do different groups of users behave differently?

• Do these activities correlate with engagement?

• What network features correlate with activity?

• How do activity profiles of users change over time?

Before beginning exploratory data analysis, the data scien-
tist needs to know what data are available and how they are
organized. This fact may seem obvious, but is surprisingly
difficult in practice. To understand why, we must take a
slight detour to discuss service architectures.

3.1 Service Architectures and Logging
Web- and internet-based products today are typically de-

signed as composition of services: rendering a web page might
require the coordination of dozens or even hundreds of com-
ponent services that provide different content. For example,
Twitter is powered by many loosely-coordinated services,
for adding and removing followers, for storing and fetching
tweets, for providing user recommendations, for accessing
search functionalities, etc. Most services are not aware of the
implementation details of other services and all services com-
municate through well-defined and stable interfaces. Typi-
cally, in this design, each service performs its own logging—
these are records of requests, along with related information
such as who (i.e., the user or another service) made the re-
quest, when the request occurred, what the result was, how
long it took, any warnings or exceptions that were thrown,
etc. The log data are independent of each other by design,
the side effect of which is the creation of a large number of
isolated data stores which need to be composed to recon-
struct a complete picture of what happened during process-
ing of even a single user request.

Since a single user action may involve many services, a
data scientist wishing to analyze user behavior must first
identify all the disparate data sources involved, understand
their contents, and then join potentially incompatible data
to reconstruct what users were doing. This is often easier
said than done! In our Hadoop data warehouse, logs are
all deposited in the /logs/ directory, with a sub-directory
for each log “category”. There are dozens of log categories,
many of which are named after projects whose function is
well-known but whose internal project names are not in-
tuitive. Services are normally developed and operated by
different teams, which may adopt different conventions for
storing and organizing log data. Frequently, engineers who
build the services have little interaction with the data sci-
entists who analyze the data—so there is no guarantee that
fields needed for data analysis are actually present (see Sec-
tion 4.5). Furthermore, services change over time in a num-
ber of ways: functionalities evolve; two services merge into
one; a single service is replaced by two; a service becomes
obsolete and is replaced by another; a service is used in
ways for which it was not originally intended. These are

all reflected in idiosyncrasies present in individual service
logs—these comprise the“institutional”knowledge that data
scientists acquire over time, but create steep learning curves
for new data scientists.

The net effect is that data scientists expend a large amount
of effort to understand the data available to them, before
they even begin any meaningful analysis. In the next sec-
tion, we discuss some solutions, but these challenges are far
from solved. There is an increasing trend to structure teams
that are better integrated, e.g., involving data scientists in
the design of a service to make sure the right data are cap-
tured, or even having data scientists embedded within indi-
vidual product teams, but such organizations are the excep-
tion, not the rule. A fundamental tradeoff in organizational
solutions is development speed vs. ease of analysis: incorpo-
rating analytics considerations when designing and building
services slows down development, but failure to do so results
in unsustainable downstream complexity. A good balance
between these competing concerns is difficult to strike.

3.2 Exploratory Data Analysis
Exploratory data analysis always reveals data quality is-

sues. In our recollection, we have never encountered a large,
real-world dataset that was directly usable without data
cleaning. Sometimes there are outright bugs, e.g., incon-
sistently formatted messages or values that shouldn’t ex-
ist. There are inevitably corrupt records—e.g., a partially
written message caused by a premature closing of a file han-
dle. Cleaning data often involves sanity checking: a common
technique for a service that logs aggregate counts as well as
component counts is to make sure the sum of component
counts matches the aggregate counts. Another is to com-
pute various frequencies from the raw data to make sure the
numbers seem “reasonable”. This is surprisingly difficult—
identifying values that seem suspiciously high or suspiciously
low requires experience, since the aggregate behavior of mil-
lions of users is frequently counter-intuitive. We have en-
countered many instances in which we thought that there
must have been data collection errors, and only after careful
verification of the data generation and import pipeline were
we confident that, indeed, users did really behave in some
unexpected manner.

Sanity checking frequently reveals abrupt shifts in the
characteristics of the data. For example, in a single day, the
prevalence of a particular type of message might decrease or
increase by orders of magnitude. This is frequently an arti-
fact of some system change—for example, a new feature just
having been rolled out to the public or a service endpoint
that has been deprecated in favor of a new system. Twitter
has gotten sufficiently complex that it is no longer possi-
ble for any single individual to keep track of every product
rollout, API change, bug fix release, etc., and thus abrupt
changes in datasets appear mysterious until the underlying
causes are understood, which is often a time-consuming ac-
tivity requiring cross-team cooperation.

Even when the logs are “correct”, there are usually a host
of outliers caused by “non-typical” use cases, most often at-
tributable to non-human actors in a human domain. For
example, in a query log, there will be robots responsible
for tens of thousands of queries a day, robots who issue
queries thousands of terms long, etc. Without discarding
these outliers, any subsequent analysis will produce skewed
results. Although over time, a data scientist gains experi-

��������	
�������� ������������������ �����!



ence in data cleaning and the process becomes more routine,
there are frequently surprises and new situations. We have
not yet reached the point where data cleaning can be per-
formed automatically.

3.3 Data Mining
Typically, after exploratory data analysis, the data scien-

tist is able to more precisely formulate the problem, cast it
in within the context of a data mining task, and define met-
rics for success. For example, one way to increase active user
growth is to increase retention of existing users (in addition
to adding new users): it might be useful to build a model
that predicts future user activity based on present activity.
This could be more precisely formulated as a classification
problem: assuming we have a definition of an “active user”,
given features of the user right now, let us try to predict if
the user will be active n weeks from now. The metrics of
success are now fairly straightforward to define: accuracy,
precision–recall curves, etc.

With a precisely-formulated problem in hand, the data sci-
entist can now gather training and test data. In this case, it
is fairly obvious what to do: we could use data from n weeks
ago to predict if the user is active today. Now comes the
part that would be familiar to all data mining researchers
and practitioners: feature extraction and machine learning.
Applying domain knowledge, the data scientist would dis-
till potentially tens of terabytes of log data into much more
compact sparse feature vectors, and from those, train a clas-
sification model. At Twitter, this would typically be accom-
plished via Pig scripts [42, 15] that are compiled into phys-
ical plans executed as Hadoop jobs. For a more detailed
discussion of our large-scale machine learning infrastructure,
we refer the reader to a recent paper [34].

The data scientist would now iteratively refine the classi-
fier using standard practices: cross-validation, feature selec-
tion, tuning of model parameters, etc. After an appropriate
level of effectiveness has been achieved, the classifier might
be evaluated in a prospective manner—using data from to-
day and verifying prediction accuracy n weeks from now.
This ensures, for example, that we have not inadvertently
given the classifier future information.

At this point, let us suppose that we have achieved a high
level of classifier effectiveness by some appropriate metric, on
both cross-validated retrospective data and on prospective
data in a simulated deployment setting. For the academic
researcher, the problem can be considered “solved”: time to
write up the experiments in a KDD paper!

3.4 Production and Other Considerations
However, from the Twitter perspective, there is much left

to do: the classifier has not yet been productionized. It is not
sufficient to solve the problem once—we must set up recur-
ring workflows that feed new data to the classifier and record
its output, serving as input to other downstream processes.
This involves mechanisms for scheduling (e.g., running clas-
sification jobs every hour) and data dependency manage-
ment (e.g., making sure that upstream processes have gen-
erated necessary data before invoking the classifiers). Of
course, the workflow must be robust and continuously mon-
itored, e.g., automatic restarts for handling simple faults,
but alerting on-call engineers after a number of failed retries.
Twitter has developed tools and processes for these myriad
issues, and handling most scenarios are quite routine today,

but building the production support infrastructure required
substantial engineering effort.

Moving a classifier into production also requires retraining
the underlying model on a periodic basis and some mecha-
nism for validation. Over time, we need to manage two
challenges: classifier drift and adversarial interactions. User
behaviors change, sometimes as a result of the very sys-
tem we’re deploying (e.g., user recommendations alter users’
linking behavior). Features that were previously discrimina-
tive may decay in their effectiveness. The underlying class
distribution (in the case of classification tasks) also changes,
thus negating parameters tuned for a specific prior. In addi-
tion to classifier drift that stems from “natural” behavioral
shifts, we must also contend with adversarial interactions,
where third parties actively try to“game”the system—spam
is the most prominent example, but we see adversarial be-
havior elsewhere as well [48]. A data scientist is responsible
for making sure that a solution “keeps working”.

After a product has launched, data scientists incremen-
tally improve the underlying algorithms based on feedback
from user behavior. Improvements range from simple pa-
rameter tuning to experimenting with different algorithms.
Most production algorithms are actually ensembles that com-
bine diverse techniques. At Twitter, as in many organiza-
tions today, refinements are assessed via A/B testing. How
to properly run such experiments is as much an art as it
is a science, and for the interested reader we recommend a
few papers by Kohavi et al. [29, 28]. From the big data in-
frastructure perspective, this places additional demands on
tools to support A/B testing—e.g., identifying user buckets
and keeping track of user-to-treatment mappings, as well as
“threading” the user token through all analytics processes so
that we can break down results by each condition.

Finally, the successful deployment of a machine-learned
solution or any data product leads to the start of a new
problem. In our running example of retention classification,
being able to predict user activity itself doesn’t actually af-
fect user growth (the original goal)—we must act on the
classifier output to implement interventions, and then mea-
sure the effectiveness of those. Thus, one big data mining
problem feeds into the next, beginning the cycle anew.

In this production context, we identify two distinct but
complementary roles: on the one hand, there are infrastruc-
ture engineers who build the tools and focus on operations;
then, there are the data scientists who use the tools to mine
insights. Although in a smaller organization the same per-
son may perform both types of activities, we recognize them
as distinct roles. As an organization grows, it makes sense
to separate out these two activities. At Twitter, analytics
infrastructure and data science are two distinct, but tightly-
integrated groups.

To better illustrate this division, consider the retention
classifier example. The data scientist would be responsi-
ble for the development of the model, including exploratory
data analysis, feature generation, model construction, and
validation. However, she would be using tools built by the
infrastructure engineers (e.g., load and store functions for
various data types), operating on data maintained by infras-
tructure engineers (responsible for the log import pipeline).
The data scientist is responsible for the initial production
deployment of the model (e.g., hooking into a common set
of APIs to specify data dependencies and setting up recur-
ring workflows) but thereafter the infrastructure engineers

��������	
�������� ������������������ �����"



handle routine operations—they are responsible for“keeping
the trains on time”. However, data scientists are responsible
for maintaining the quality of their products after launch,
such as handling classifier drift and adversarial interactions.
Overall, we have found this division between infrastructure
engineering and data science to be a useful organizing prin-
ciple in scaling our data analytics platform.

3.5 Why Should Academics Care?
The takeaway message from this discussion is that ac-

tivities an academic researcher would consider data mining
(e.g., feature extraction and machine learning), while im-
portant, are only a small part of the complete data mining
cycle. There is much that precedes in formulating the prob-
lem, data cleaning, and exploratory data analysis; there is
much that follows, in terms of productionizing the solution
and ongoing maintenance. Any big data mining infrastruc-
ture must support all activities in this broader lifecycle, not
just the execution of data mining algorithms.

Why should academics care? We argue that understand-
ing the big data mining cycle helps situate research in the
context of solving real-world problems and informs future
directions. For example, work on data cleaning and ex-
ploratory data analysis is under-represented in the academic
literature relative to its real-world importance. We suggest
that the most impactful research is not incrementally better
data mining algorithms, but techniques to help data sci-
entists “grok” the data. Furthermore, production considera-
tions might help researchers select between competing meth-
ods. A lesson from the above discussion might be that com-
plex models with many parameters are difficult to maintain,
due to drift and adversarial interactions. Another might
be that the need to frequently update models favor those
that can be incrementally refined, as opposed to those that
must be trained from scratch each time. Different models
and algorithms manifest tradeoffs in accuracy, robustness,
complexity, speed, etc., and understanding the deployment
context is important to choosing the right balance point in
the design space.

We conclude this section by relating our experience to
those of others. While the literature on these practical, “in-
the-trenches” aspects of data science is scant, we are heart-
ened to see a growing awareness of these important issues.
One of the earliest is Jeff Hammerbacher’s essay on the con-
struction of Facebook’s data science platform [20]. DJ Patil
has written extensively on his experiences in building data-
driven products at LinkedIn [46, 45]. Recently, Kandel et
al. [27] reported on an interview-based study of data scien-
tists across a variety of sectors, including healthcare, retail,
marketing, and finance. Their findings are consonant with
our own experiences, although specific details differ. To-
gether, we hope that these voices provide a more complete
account of what big data mining is like in real-world pro-
duction environments.

4. SCHEMAS AND BEYOND
Typically, what we’ve seen in the past is that an enter-

prise’s most obviously valuable data, such as business ob-
jects representing customers, items in catalogs, purchases,
contracts, etc. are represented in carefully designed schemas.
The quality, usefulness, and provenance of these records are
carefully monitored. However, higher-volume data such as
operational logs of the multitude of services that power a

create table `my_audit_log` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`created_at` datetime,

`user_id` int(11),

`action` varchar(256),

...

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Table 1: Using MySQL for logging is a bad idea.

complex operation are often ad hoc. A well-structured log
should capture information about each request, such as who
made the request, when the request occurred, what the re-
sult was, how long it took, any warnings or exceptions that
were thrown. Frequently, however, they are merely reflec-
tions of what individual developers decided would be help-
ful to throw into their log.info(...) calls. Since these
logs contain records of user behavior, they provide valuable
raw ingredients for data mining. From the perspective of
infrastructure engineering, we are faced with the challenge
of supporting rapid development of individual services, with
little to no oversight from a central authority, while enabling
analysis of diverse log sources by data scientists across the
organization.

Some organizations attempt to solve this problem by en-
forcing simple, generic schemas for all the data that the
developers “explicitly want to track”1 which, from what we
can tell, amounts to little more than key–value or subject–
verb–object abstractions (see Section 4.3). We believe that
insisting on such an approach reduces the expressivity of
queries and limits the organization’s ability to answer unan-
ticipated questions.

Our advice distills experiences in balancing concerns about
introducing friction into the development process and the de-
sire to enable easy access to a great variety of data sources
across the enterprise. We seek to maximize the opportuni-
ties for insightful data analysis, data mining, and the con-
struction of data products, while minimizing the amount of
people in the critical communication paths.

Below, we critique some common techniques for captur-
ing data for subsequent analysis and data mining. We do
so mostly from a scaling perspective, with full understand-
ing that for smaller organizations, some argument may not
be applicable. A small team can be quite successful using
JSON; a small rails shop that doesn’t see much traffic might
be fine directly logging into the database. Note that by
no means will our suggestions solve all the challenges dis-
cussed in the previous section, but we believe that our rec-
ommendations will address some of the common pain points
in building scalable big data infrastructure.

4.1 Don’t Use MySQL as a Log
Logging directly into a database is a very common pat-

tern, arguably a natural one when the main application al-
ready has a dependency on an RDBMS. It is a good design
if the database can keep up: no new systems to worry about,
a plethora of tools to query the data, and the logs are al-
ways up to date. The design is tantalizingly simple: just
create a flexible schema such as, for example, that shown
in Table 1. Using a database for logging at scale, however,
quickly breaks down for a whole host of reasons.

1http://code.zynga.com/2011/06/deciding-how-to-store-billions-
of-rows-per-day/

��������	
�������� ������������������ ������#



First, there is a mismatch between logging and typical
database workloads for interactive or user-facing services:
the latter are almost always latency sensitive and usually
involve relatively small individual transactions. In contrast,
logging creates heavy write traffic. Co-locating the two dif-
ferent workloads on the same system usually results in poor
performance for both, even if the databases are fronted by
in-memory caches (as is the standard architecture). For the
same reason, the convenience of storing logs in the database
for log analysis is not meaningful in practice, since complex
long-running analytical queries (that may scan through large
amounts of data) conflict with latency-sensitive user queries,
unless they are isolated to dedicated resources, for example,
via setting up “analytics-only” replicas.

Second, scaling databases is a non-trivial challenge. In the
open-source world, one can easily find on the web a plethora
of blog posts and war stories about the pains of running
sharded MySQL at scale. Having to scale both a user-facing
service and the logging infrastructure makes the problem
unnecessarily complex. Organizations working with propri-
etary databases face a different set of challenges: proprietary
offerings can be more scalable, but are costly and often re-
quire hiring highly-specialized administrators.

Third, databases are simply overkill for logging. They
are built for transactions and mutability of data, both of
which come with performance overhead. Neither is neces-
sary for logging, so there is nothing to be gained from paying
this performance penalty—in fact, the ability to mutate log
records after they are written invites an entirely new class
of bugs. Logs should be treated as immutable, append-only
data sinks.

Fourth, evolving schemas in relational databases is often a
painful and disruptive process. For example, most ALTER op-
erations in MySQL cause the table to be locked and rebuilt,
which can be a long process—this essentially means down
time for the service. Schemas for logs naturally evolve, since
frequently one realizes the need to gather additional data
that was not previously anticipated. As mentioned earlier,
one common approach around this problem is to define the
table schema around arbitrary key-value pairs, which to a
large extent defeats the point of having a schema and using
a database in the first place (see discussion below on JSON).

The database community has long realized most of these
points, which is why database architectures have evolved
separate systems for OLTP (online transaction processing)
and OLAP (online analytical processing). A discussion of
traditional OLAP systems is beyond the scope of this paper.
Note that when we advocate against using the database as
a log, we certainly do not advocate against traditional log
ETL processes feeding into OLAP databases—just against
writing log messages directly to a database from the appli-
cation layer.

4.2 The Log Transport Problem
If databases shouldn’t be used for logging, what then? At

a basic level, we need a mechanism to move logs from where
they are generated—machines running service endpoints—
to where they will ultimately be analyzed, which for Twitter
as well as many organizations is the Hadoop Distributed File
System (HDFS) of a Hadoop cluster.

We consider the problem of log transport mostly solved.
Twitter uses Scribe, a system for aggregating high volumes
of streaming log data in a robust, fault-tolerant, distributed

Scribe Daemons
(Production Hosts)

HDFS

Scribe
Aggregators

Staging Hadoop Cluster

Main Hadoop
Data Warehouse

Main Datacenter

Scribe Daemons
(Production Hosts)

HDFS

Scribe
Aggregators

Staging Hadoop Cluster

Datacenter

Scribe Daemons
(Production Hosts)

HDFS

Scribe
Aggregators

Staging Hadoop Cluster

Datacenter

Figure 1: Illustration of Twitter’s Scribe infrastruc-
ture. Scribe daemons on production hosts send
log messages to Scribe aggregators, which deposit
aggregated log data onto per-datacenter staging
Hadoop clusters. Periodic processes then copy data
from these staging clusters into our main Hadoop
data warehouse.

manner, originally developed by Facebook and now an open-
source project. A description of how Scribe fits into Face-
book’s overall data collection pipeline can be found in [51].

Twitter’s Scribe infrastructure is illustrated in Figure 1;
see [31] for more details. A Scribe daemon runs on every
production host and is responsible for sending local log data
across the network to a cluster of dedicated aggregators in
the same datacenter. Each log entry consists of two strings,
a category and a message. The category is associated with
configuration metadata that determine, among other things,
where the data is written.

The aggregators in each datacenter are co-located with a
staging Hadoop cluster. Their task is to merge per-category
streams from all the server daemons and write the merged
results to HDFS (of the staging Hadoop cluster), compress-
ing data on the fly. Another process is responsible for mov-
ing these logs from the per-datacenter staging clusters into
the main Hadoop data warehouse. It applies certain san-
ity checks and transformations, such as merging many small
files into a few big ones and building any necessary indexes.

A few additional issues to consider: a robust log transfer
system may create large amounts of network traffic, thus the
use of CPU-intensive log compression techniques should be
balanced against the availability of network bandwidth. As
systems scale up, a robust log transport architecture needs
to build in tolerances for rack switch failures and other un-
expected network glitches—at some point, the architecture
needs of a massive log collection system become non-trivial.

Within Twitter, at the end of the log mover pipeline,
data arrive in the main Hadoop data warehouse and are de-
posited in per-category, per-hour directories on HDFS (e.g.,
/logs/category/YYYY/MM/DD/HH/). In each directory, log mes-
sages are bundled in a small number of large files.

The bottom line: log transport at scale is a well-understood
problem, and Scribe is a mature, scalable solution. More re-
cent open-source systems such as Apache Flume2 and Apache

2http://flume.apache.org/

��������	
�������� ������������������ �������



^(\\w+\\s+\\d+\\s+\\d+:\\d+:\\d+)\\s+

([^@]+?)@(\\S+)\\s+(\\S+):\\s+(\\S+)\\s+(\\S+)

\\s+((?:\\S+?,\\s+)*(?:\\S+?))\\s+(\\S+)\\s+(\\S+)

\\s+\\[([^\\]]+)\\]\\s+\"(\\w+)\\s+([^\"\\\\]*

(?:\\\\.[^\"\\\\]*)*)\\s+(\\S+)\"\\s+(\\S+)\\s+

(\\S+)\\s+\"([^\"\\\\]*(?:\\\\.[^\"\\\\]*)*)

\"\\s+\"([^\"\\\\]*(?:\\\\.[^\"\\\\]*)*)\"\\s*

(\\d*-[\\d-]*)?\\s*(\\d+)?\\s*(\\d*\\.[\\d\\.]*)?

(\\s+[-\\w]+)?.*$

Table 2: An actual Java regular expression used to
parse log messages at Twitter circa 2010.

Kafka [30] offer similar functionality—we consider using one
of these systems to be best practice today.3

4.3 From Plain Text to JSON
Having addressed log transport, let us move onto the next

question: How should log messages be structured?
The instinctive starting point for many developers is to

capture the standard logs their application generates, be it
as simple as the stdout and stderr streams, or informa-
tion collected via dedicated logging libraries such as Java’s
Log4J. Either way, this means plain-text log messages, the
most common case being delimited fields with a record per
line, although multi-line messages such as stack traces are
frequently seen as well. A parsing and maintenance night-
mare develops quickly. Pop quiz: what’s the delimiter, and
would everyone in the organization give the same answer?

Delimited, line-oriented plain-text records require care-
ful escaping of special characters, which is riddled with un-
expected corner cases. There is a memorable example of
us having discovered that some Twitter user names con-
tain embedded newlines and tabs, which needless to say was
not a condition we checked for, and therefore led to corrupt
records in a processing script.

The next pain point: parsing plain-text log messages is
both slow and error-prone. Regular expression matching,
splitting strings based on delimiters, and converting strings
back to integers or floating point values are all slow opera-
tions, which means that working with plain-text logs is ineffi-
cient. Furthermore, regular expressions for parsing complex
log messages are difficult to understand, maintain, and ex-
tend. An extreme, but perhaps not atypical, example is the
Java regular expression shown in Table 2, which was used
for some time in the Twitter code base (circa 2010)—made
extra fun due to double-escaping slashes required for Java
strings. Mercifully, this code has been retired.

Having understood the downsides of working with plain-
text log messages, the next logical evolution step is to use
a loosely-structured, easy-to-evolve markup scheme. JSON
is a popular format we’ve seen adopted by multiple compa-
nies, and tried ourselves. It has the advantage of being easily
parseable, arbitrarily extensible, and amenable to compres-
sion. JSON log messages generally start out as an adequate
solution, but then gradually spiral into a persistent night-
mare. We illustrate with a hypothetical but realistic JSON
log message in Table 3. Let us run through a thought exer-
cise in which we discuss the depressing but all-too-realistic

3Since Kafka is a distributed queuing system, adopting it for
logging requires a different architecture, see [17]. The general
design is for production hosts to write log messages to Kafka,
and then implement a periodic process (e.g., every ten minutes)
to “roll up” log messages and persist to HDFS.

{

"token": 945842,

"feature_enabled": "super_special",

"userid": 229922,

"page": "null",

"info": { "email": "my@place.com" }

}

Table 3: A hypothetical JSON log message.

ways in which this example might be broken.
Trouble begins with an issue as simple as naming conven-

tions. Building a successful web service today requires bring-
ing together developers with very diverse skill sets: front-
end, back-end, systems, databases, etc. Developers accus-
tomed to different language environments have conflicting
conventions for naming fields and variables. This results
in code for generating and analyzing logs being littered with
CamelCase, smallCamelCase, as well as snake_case, and oc-
casionally, even the dreaded camel_Snake.4 To make mat-
ters worse, we’ve even encountered at least one instance of
the mythical dunder__snake5 in the Twitter code base.6 As
a specific example: Is the user id field uid, userId, userid,
or user_id (of course, not ruling out user_Id)? In the case
of JSON, it usually suffices to examine a few records to fig-
ure out the field names, but this is one more annoyance that
gets in the way of productive analysis. Sometimes, however,
bugs with field names crop up in subtle ways: for example,
different code paths might accidentally adopt different con-
ventions, resulting in some of the log messages having one
field, and some of the log messages the other (or, even worse,
log messages containing both fields).

Consider the property feature_enabled. It should re-
ally have been a list, but we didn’t anticipate users be-
ing opted into more than one feature. Now that someone
pointed this out (perhaps a developer who is adding a new
feature), the bug will be fixed (tomorrow). In the meantime
we’ll store multiple values as a comma-separated list. Of
course, the comma delimiter isn’t documented anywhere, so
the data scientist inadvertently uses semi-colon as the de-
limiter, and naturally, none of the values match expected
ones. Meanwhile, tomorrow never comes, and so this hack
persists in the code base for years. Or, worse yet, tomorrow
comes—and now the data scientist has to discover, thorough
some bug database or wiki page “data mining”perhaps, that
feature_enabled can be a comma-separated list, a semi-
colon separated list, or an actual JSON array—and now she
has to write code to handle all three cases.

The property userid (note, not user_id or userId) is ac-
tually supposed to be a string, but this user’s id happens to
be a sequence of digits, so some upstream process casted it
into a JSON number. Now the type is inconsistent across
different instances of the same message type. Any down-
stream process that attempts to perform a join will throw
a type mismatch exception. Next issue: consider the value
of the page property—is it really the string “null”? Or is
it actually supposed to be null? Or nil? This may seem
pedantic but is nevertheless important. At a recent confer-
ence, when presenting this point, one of the authors asked
the developers in the audience to raise their hand if their

4https://twitter.com/billgraham/status/245687780640960514
5http://wiki.python.org/moin/DunderAlias
6https://twitter.com/billgraham/status/246077392408412160

��������	
�������� ������������������ �������



time has been wasted in the past chasing down bugs that
turned out to be nulls represented as strings when parsing
JSON. Almost everyone raised their hand. We don’t have
to live like this. There is a better way.

Finally, the value of the info property is a nested object.
Is it a flat key–value map, or can there be deeper nesting?
What fields are obligatory, what fields are optional? For
each field, what is the type and range of values? Can it
be null, and if so, how is it indicated (see issue above)? In
many cases, even obtaining a complete catalog of all possible
fields is difficult. Internal documentation is almost always
out of date, and the knowledge lives primarily in the team of
developers who created the applications (who themselves are
often fuzzy on the details of code they had written months
ago). To get around this issue, data scientists often have
to read code (sometimes, old versions of the code dug up
from source control!) to figure out the peculiarities of a log
message format. Another common “solution” is to induce
the message format manually by writing Pig jobs that scrape
large numbers of messages to produce key–value histograms.
Needless to say, both of these alternatives are slow and error-
prone. Note that the same arguments can be applied to the
top-level JSON structure, but nested objects make all these
issues even more maddening.

A large part of this particular issue stems from JSON’s
lack of a fixed schema. This affords the developer great
flexibility in describing complex data with arbitrarily nested
structures, but causes headaches for data scientists who must
make sense of log semantics downstream. Certainly, one can
posit a method for sharing JSON schemas—and we have
gone down this path in the past, with XML and DTDs–but
at that point, why bother with JSON?

4.4 Structured Representations
As described in the previous section, data representation

formats such as JSON standardize parsing but still allow
too much (unconstrained!) flexibility, making long-term data
analysis difficult. We would like to make data scientists’ lives
easier without burdening application developers upstream,
for example, by forcing them into overly-rigid structures.
Like many design problems, striking a good balance between
expressivity and simplicity is difficult.

Our approach to address these problems has been to in-
stitutionalize the use of Apache Thrift for serialization of
all logged messages. Thrift7 provides a simple grammar for
declaring typed structs and code generation tools to allow
the creation and consumption of such structs in a number
of programming languages. Binary serialization protocols
avoid the performance penalty of repeatedly parsing values
from string-based representations. Another key feature of
Thrift is the ability to specify optional and required fields,
which provides a sane path for schema evolution (more be-
low). We have developed a set of tools collectively called
Elephant Bird8 that hooks into the Thrift serialization com-
piler to automatically generate record readers, record writ-
ers, and other “glue” code for both Hadoop, Pig, and other
tools. Protocol Buffers [12] (open-sourced by Google9) and
Apache Avro10 achieve similar goals, with minor implemen-
tation differences.

7http://thrift.apache.org/
8http://github.com/kevinweil/elephant-bird
9http://code.google.com/p/protobuf/

10http://avro.apache.org/

struct MessageInfo {

1: optional string name

2: optional string email // NOTE: unverified.

}

enum Feature {

super_special,

less_special

}

struct LogMessage {

1: required i64 token

2: required string user_id

3: optional list<Feature> enabled_features

4: optional i64 page = 0

5: optional MessageInfo info

}

Table 4: Message definition in Apache Thrift.

A Thrift type definition of the JSON message shown ear-
lier can be found in Table 4. Here, we clearly and concisely
describe constraints on possible messages such as field types
(thus reducing type errors), specify which fields are optional
and which are required, and explicitly define enums that
constrain the range of possible values (when possible).

Combining universal use of Thrift for logging with a small
investment in tooling reduces the friction involved in data
analysis. With a bit of metadata, all our tools now know
how to access any log source. A data scientist can consult
the Thrift definition and immediately knows what to expect,
with some degree of assurance that the messages will pass
basic sanity checks. Schemas can be evolved by adding ad-
ditional optional fields and deprecating old fields; history of
such changes is available via the source control system, and
constrained to just a couple of schema definition files. Note
that although Thrift does not completely resolve the ongo-
ing struggles between the camel and the snake (i.e., different
naming conventions), at least now there is never any doubt
as to what the fields are actually named.

Another benefit of using something like Thrift or Avro is
that it provides a separation between the logical and physi-
cal data representations, a property long appreciated in the
database community. This separation allows the storage
and infrastructure teams to change physical representations
of the data on disk, experiment with different compression
algorithms to tune speed/capacity tradeoffs, put data into
columnar stores [40, 21, 36, 24], create indexes [13, 35], and
apply a number of other optimizations. As long as the mes-
sages can be reconstructed in accordance with the declared
schema, consumers and producers do not need to be con-
cerned with what happens “under the hood”. While the
simplicity of dumping JSON to flat files can allow a small
team to iterate quickly, the infrastructure we have described
provides many benefits when working with large numbers of
data sources, diverse data consumers of varying technical
sophistication, and sufficiently large volumes that advanced
data storage and compression techniques become important.

4.5 Looking Beyond the Schema
While access to schemas reduce much unnecessary over-

head when working with diverse datasets, schemas by them-
selves are not, of course, sufficient for frictionless data analy-
sis at scale. A complete data catalog is needed, which would

��������	
�������� ������������������ �������



allow data scientists, product managers, and other interested
parties to explore what is available in the data warehouse
without blindly poking around Git repositories filled with
Thrift IDL files. The basis of such a service can be found
in the HCatalog project in the Apache Incubator. HCatalog
provides a basic “table” abstraction for files stored in HDFS,
and, true to its name, maintains a catalog of all registered
tables and their schemas. Tables may contain nested ob-
jects, and there is good support for Thrift and Avro data
sources. As long as all processes that create or alter data
on the Hadoop cluster do so through the HCatalog APIs, it
is possible to create web-based tools for exploring the com-
plete set of available data resources. Having such a central-
ized catalog is invaluable, but integration has proven to be
surprisingly difficult when our team tried to bolt it onto ex-
isting workflows post-factum, since hundreds of scripts had
to be converted to use HCatalog, many of them manifest-
ing corner cases that required special treatment. Here lies
a dilemma: for a small team working with only a few data
sources, the overhead of using HCatalog may be more trou-
ble than it’s worth. However, as the complexity of the an-
alytics platform grows, so does the need for the capabilities
that HCatalog offers—but adapting existing workflows can
be painful. There is no simple resolution, as the “right” ap-
proach is heavily context-dependent.

At Twitter, we found that provenance data, not currently
covered by HCatalog, are extremely useful for answering
both data mining questions (“What source data was used to
produce these user clusters?”) as well as questions related to
troubleshooting and recovery (“What consumed this incor-
rect data? Should we regenerate downstream products?”).
In order to add provenance tracking to HCatalog, we built
a thin wrapper around HCatalog loaders and storers that
records information about all reads and writes to different
data sets. These access traces can then be used to con-
struct a complete—and correct—graph of job dependencies
based on the actual data access patterns. Other approaches
to solving the dependency graph visibility problem require
users to explicitly construct such graphs while structuring
their workflows. We found this to be onerous for the user
and error-prone, as some reads and writes invariably hap-
pen“out-of-band”and are not explicitly declared. When the
graph is constructed directly from the executing workflow,
the possibility of missing edges is reduced. In the future,
we plan on further integrating this metadata layer with our
source control and deployment systems so we can automat-
ically identify likely owners of different applications and to
trace problems to individual code commits or deploy ver-
sions when troubleshooting production issues.

Having posited the availability of such a metadata ser-
vice, let us now consider a hypothetical scenario in which a
data scientist wishes to understand how a particular prod-
uct is used. Because of the service architecture discussed in
Section 3.1, the necessary data is almost always distributed
across multiple log types. With HCatalog and all of the
best practices discussed above, it should be easy for her to
identify the right data sources and gain an overview of their
contents quickly. However, the challenge occurs when she
attempts to reconstruct user sessions, which form the basic
unit of most analyses. Session reconstruction is typically ac-
complished by joining log messages from different services,
sorting by time, and then segmenting based on an inactiv-
ity threshold. But what’s the join key? Most naturally, a

composite key comprising the user id and a session token
(based on a browser cookie) would suffice, provided that the
application developer logged the user id and session token!
Unfortunately, that information isn’t always available. In
many cases, it’s not even an issue of logging: the service
API simply wasn’t designed to require the session token in
its request invocation, so there’s no way to record the in-
formation without changing the API.11 We can usually get
around missing data by performing timestamp arithmetic to
reconstruct the user’s sequences of actions, but such hacks
are fraught with complex, unmaintainable temporal logic
and full of corner cases that aren’t accounted for. On the is-
sue of timestamps, we must frequently deal with conversion
between different formats: one source logs epoch millisec-
onds, the second a timestamp in MySQL format, the third a
timestamp in Apache log format. This is a relatively minor
annoyance as we have a library for time format conversions,
but the accumulation of annoyances increases development
friction and slows iteration speed. It would be desirable to
have shared semantics across different log types, but this is
very hard to accomplish in a large organization with dozens
of teams working on a multitude of services, largely indepen-
dent of each other. The upshot is that data scientists spend
an inordinate amount of time reconstructing the user’s ac-
tivity before any useful analysis even begins.
“Client events” is an attempt to address this issue for

logs generated by Twitter clients (e.g., the twitter.com site,
clients on iPhones and Android devices, etc.) by unifying
log formats. This project was described in a recent pa-
per [31], so here we only provide a brief summary. The
idea behind client event logs is to establish a flexible, shared
Thrift schema for all Twitter-owned clients from which data
scientists can easily reconstruct user sessions to perform be-
havior analysis. This is accomplished by requiring that all
messages share certain fields (e.g., event name, user id, ses-
sion id, timestamp) with precisely-defined semantics, while
allowing sufficient flexibility to capture event-specific details.
Event names are modeled after the client’s view hierarchy
(e.g., DOM in the case of the web client), making it easy
to focus on specific Twitter products, e.g., search, discovery,
user recommendations, etc. Since the most recent iteration
of Twitter clients establishes a common design language, it
becomes easier to adapt analysis scripts to, say, compare mo-
bile vs. web usage of the same product. So far, client events
have worked well for us and have greatly simplified session-
based analyses for data scientists. The takeaway message
here is that enforcing some degree of semantic homogeneity
can have big payoffs, although we are also quick to point out
that this is not possible or practical in many cases.

5. PLUMBING IS IMPORTANT
One of the biggest challenges in building and operating

a production analytics platform is handling impedance mis-
matches that arise from crossing boundaries between differ-
ent systems and frameworks. Different systems or frame-
works excel at different problems, and it makes sense to
choose the right tool for the job. However, this must be
balanced against the cost of knitting together a patchwork

11This happens when a data scientist isn’t involved in the design
of a service API. For stateless back-end services, there normally
wouldn’t be a need to keep track of session tokens, except to
support downstream analytics.

��������	
�������� ������������������ �������



of different components into integrated workflows. Different
systems and frameworks provide alternative models and con-
structs for thinking about computation: MapReduce forces
the developer to decompose everything into maps and re-
duces; Pregel [37] makes the developer think in terms of ver-
tex computations and message passing; relational databases
are constrained by schemas and SQL. This is not necessar-
ily a bad thing: for example, the simplicity of MapReduce
makes it easy to scale out and handle fault tolerance though
retries. Different models of computation necessarily make
some problems easier (otherwise, there would be no point),
but as a side effect they make other problems unnatural or
difficult, and in some cases, impossible. Furthermore, sys-
tems and frameworks have differing performance and scala-
bility characteristics. Working solely within the confines of
a single one, these restrictions are often not very apparent.
However, impedance mismatches come into stark relief when
trying to cross system or framework boundaries.

Our favorite example of an impedance mismatch is the
import pipeline that loads data from user-facing databases
into our Hadoop data warehouse. Like many organizations,
Twitter runs sharded MySQL databases for most user-facing
services. This suggests a very simple import mechanism:
connect to the right database partition, issue a SELECT *

FROM... query, gather the results, and write into HDFS.
Of course, we can do this in parallel inside mappers, which
speeds up the import process. The problem is that it is very
easy to start thousands of mappers in Hadoop—if not care-
ful, we launch what amounts to a denial of service attack
against our own system as thousands of processes attempt
to simultaneously grab database connections, bringing the
database cluster down. The underlying cause is the differing
scalability characteristics of MySQL and Hadoop, which are
not exposed at the interfaces provided by these services; ad-
ditional layers for handling QOS, pushing back on over-eager
clients (and handling such pushback), etc. become necessary.

The other significant challenge in integrating heteroge-
neous systems and frameworks for large-scale data process-
ing is threading dataflows across multiple interfaces. The
simple fact is that no single production job executes in iso-
lation: everything is part of some larger workflow. The job
depends on some data that is generated upstream: the de-
pendencies may be dozens of steps deep and ultimately ter-
minate at data imports from external sources. Similarly,
an analytics job usually feeds downstream process, again,
potentially dozens of steps deep, ultimately culminating in
data that is presented in a dashboard, deployed back out
to user-facing services, etc. In a production analytics plat-
form, everything must run like clockwork: data imports must
happen at fixed intervals; internal users are expecting dash-
boards and other reporting mechanisms to be up to date;
user-facing data products must be refreshed frequently or
the system risks presenting stale data. Orchestrating this
entire process, which includes scheduling, dependency man-
agement, error handling, monitoring, etc. is no easy task—
and is made exponentially more complex if synchronization
needs to occur across different systems and frameworks.

To further complicate matters, a production analytics plat-
form usually has code contributions from multiple teams. At
Twitter, the analytics infrastructure team builds common
tools, but most of the analytics workload comes from the
dozens of teams who use the tools. The threading of work-
flows across different systems and frameworks frequently

crosses team boundaries—for example, Scalding12 jobs from
the promoted products team depend on the result of graph
analytics jobs in Pig built by another team. The analyt-
ics infrastructure engineers are responsible for orchestrating
this complex operation, but their job is made challenging by
the fact that they do not have detailed knowledge of most
of the jobs running on Hadoop.

We use the term “plumbing” to refer to the set of chal-
lenges presented above. These issues particularly affect data
mining at scale, as we explain below.

5.1 Ad Hoc Data Mining
There are three main components of a data mining solu-

tion: the raw data, the feature representation extracted from
the data, and the model or algorithm used to solve the prob-
lem. Accumulated experience over the last decade has shown
that in real-world settings, the size of the dataset is the most
important factor of the three [18, 33]. Studies have repeat-
edly shown that simple models trained over enormous quan-
tities of data outperform more sophisticated models trained
on less data [2, 7, 14]. For many applications, simple features
are sufficient to yield good results—examples in the text do-
main include the use of simple byte-level n-gram features,
eschewing even relatively simple text processing tasks such
as HTML tag cleanup and tokenization. This, for example,
works well for spam detection [26, 10, 50]. Simple features
are fast to extract, thus more scalable: imagine, for exam-
ple, the computational resources necessary to analyze every
single outgoing and incoming message in a web email ser-
vice. Today, at least in industry, solutions to a wide range
of problems are dominated by simple approaches fed with
large amounts of data.

For unsupervised data mining, the “throw more data at
the problem” approach seems obvious since it allows an or-
ganization to make sense of large accumulated data stores.
The connection to supervised approaches, however, seems
less obvious: isn’t the amount of data that can be brought
to bear limited by the scale at which ground truth can be
acquired? This is where user behavior logs are most useful—
the insight is to let users provide the ground truth implicitly
as part of their normal activities. Perhaps the most success-
ful example of this is “learning to rank” [32], which describes
a large class of supervised machine learning approaches to
web search ranking. From users’ relevance judgments, it is
possible to automatically induce ranking functions that op-
timize a particular loss function. Where do these relevance
judgments come from? Commercial search engine compa-
nies hire editorial staff to provide these judgments manu-
ally with respect to user queries, but they are supplemented
with training data mined from search query and interaction
logs. It has been shown that certain interaction patterns
provide useful (weak) relevance judgments that can be ex-
ploited by learning-to-rank techniques [25]. Intuitively, if
the user issues a query and clicks on a search result, this
observation provides weak evidence that the result is rele-
vant to the query. Of course, user interaction patterns are
far more complex and interpretations need to be more nu-
anced, but the underlying intuition of mining behavior logs
to provide (noisy) ground truth for supervised algorithms is
foundational and generalizes beyond web search. This cre-
ates a virtuous cycle: a high quality product attracts users

12https://dev.twitter.com/blog/scalding

��������	
�������� ������������������ �������



and generates a wealth of behavioral data, which can then
be mined to further improve the product.

Until relatively recently, the academic data mining and
machine learning communities have generally assumed se-
quential algorithms on data that fit into memory. This as-
sumption is reflected in popular open-source tools such as
Weka,13 Mallet,14 and others. These tools lower the barrier
to entry for data mining, and are widely used by many or-
ganizations and other researchers as well. From a pragmatic
point of view, it makes little sense to reinvent the wheel, es-
pecially for common algorithms such as k-means clustering
and logistic regression. However, using tools designed to run
on a single server for big data mining is problematic.

To elaborate, we share our experiences working with exist-
ing open-source machine learning tools. The broader context
is the lifecycle described in Section 3, but here we focus on
the actual machine learning. After initial explorations and
problem formulation, generation of training and test data
for a specific application is performed on Hadoop (typically
using Pig). Scripts often process tens of terabytes of data
(if not more) to distill compact feature representations; al-
though these are usually orders of magnitude smaller, they
can still easily be in the tens to hundreds of gigabytes. Here
we encounter an impedance mismatch between a petabyte-
scale analytics platform and machine learning tools designed
to run on a single machine. The obvious solution is to sam-
ple. One simple sampling approach is to generate data from
a limited set of logs (e.g., a single day), even though it would
be just as easy to generate data from many more. The
smaller dataset would then be copied out of HDFS onto
another machine (e.g., another server in the datacenter or
the developer’s laptop). Once the data have been brought
over, the developer would perform typical machine learning
tasks: training, testing, parameter tuning, etc.

There are many issues with this process. First, and per-
haps the most important, is that sampling largely defeats
the point of working with big data in the first place. Train-
ing a model on only a small fraction of logs does not give
an accurate indication of the model’s effectiveness at scale.
Generally, we observe improvements with growing amounts
of data, but there is no way to quantify this short of actu-
ally running experiments at scale. Furthermore, sampling
often yields biased models—for example, using the most re-
cent day of logs over-samples active users, compared to, for
example, analyses across a larger time window. Often, the
biases introduced in the sampling process are subtle and dif-
ficult to detect. We can remember several instances where
a model performed very well on a small sample of users,
but its performance steadily deteriorated as we applied it to
more and more users.

Second, having to first run Pig scripts and then copy data
out of HDFS and import into another environment creates
a slow development cycle. Machine learning is an iterative
process: for example, after initial experiments we think of a
new feature or realize that we should have preprocessed the
data in a certain way. This forces a context switch back to
Pig to modify the scripts, rerun on the cluster, followed by
more data copying. After a few iterations (waiting for jobs
on the cluster to complete each time), we are left with several
variations of the same dataset in multiple places, and have

13http://www.cs.waikato.ac.nz/ml/weka/
14http://mallet.cs.umass.edu/

lost track of which script generated which version. To be
fair, we would encounter these data management challenges
in any analytics environment, but working across the cluster
and a local tool exacerbates the problem. We frequently end
up with at least three copies of similar data: the complete
dataset on HDFS, one or more smaller datasets on HDFS
(sampled using different strategies), and the identical data
on a local machine for experimentation.

Finally, productionizing machine-learned models was awk-
ward and brittle at best. Test data were prepared in Pig and
divided into small batches, copied out of HDFS, and fed to
the learned model (for example, running on another machine
in the datacenter). Results were then copied from local disk
back to HDFS, where they fed downstream processes. It
was most common to have these complex flows orchestrated
by shell scripts on cron, which was not a scalable solution.
Retraining the model was even more ad hoc—in a few cases,
we relied on “human cron”, or having engineers remember to
retrain models (by hand) “once in a while”.

5.2 Scalable Machine Learning
Over the past few years, scaling up machine learning al-

gorithms with multi-core [41] and cluster-based solutions [1]
has received much interest. Examples include learning deci-
sion trees and their ensembles [3, 49, 43], MaxEnt mod-
els [38], structured perceptrons [39], support vector ma-
chines [8], and simple phrase-based approaches [4]. Recent
work in online learning (e.g., work by Bottou [6] and Vow-
pal Wabbit15) relax the assumption that data must fit into
memory, and are amenable to learning at a massive scale on
disk-resident data. In the open-source world, Mahout16 is
emerging as a popular toolkit for large-scale machine learn-
ing and data mining tasks.

These are encouraging developments, but not complete
end-to-end solutions. In particular, most work focuses on
scalable machine learning itself; relatively little attention
is paid to the integration issues we have discussed above.
For example, Vowpal Wabbit is an extremely fast online
learner optimized for streaming through millions of training
instances on disk. However, we are still left with the problem
of how to get data to the learner—for us, feature generation
and data preparation must still be performed on Hadoop, so
we still need to orchestrate the process of getting the data
out of HDFS and into Vowpal Wabbit. Given the myriad
issues discussed above, we hope that the reader realizes by
now that this is not an easy task.

Our experience with Mahout raises a different set of is-
sues: there are components of Mahout that are designed to
run efficiently on a single machine, and other parts that
scale to massive datasets using Hadoop. However, Mahout
processing for many tasks consists of monolithic multi-stage
pipelines: it demands that data be processed into a specific
format and generates results in custom representations. In-
tegrating Mahout into our analytics platform required de-
veloping adaptors on both ends—getting data into Mahout
and results out. While this was “simply a matter of soft-
ware engineering” (and indeed we have written and shared
much of this “glue” code17), it exemplifies the impedance
mismatch and integration issues we have been discussing.

15http://hunch.net/∼vw/
16http://mahout.apache.org/
17https://github.com/kevinweil/elephant-bird

��������	
�������� ������������������ �������



5.3 Integrated Solutions
How do we build big data mining infrastructure that ad-

dresses the “plumbing” issues we’ve discussed above? Here,
we share our experiences and discuss alternative approaches.

Our present solution for machine learning was recently
presented elsewhere [34], but here we provide a very brief
overview. Our approach involves integrating machine learn-
ing components into Pig so that machine learning is just an-
other Pig script, which allows seamless integration with ex-
isting infrastructure for data management, scheduling, and
monitoring, as well as access to rich libraries of existing
UDFs and the materialized output of other scripts.

This is accomplished with two techniques: stochastic gra-
dient descent for fast one-pass learning and scale out by data
partitioning with ensembles. We have developed Pig exten-
sions to fold learners into storage functions, which are ab-
stractions for data sinks that materialize tuples onto durable
storage (e.g., HDFS). In our case, instead of materializing
the tuples themselves, they are treated as training exam-
ples, and instead the model is materialized once all training
instances have been processed.

The MADLib project [9, 22] adopts an interesting alterna-
tive approach by pushing functionality into the database, so
that various data mining algorithms can run at scale inside
the database engine. This is attractive because it elimi-
nates the need to import/export data to other tools, which
immediately solves many of the “plumbing” problems we’ve
been discussing. The reasoning goes as follows: since many
database analysts and data scientists are already perform-
ing analytics in SQL databases (e.g., cubing, aggregations,
etc.), why not provide data mining capabilities in the form
of familiar SELECT... FROM... WHERE... commands? Bringing
analytics inside the database has the added advantage of
letting the database engine do what it’s good at: query opti-
mization and scalable execution. Currently, MADLib (v0.3)
provides supervised learning algorithms such as logic regres-
sion and decision trees as well as unsupervised algorithms
such as k-means clustering and SVD matrix factorization.

Both our and the MADLib approach are similar in that
they attempt to streamline data mining by deep integration—
the best way to solve impedance mismatch issues from dif-
ferent systems is to remove the interface completely! We
do so by bringing machine learning inside Pig and Hadoop;
MADLib does the same via SQL with an RDBMS. The pri-
mary difference we see is the profile of the target user. In
the case of MADLib, the ideal user is a database analyst
who spends a lot of time working with SQL already—the
project aims to augment analysts’ toolbox with data mining
and machine learning algorithms. In our case, Twitter data
scientists are just as comfortable writing R scripts for com-
plex data analysis as they are writing page-long SQL queries,
with probably a slight preference for the former—thus, Pig’s
step-by-step dataflow specification comes naturally. In any
case, since Pig is already established as the most widely
used large-scale data processing tool at Twitter, integration
of machine learning was the next logical step.

This integration-based approach to large-scale machine
learning and data mining is by no means limited to MADLib
and our work. For example, SystemML [16] attempts to
create an environment similar to the R language. RHIPE18

takes this one step further by attempting to parallelize R

18http://www.datadr.org/

directly via Hadoop integration. This line of work is re-
lated to attempts at developing custom domain-specific lan-
guages (DSLs) for machine learning (see, for example, sev-
eral examples at the NIPS 2011 Workshop on “Big Learn-
ing”). Collectively, these approaches remain immature, and
we do not believe that any can be definitively recommended
as best practice (including ours). The community is still in
a phase of experimentation, but the substantial interest in
large-scale data mining frameworks will undoubtedly lead to
interesting innovations in the future.

We conclude this section by identifying two underexplored
questions deserving of attention. First, we believe that vi-
sualization is an important aspect of big data mining, both
from the perspective of communicating results (i.e., “telling
a story” to one’s peers, managers, etc.) and as a vehicle for
generating insights (i.e., visualizations that help the data
scientist learn about the problem). As an example, see Rios
and Lin [47] for a few case studies that we recently shared.
Browser-based toolkits such as d3.js [5] have emerged as
the preferred method of creating and sharing visualizations,
which means that development is, for the most part, limited
to an engineer’s laptop—this brings us back to the awkward-
ness of generating and distilling data using Pig, then copying
data out of HDFS. Furthermore, a browser’s ability to deal
with large datasets is limited—in practice, a few megabytes
at the most—which implies either a large degree of sampling
or pre-aggregation along certain dimensions. Constraints
on data preparation limit the extent to which visualizations
can generate insights—it is impossible to identify the impact
of features that have been discarded or rolled up in aggre-
gate. Although we are aware of work to provide visualiza-
tion support for machine learning [44], much more remains
to be done. We have recently read about Facebook’s use of
Tableau,19 which is clearly an attempt at solving this prob-
lem, but we were not able to find sufficient technical details
to comment on the architecture.

The second open problem concerns real-time (or at least
rapid) interactions with large datasets. Since data mining
is an iterative process, we desire tools that shorten the de-
velopment cycle and enable faster experimentation. This is
a capability that our Hadoop-based stack currently cannot
provide. Here is the scenario that our data scientists deal
with on a daily basis: Write a Pig script and submit a job.
Wait five minutes for the job to finish. Discover that the
output is empty because of the wrong join key. Fix simple
bug. Resubmit. Wait another five minutes. Rinse, repeat.
It’s fairly obvious that these long debug cycles hamper pro-
ductivity; this is a fundamental weakness of MapReduce as
a batch system. Examples of recent systems that are de-
signed to enable low-latency analytics include Dremel [40],
Spark [52], PowerDrill [19], and Impala,20 although the gen-
eral problem is far from solved.

6. CONCLUSIONS
Rather than re-enumerating all the best practices, recom-

mendations, and unresolved questions in this paper, we con-
clude with a discussion of where we feel the field is going from
a different perspective. At the end of the day, an efficient
and successful big data analytics platform is about achieving
the right balance between several competing factors: speed

19https://twitter.com/tableau/status/266974538175242240
20https://github.com/cloudera/impala

��������	
�������� ������������������ ������ 



of development, ease of analytics, flexibility, scalability, ro-
bustness, etc. For example, a small team might be able to
iterate on the front-end faster with JSON logging, eschewing
the benefits of having schemas, but experience tells us that
the team is accruing technical debt in terms of scalability
challenges down the road. Ideally, we would like an ana-
lytics framework that provides all the benefits of schemas,
data catalogs, integration hooks, robust data dependency
management and workflow scheduling, etc. while requiring
zero additional overhead. This is perhaps a pipe dream, as
we can point to plenty of frameworks that have grown unus-
able under their own weight, with pages of boilerplate code
necessary to accomplish even a simple task. How to provide
useful tools while staying out of the way of developers is a
difficult challenge.

As an organization grows, the analytics infrastructure will
evolve to reflect different balances between various compet-
ing factors. For example, Twitter today generally favors
scale and robustness over sheer development speed, as we
know that if things aren’t done “right” to begin with, they’ll
become maintenance nightmares down the road. Previously,
we were more focused on just making things possible, imple-
menting whatever expedient was necessary. Thinking about
the evolution of analytics infrastructure in this manner high-
lights two challenges that merit future exploration:

First, are there prototypical evolutionary stages that data-
centric organizations go through? This paper shares the
Twitter experience as a case study, but can we move beyond
anecdotes and war stories to a more formal classification of,
for example, Stage-I, Stage-II, . . . Stage-N organizations?
In this hypothetical taxonomy, each stage description would
be accompanied by the most pressing challenges and spe-
cific recommendations for addressing them. We would like
to formalize the advice presented in this paper in terms of
specific contexts in which they are applicable.

Second, how do we smoothly provide technology support
that will help organizations grow and transition from stage
to stage? For example, can we provide a non-disruptive mi-
gration path from JSON logs to Thrift-based logs? How do
we provide support for deep integration of predictive ana-
lytics down the road, even though the organization is still
mostly focused on descriptive aggregation-style queries to-
day? If a framework or set of best practices can provide a
smooth evolutionary path, then it may be possible for an or-
ganization to optimize for development speed early on and
shift towards scale and robustness as it matures, avoiding
disruptive infrastructure changes in the process.

In this paper, we have attempted to describe what it’s
like “in the trenches” of a production big data analytics en-
vironment. We hope that our experiences are useful for both
practitioners and academic researchers. Practitioners should
get a few chuckles out of our war stories and know how to
avoid similar mistakes. For academic researchers, a better
understanding of the broader context of big data mining can
inform future work to streamline insight generation activi-
ties. We’d like to think that this paper has, however slightly,
contributed to the community’s shared knowledge in build-
ing and running big data analytics infrastructure.

7. ACKNOWLEDGMENTS
None of the work described here would have been possi-

ble without the analytics infrastructure engineers and data
scientists at Twitter: this paper distills their collective wis-

dom, successes, and frustrations. We’d like to thank Albert
Bifet and Wei Fan for the invitation to write this article, and
Joe Hellerstein and Anthony Tomasic for helpful comments
on a previous draft. The first author is grateful to Esther
and Kiri for their loving support and dedicates this work to
Joshua and Jacob.

8. REFERENCES

[1] A. Agarwal, O. Chapelle, M. Dudik, and J. Langford.
A reliable effective terascale linear learning system. In
arXiv:1110.4198v1, 2011.

[2] M. Banko and E. Brill. Scaling to very very large
corpora for natural language disambiguation. In ACL,
2001.

[3] J. Basilico, M. Munson, T. Kolda, K. Dixon, and
W. Kegelmeyer. COMET: A recipe for learning and
using large ensembles on massive data. In ICDM, 2011.

[4] R. Bekkerman and M. Gavish. High-precision
phrase-based document classification on a modern
scale. In KDD, 2011.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-Driven Documents. In InfoVis, 2011.

[6] L. Bottou. Large-scale machine learning with
stochastic gradient descent. In COMPSTAT, 2010.

[7] T. Brants, A. Popat, P. Xu, F. Och, and J. Dean.
Large language models in machine translation. In
EMNLP, 2007.

[8] E. Chang, H. Bai, K. Zhu, H. Wang, J. Li, and Z. Qiu.
PSVM: Parallel Support Vector Machines with
incomplete Cholesky factorization. In Scaling up
Machine Learning: Parallel and Distributed
Approaches. Cambridge University Press, 2012.

[9] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and
C. Welton. MAD skills: New analysis practices for big
data. In VLDB, 2009.

[10] G. Cormack, M. Smucker, and C. Clarke. Efficient and
effective spam filtering and re-ranking for large web
datasets. In arXiv:1004.5168v1, 2010.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[12] J. Dean and S. Ghemawat. MapReduce: A flexible
data processing tool. CACM, 53(1):72–77, 2010.

[13] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin,
V. Setty, and J. Schad. Hadoop++: Making a yellow
elephant run like a cheetah (without it even noticing).
In VLDB, 2010.

[14] C. Dyer, A. Cordova, A. Mont, and J. Lin. Fast, easy,
and cheap: Construction of statistical machine
translation models with MapReduce. In StatMT
Workshop, 2008.

[15] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanamurthy, C. Olston, B. Reed, S. Srinivasan,
and U. Srivastava. Building a high-level dataflow
system on top of MapReduce: The Pig experience. In
VLDB, 2009.

[16] A. Ghoting, R. Krishnamurthy, E. Pednault,
B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan. SystemML: Declarative
machine learning on MapReduce. In ICDE, 2011.

[17] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede,
R. Park, J. Rao, and V. Ye. Building LinkedIn’s

��������	
�������� ������������������ ������!



real-time activity data pipeline. Bulletin of the
Technical Committee on Data Engineering,
35(2):33–45, 2012.

[18] A. Halevy, P. Norvig, and F. Pereira. The
unreasonable effectiveness of data. IEEE Intelligent
Systems, 24(2):8–12, 2009.

[19] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and
M. Nunkesser. Processing a trillion cells per mouse
click. In VLDB, 2012.

[20] J. Hammerbacher. Information platforms and the rise
of the data scientist. In Beautiful Data: The Stories
Behind Elegant Data Solutions. O’Reilly, 2009.

[21] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang,
and Z. Xu. RCFile: A fast and space-efficient data
placement structure in MapReduce-based warehouse
systems. In ICDE, 2011.

[22] J. Hellerstein, C. Ré, F. Schoppmann, D. Wang,
E. Fratkin, A. Gorajek, K. Ng, C. Welton, X. Feng,
K. Li, and A. Kumar. The MADlib Analytics Library
or MAD skills, the SQL. In VLDB, 2012.

[23] T. Hey, S. Tansley, and K. Tolle. The Fourth
Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, Redmond, Washington, 2009.

[24] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. Trojan
data layouts: Right shoes for a running elephant. In
SoCC, 2011.

[25] T. Joachims, L. Granka, B. Pan, H. Hembrooke,
F. Radlinski, and G. Gay. Evaluating the accuracy of
implicit feedback from clicks and query reformulations
in Web search. ACM TOIS, 25(2):1–27, 2007.

[26] I. Kanaris, K. Kanaris, I. Houvardas, and
E. Stamatatos. Words versus character n-grams for
anti-spam filtering. International Journal on Artificial
Intelligence Tools, 16(6):1047–1067, 2007.

[27] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Enterprise data analysis and visualization: An
interview study. In VAST, 2012.

[28] R. Kohavi, A. Deng, B. Frasca, R. Longbotham,
T. Walker, and Y. Xu. Trustworthy online controlled
experiments: Five puzzling outcomes explained. In
KDD, 2012.

[29] R. Kohavi, R. Henne, and D. Sommerfield. Practical
guide to controlled experiments on the web: Listen to
your customers not to the HiPPO. In KDD, 2007.

[30] J. Kreps, N. Narkhede, and J. Rao. Kafka: A
distributed messaging system for log processing. In
NetDB, 2011.

[31] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy. The
unified logging infrastructure for data analytics at
Twitter. In VLDB, 2012.

[32] H. Li. Learning to Rank for Information Retrieval and
Natural Language Processing. Morgan & Claypool,
2011.

[33] J. Lin and C. Dyer. Data-Intensive Text Processing
with MapReduce. Morgan & Claypool Publishers, 2010.

[34] J. Lin and A. Kolcz. Large-scale machine learning at
Twitter. In SIGMOD, 2012.

[35] J. Lin, D. Ryaboy, and K. Weil. Full-text indexing for
optimizing selection operations in large-scale data
analytics. In MAPREDUCE Workshop, 2011.

[36] Y. Lin, D. Agrawal, C. Chen, B. Ooi, and S. Wu.

Llama: Leveraging columnar storage for scalable join
processing in the MapReduce framework. In
SIGMOD, 2011.

[37] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In SIGMOD, 2010.

[38] G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker. Efficient large-scale distributed training of
conditional maximum entropy models. In NIPS, 2009.

[39] R. McDonald, K. Hall, and G. Mann. Distributed
training strategies for the structured perceptron. In
HLT, 2010.

[40] S. Melnik, A. Gubarev, J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive analysis of web-scale datasets. In VLDB,
2010.

[41] A. Ng, G. Bradski, C.-T. Chu, K. Olukotun, S. Kim,
Y.-A. Lin, and Y. Yu. Map-Reduce for machine
learning on multicore. In NIPS, 2006.

[42] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In SIGMOD, 2008.

[43] B. Panda, J. Herbach, S. Basu, and R. Bayardo.
MapReduce and its application to massively parallel
learning of decision tree ensembles. In Scaling up
Machine Learning: Parallel and Distributed
Approaches. Cambridge University Press, 2012.

[44] K. Patel, N. Bancroft, S. Drucker, J. Fogarty, A. Ko,
and J. Landay. Gestalt: Integrated support for
implementation and analysis in machine learning. In
UIST, 2010.

[45] D. Patil. Building Data Science Teams. O’Reilly, 2011.

[46] D. Patil. Data Jujitsu: The Art of Turning Data Into
Product. O’Reilly, 2012.

[47] M. Rios and J. Lin. Distilling massive amounts of data
into simple visualizations: Twitter case studies. In
Workshop on Social Media Visualization at ICWSM,
2012.

[48] D. Sculley, M. Otey, M. Pohl, B. Spitznagel,
J. Hainsworth, and Y. Zhou. Detecting adversarial
advertisements in the wild. In KDD, 2011.

[49] K. Svore and C. Burges. Large-scale learning to rank
using boosted decision trees. In Scaling up Machine
Learning: Parallel and Distributed Approaches.
Cambridge University Press, 2012.

[50] B. Taylor, D. Fingal, and D. Aberdeen. The war
against spam: A report from the front line. In NIPS
Workshop on Machine Learning in Adversarial
Environments, 2007.

[51] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur,
N. Jain, J. Sarma, R. Murthy, and H. Liu. Data
warehousing and analytics infrastructure at Facebook.
In SIGMOD, 2010.

[52] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient Distributed Datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
NSDI, 2012.

��������	
�������� ������������������ ������"




