

Data-Intensive Distributed Computing CS 451/651 (Fall 2018)

Part 9: Real-Time Data Analytics (2/2) November 27, 2018

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2018f/

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Since last time...

Storm/Heron

Gives you pipes, but you gotta connect everything up yourself

Spark Streaming

Gives you RDDs, transformations and windowing – but no event/processing time distinction

Beam

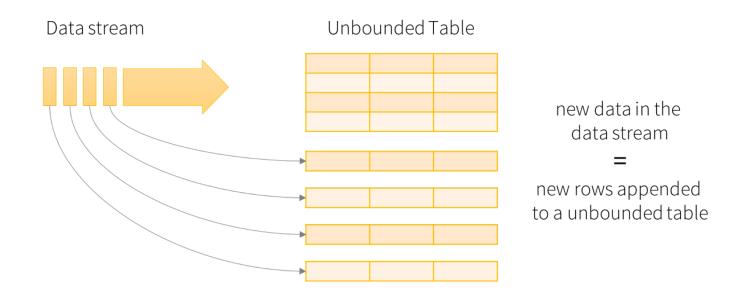
Gives you transformations and windowing, event/processing time distinction – but too complex

rk Structured Stream

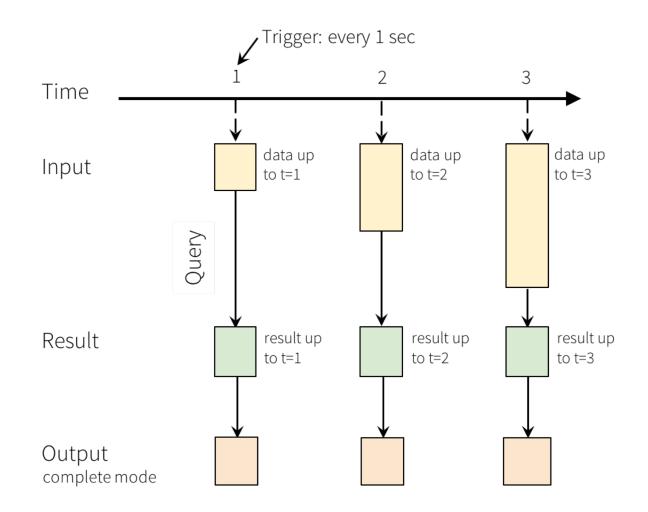
Stream Processing Frameworks

Source: Wikipedia (River)

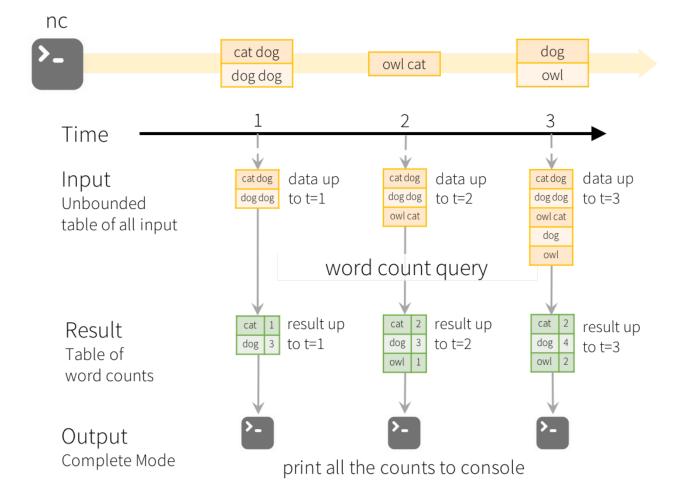
Step I: From RDDs to DataFrames Step 2: From bounded to unbounded tables



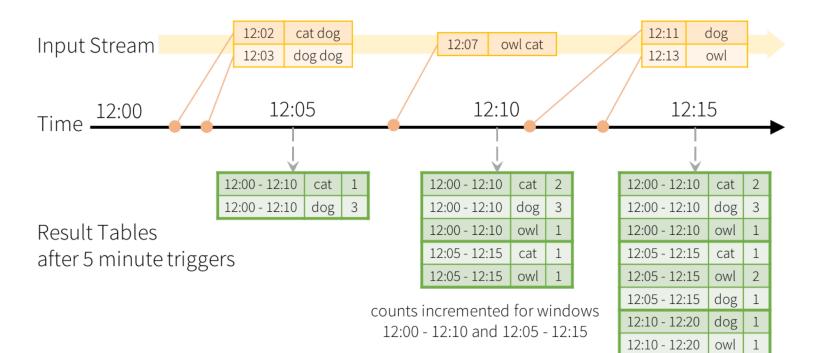
Data stream as an unbounded table



Programming Model for Structured Streaming



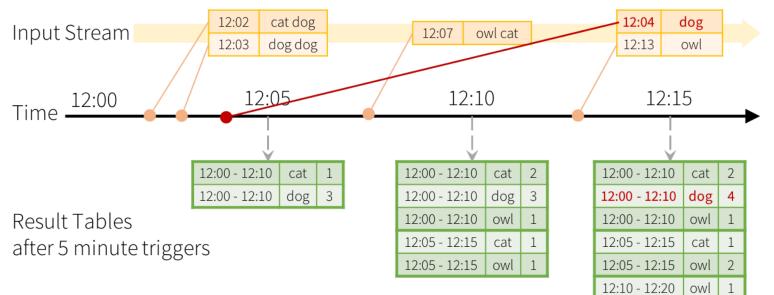
Model of the Quick Example



Windowed Grouped Aggregation with 10 min windows, sliding every 5 mins

counts incremented for windows 12:05 - 12:15 and 12:10 - 12:20

late data that was generated at 12:04 but arrived at 12:11



counts incremented only for window 12:00 - 12:10

Late data handling in Windowed Grouped Aggregation

Source: Spark Structured Streaming Documentation

Interlude

Source: Wikipedia (River)

Streams Processing Challenges

Inherent challenges Latency requirements Space bounds

System challenges

Bursty behavior and load balancing Out-of-order message delivery and non-determinism Consistency semantics (at most once, exactly once, at least once)

Algorithmic Solutions

Throw away data Sampling

Accepting some approximations Hashing

Reservoir Sampling

Task: select s elements from a stream of size N with uniform probability N can be very very large We might not even know what N is! (infinite stream)

Solution: Reservoir sampling

Store first s elements For the k-th element thereafter, keep with probability s/k (randomly discard an existing element)

Example: s = 10

Keep first 10 elements 11th element: keep with 10/11 12th element: keep with 10/12

Reservoir Sampling: How does it work?

Example: s = 10

Keep first 10 elements 11th element: keep with 10/11

If we decide to keep it: sampled uniformly by definition probability existing item is discarded: $10/11 \times 1/10 = 1/11$ probability existing item survives: 10/11

General case: at the (k + 1)th element Probability of selecting each item up until now is s/kProbability existing item is discarded: $s/(k+1) \times 1/s = 1/(k + 1)$ Probability existing item survives: k/(k + 1)Probability each item survives to (k + 1)th round: $(s/k) \times k/(k + 1) = s/(k + 1)$

Hashing for Three Common Tasks

Cardinality estimation What's the cardinality of set S? How many unique visitors to this page? HashSet HLL counter Set membership Is x a member of set S? Has this user seen this ad before? HashSet Bloom Filter Frequency estimation How many times have we observed x? How many queries has this user issued? HashMap CMS

HyperLogLog Counter

Task: cardinality estimation of set $size() \rightarrow number of unique elements in the set$

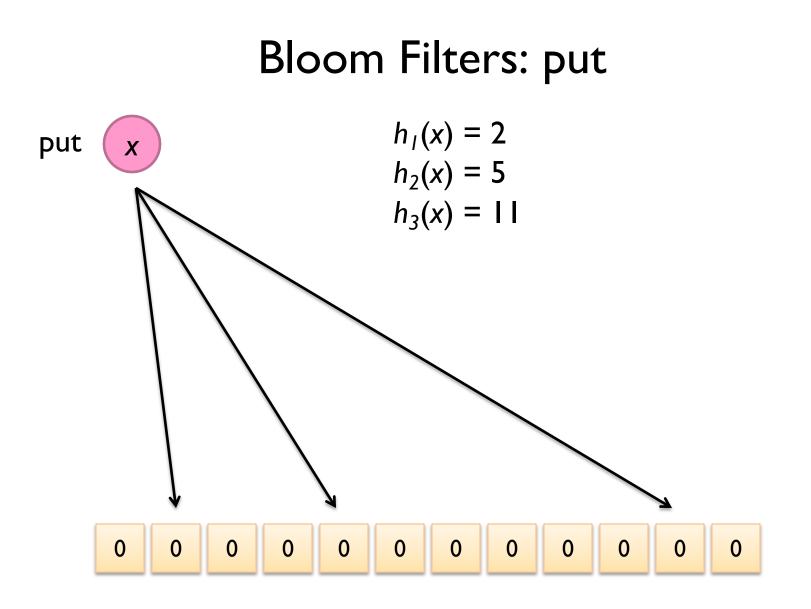
Observation: hash each item and examine the hash code On expectation, 1/2 of the hash codes will start with 0 On expectation, 1/4 of the hash codes will start with 00 On expectation, 1/8 of the hash codes will start with 000 On expectation, 1/16 of the hash codes will start with 0000

How do we take advantage of this observation?

Bloom Filters

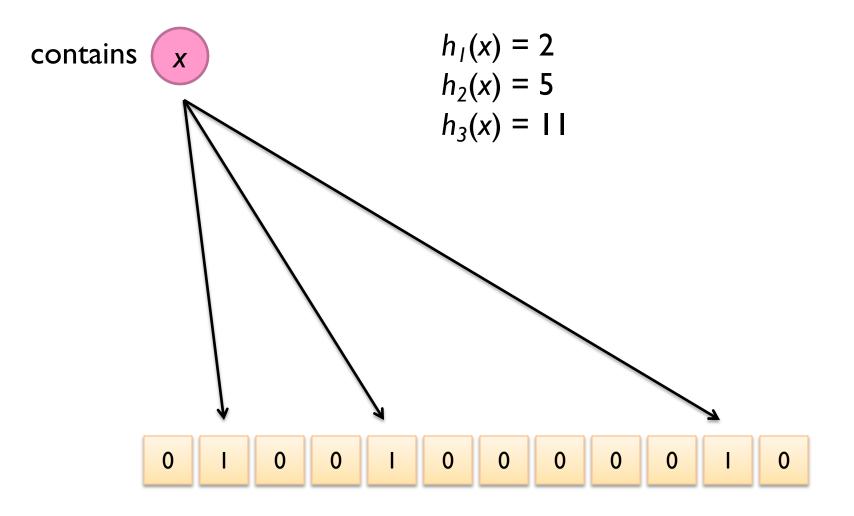
Task: keep track of set membership $put(x) \rightarrow insert x into the set$ $contains(x) \rightarrow yes if x is a member of the set$

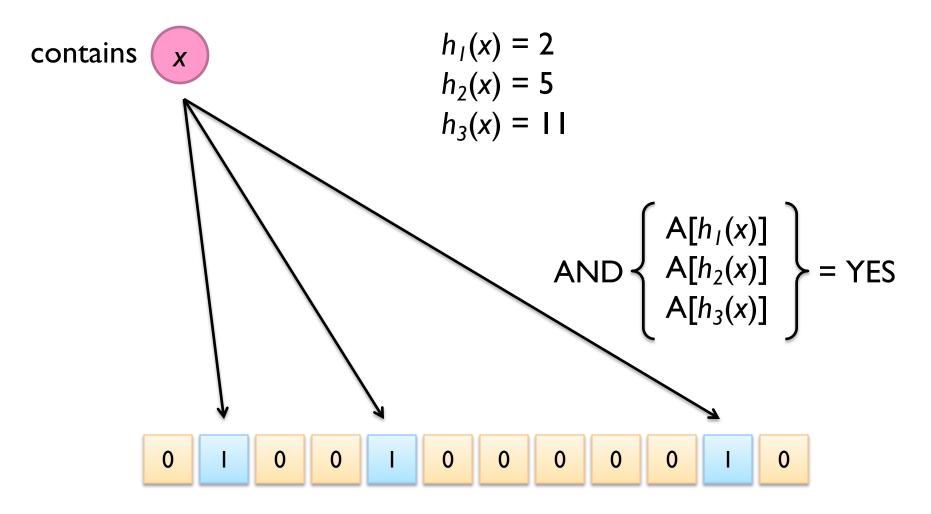
> Components *m*-bit bit vector *k* hash functions: $h_1 \dots h_k$

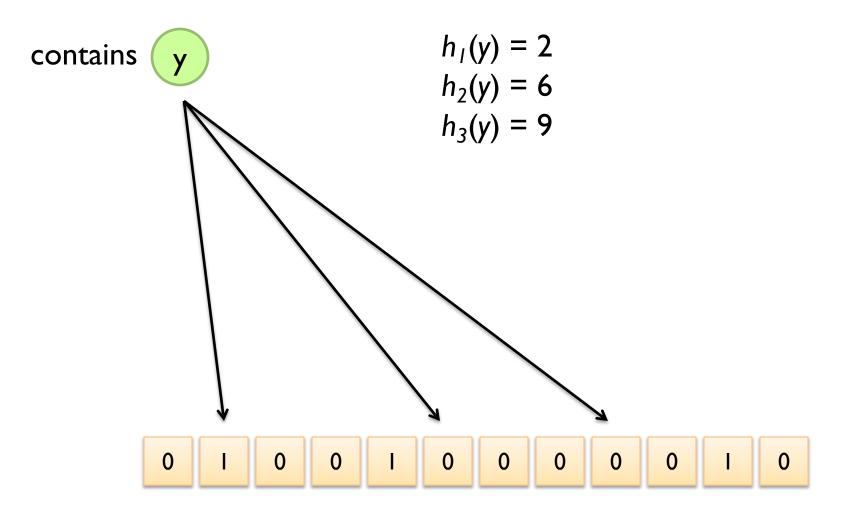


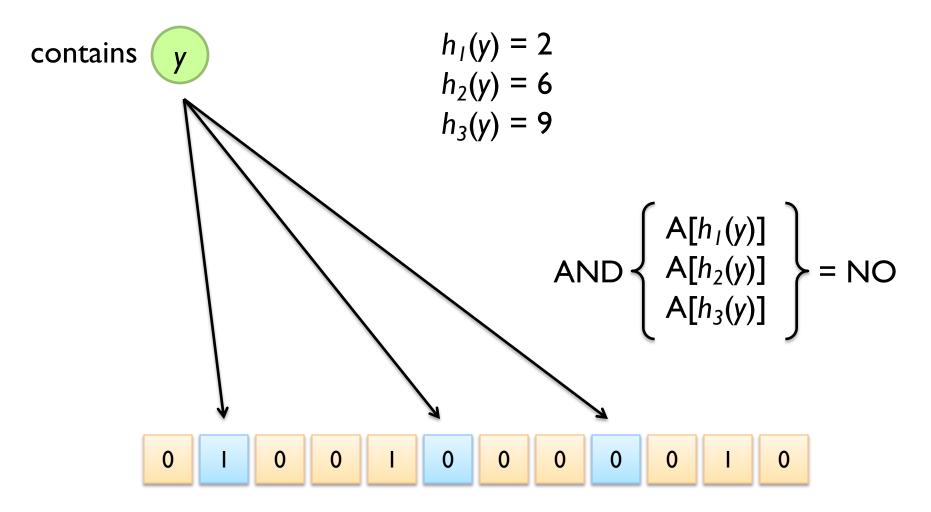
Bloom Filters: put











What's going on here?

Bloom Filters

Error properties: contains(x) False positives possible No false negatives

Usage

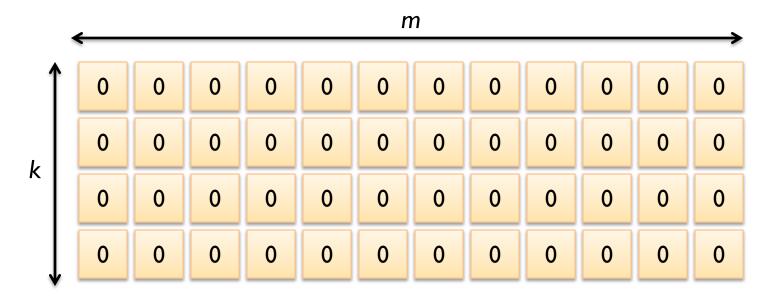
Constraints: capacity, error probability Tunable parameters: size of bit vector *m*, number of hash functions *k*

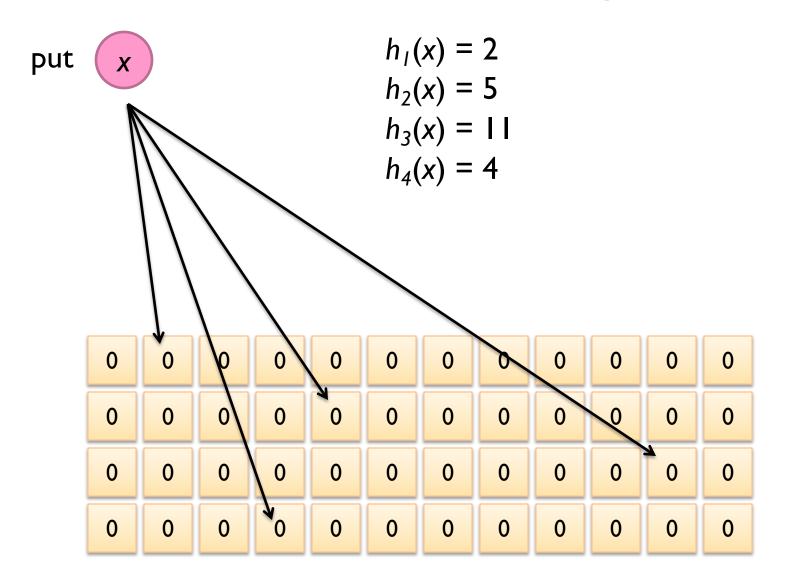
Count-Min Sketches

Task: frequency estimation $put(x) \rightarrow increment \ count \ of x \ by \ one$ $get(x) \rightarrow returns \ the \ frequency \ of x$

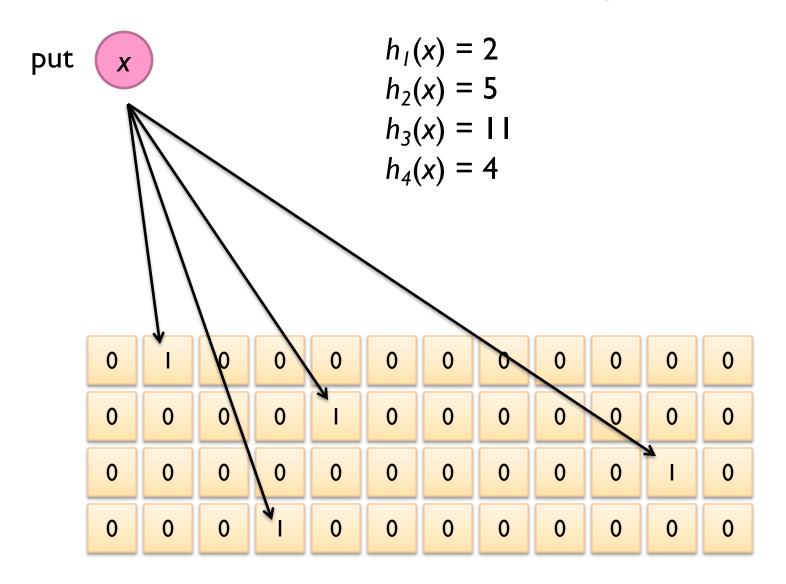
Components

m by *k* array of counters k hash functions: $h_1 \dots h_k$

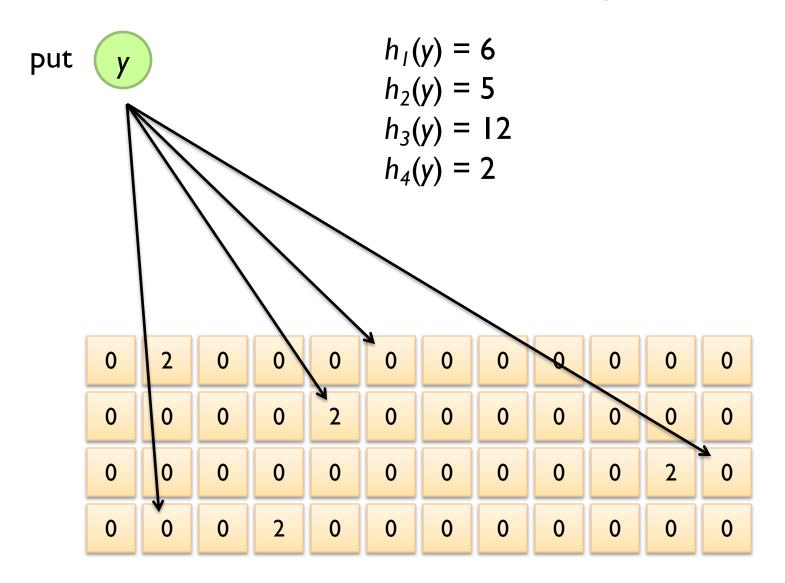




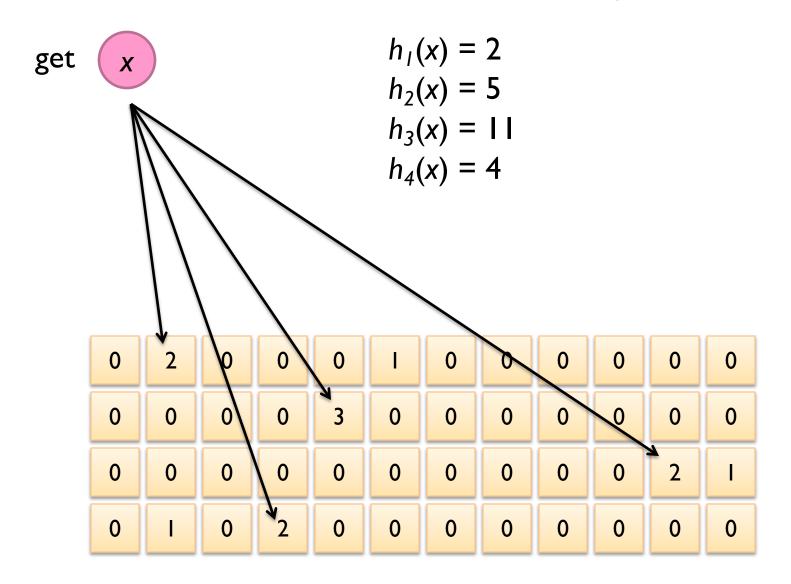
0	I	0	0	0	0	0	0	0	0	0	0
0	0	0	0	I	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	I	0
0	0	0	I	0	0	0	0	0	0	0	0

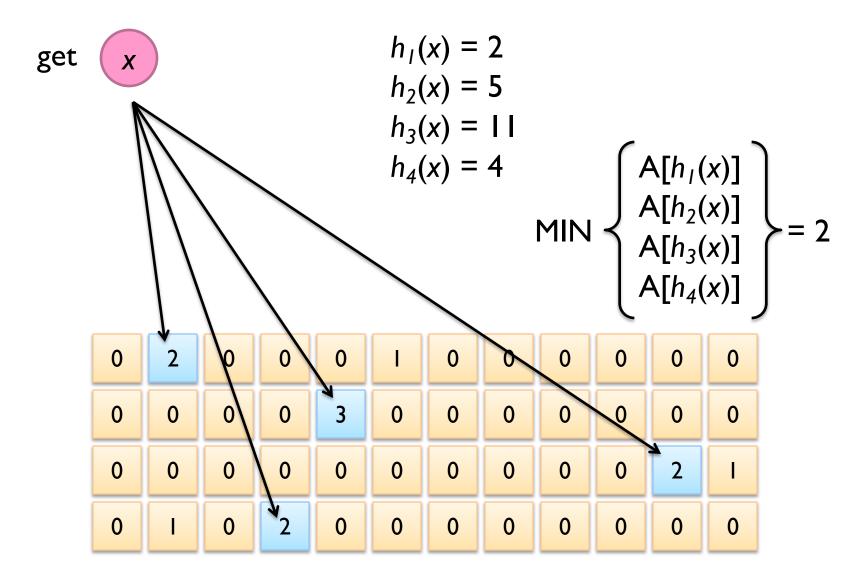


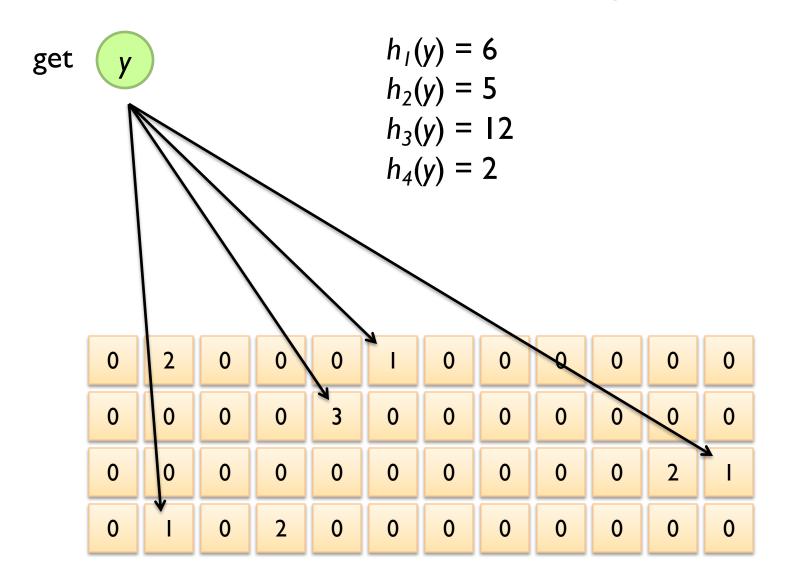
0	2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	0
0	0	0	2	0	0	0	0	0	0	0	0

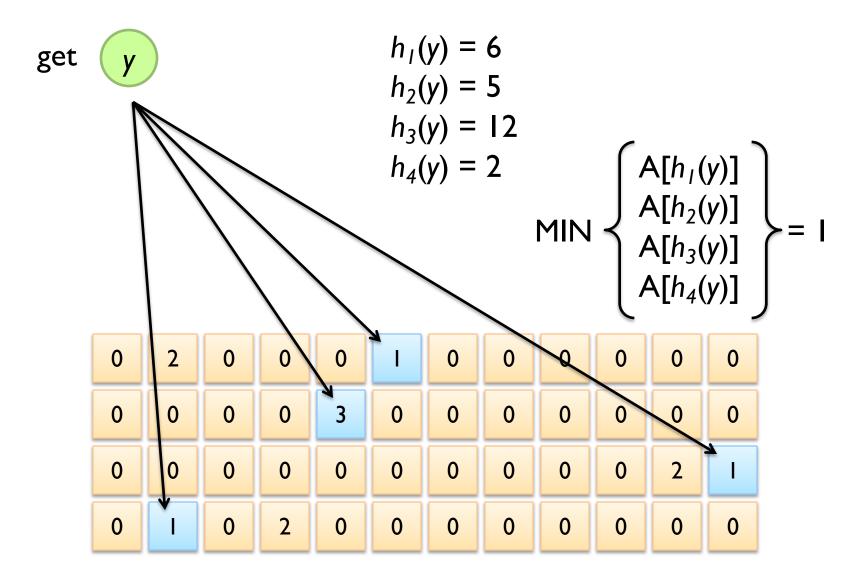


0	2	0	0	0	I	0	0	0	0	0	0
0	0	0	0	3	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	1
0	I	0	2	0	0	0	0	0	0	0	0









Count-Min Sketches

Error properties: get(x) Reasonable estimation of heavy-hitters Frequent over-estimation of tail

Usage

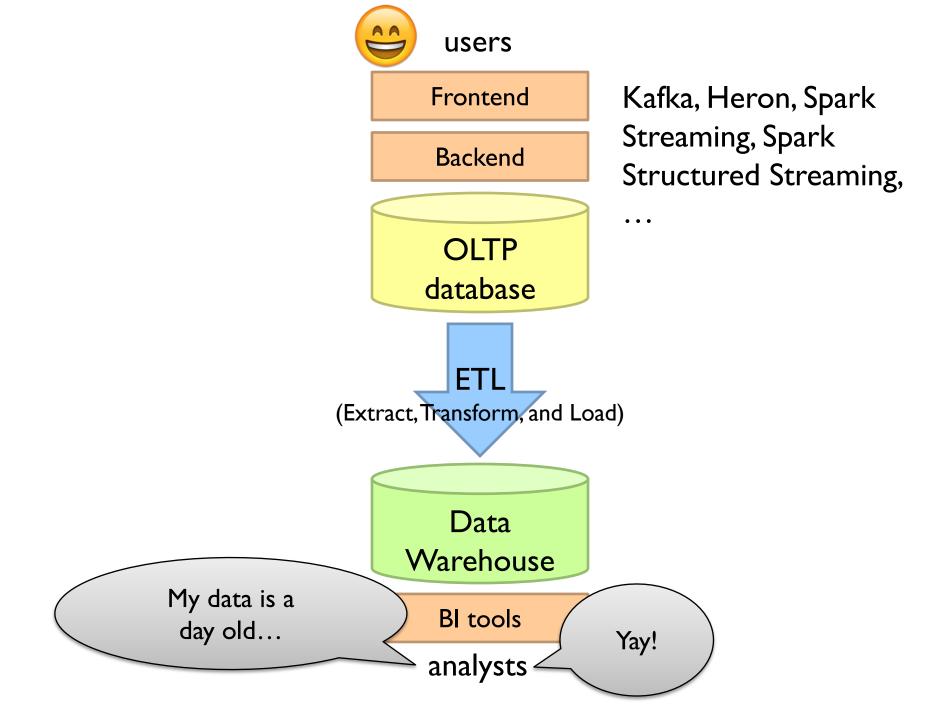
Constraints: number of distinct events, distribution of events, error bounds Tunable parameters: number of counters m and hash functions k, size of counters

Hashing for Three Common Tasks

Cardinality estimation What's the cardinality of set S? How many unique visitors to this page? HashSet HLL counter Set membership Is x a member of set S? Has this user seen this ad before? HashSet Bloom Filter Frequency estimation How many times have we observed x? How many queries has this user issued? HashMap CMS

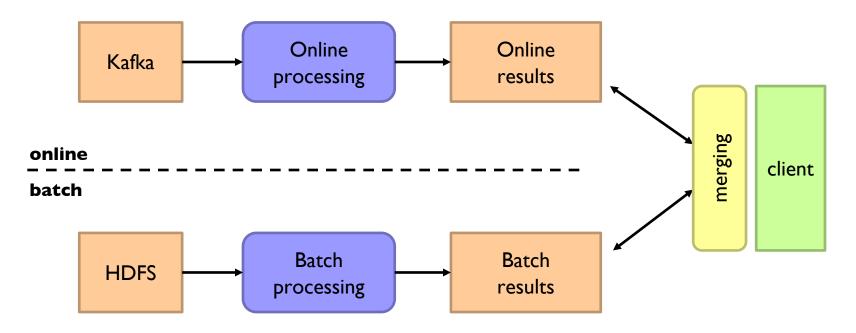
Stream Processing Frameworks

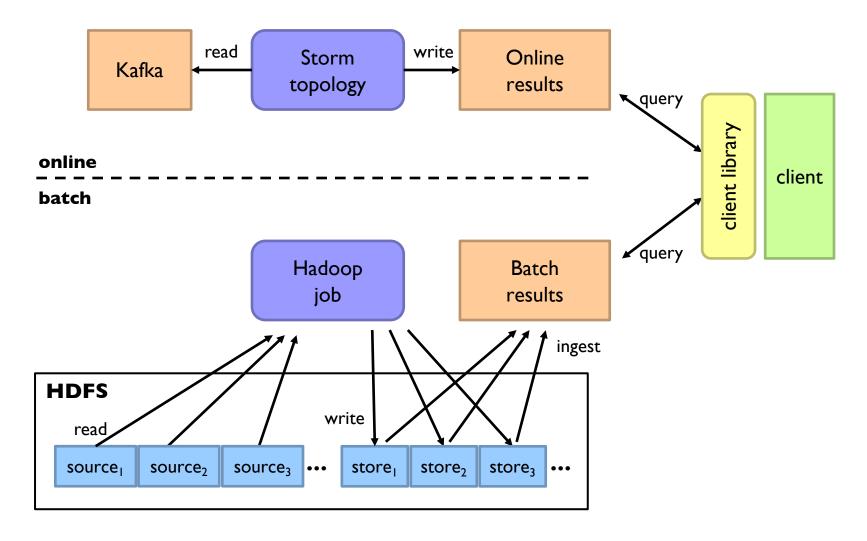
Source: Wikipedia (River)

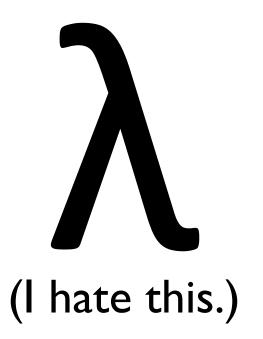


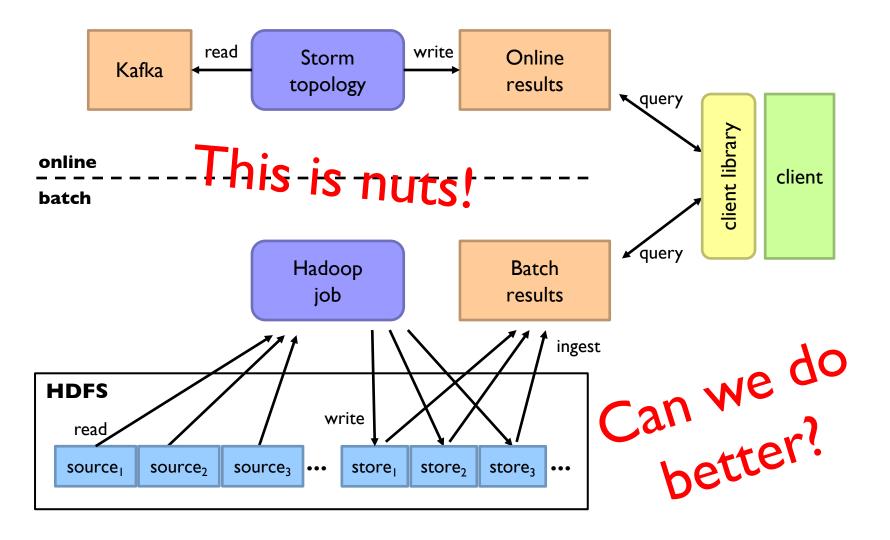
What about our cake?

Source: Wikipedia (Cake)











Summingbird

A domain-specific language (in Scala) designed to integrate batch and online MapReduce computations

Idea #I:Algebraic structures provide the basis for seamless integration of batch and online processing

Idea #2: For many tasks, close enough is good enough Probabilistic data structures as monoids

Boykin, Ritchie, O'Connell, and Lin. Summingbird: A Framework for Integrating Batch and Online MapReduce Computations. PVLDB 7(13):1441-1451, 2014.

Batch and Online MapReduce

"map"
flatMap[T, U](fn: T => List[U]): List[U]
map[T, U](fn: T => U): List[U]
filter[T](fn: T => Boolean): List[T]

"reduce"
sumByKey

Idea #I:Algebraic structures provide the basis for seamless integration of batch and online processing

Semigroup =
$$(M, \bigoplus)$$

 $\bigoplus : M \times M \rightarrow M, \text{ s.t.}, \forall m_1, m_2, m_3 \ni M$
 $(m_1 \bigoplus m_2) \bigoplus m_3 = m_1 \bigoplus (m_2 \bigoplus m_3)$

Monoid = Semigroup + identity ε s.t., $\varepsilon \oplus m = m \oplus \varepsilon = m, \forall m \ni M$

Commutative Monoid = Monoid + commutativity $\forall m_1, m_2 \ni M, m_1 \bigoplus m_2 = m_2 \bigoplus m_1$

Simplest example: integers with + (addition)

Idea #I:Algebraic structures provide the basis for seamless integration of batch and online processing

Summingbird values must be at least semigroups (most are commutative monoids in practice)

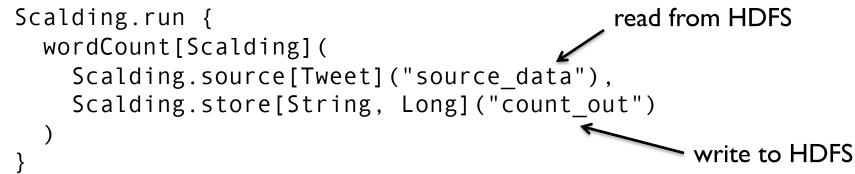
Power of associativity = You can put the parentheses anywhere!

 $(a \bigoplus b \bigoplus c \bigoplus d \bigoplus e \bigoplus f)$ Batch = Hadoop $(((((a \bigoplus b) \bigoplus c) \bigoplus d) \bigoplus e) \bigoplus f)$ Online = Storm $((a \bigoplus b \bigoplus c) \bigoplus (d \bigoplus e \bigoplus f))$ Mini-batches

Results are exactly the same!

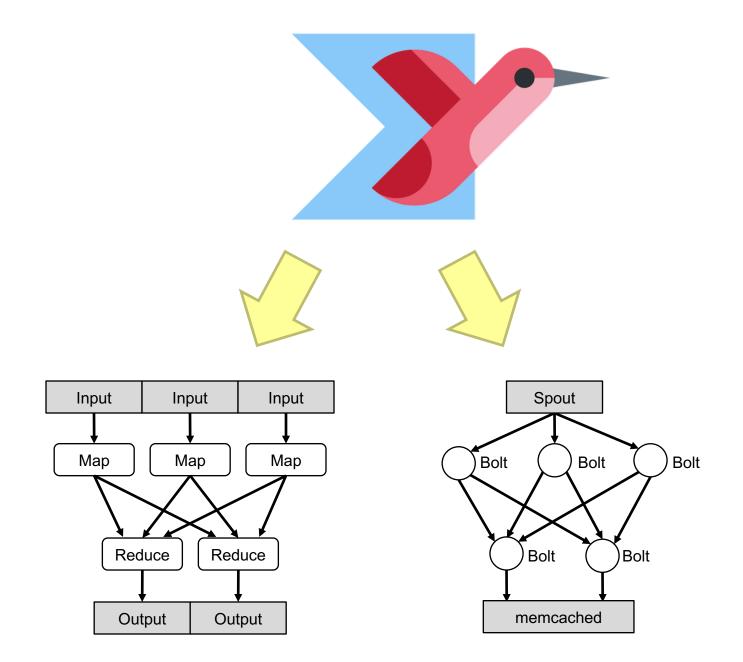
Summingbird Word Count

Run on Scalding (Cascading/Hadoop)



Run on Storm

Storm.run { read from message queue
wordCount[Storm](
 new TweetSpout(),
 new MemcacheStore[String, Long]
 write to KV store
}



"Boring" monoids

addition, multiplication, max, min moments (mean, variance, etc.) sets tuples of monoids hashmaps with monoid values

"Interesting" monoids

Bloom filters (set membership) HyperLogLog counters (cardinality estimation) Count-min sketches (event counts)

Idea #2: For many tasks, close enough is good enough!

Cheat Sheet

	Exact	Approximate
Set membership	set	Bloom filter
Set cardinality	set	hyperloglog counter
Frequency count	hashmap	count-min sketches

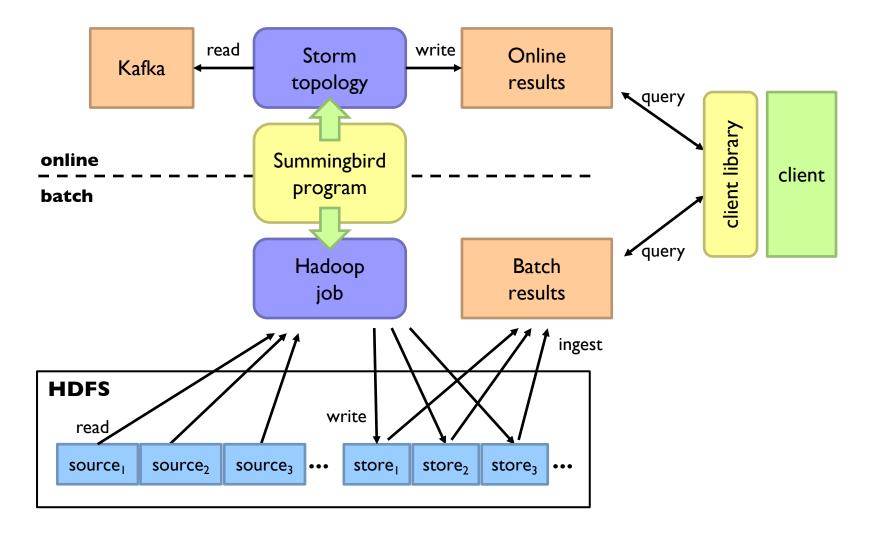
Example: Count queries by hour

Exact with hashmaps

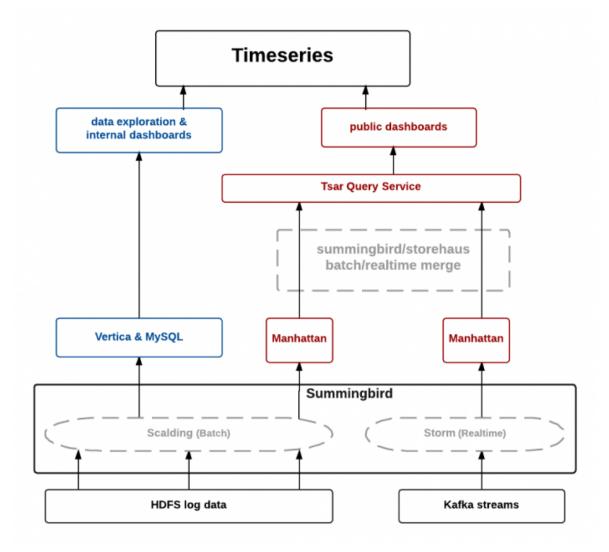
```
def wordCount[P <: Platform[P]]
  (source: Producer[P, Query],
   store: P#Store[Long, Map[String, Long]]) =
   source.flatMap { query =>
      (query.getHour, Map(query.getQuery -> 1L))
   }.sumByKey(store)
```

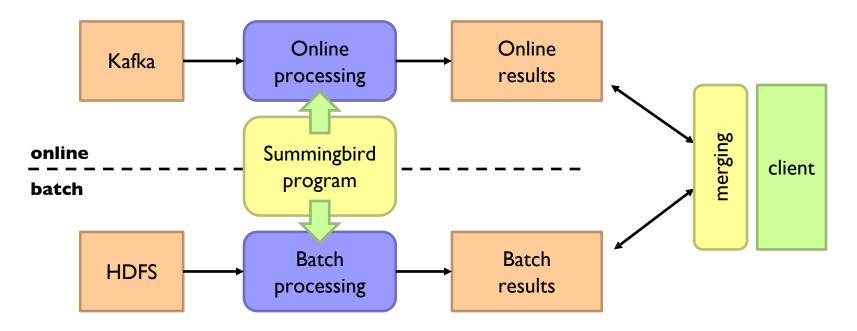
Approximate with CMS

```
def wordCount[P <: Platform[P]]
  (source: Producer[P, Query],
   store: P#Store[Long, SketchMap[String, Long]])
  (implicit countMonoid: SketchMapMonoid[String, Long]) =
   source.flatMap { query =>
      (query.getHour,
      countMonoid.create((query.getQuery, 1L)))
   }.sumByKey(store)
```



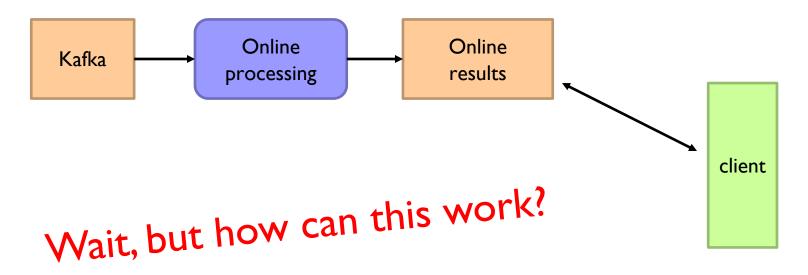
TSAR, a TimeSeries AggregatoR!





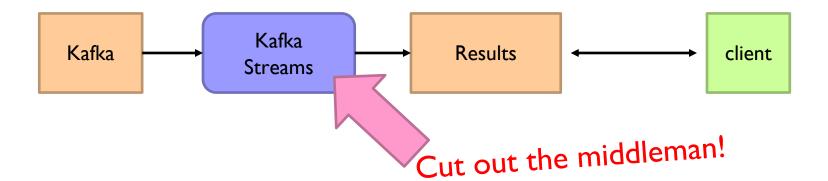
```
But this is still too painful...
```

Example: count historical clicks and clicks in real time

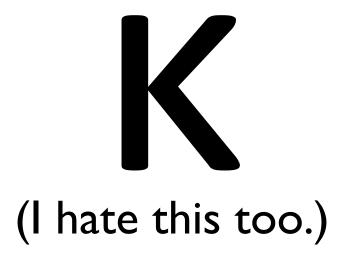


Idea: everything is streaming Batch processing is just streaming through a historic dataset!

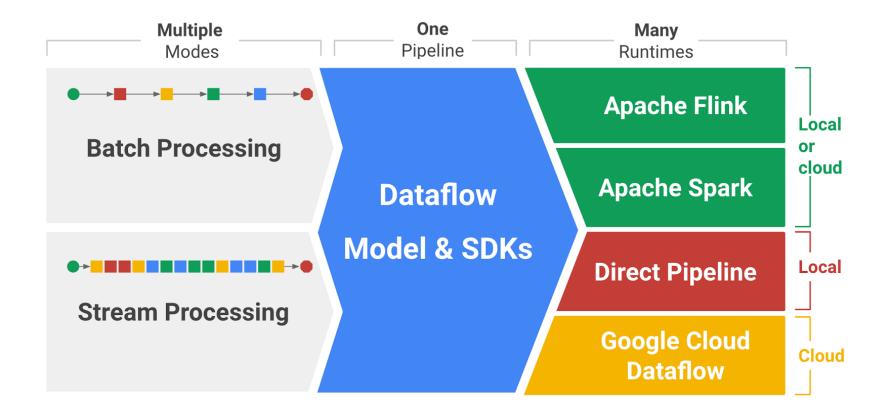
Everything is Streaming!



KafkaStreams streams = new KafkaStreams(builder.build(), config);
streams.start();



The Vision



Source: https://cloudplatform.googleblog.com/2016/01/Dataflow-and-open-source-proposal-to-join-the-Apache-Incubator.html

Processing Bounded Datasets

Pipeline p = Pipeline.create(options);

p.apply(TextIO.Read.from("gs://your/input/"))

.apply(FlatMapElements.via((String word) ->
 Arrays.asList(word.split("[^a-zA-Z']+"))))
.apply(Filter.by((String word) -> !word.isEmpty()))
.apply(Count.perElement())
.apply(MapElements.via((KV<String, Long> wordCount) ->
 wordCount.getKey() + ": " + wordCount.getValue()))
.apply(TextIO.Write.to("gs://your/output/"));

Processing Unbounded Datasets

Pipeline p = Pipeline.create(options);

```
p.apply(KafkaIO.read("tweets")
    .withTimestampFn(new TweetTimestampFunction())
    .withWatermarkFn(kv ->
        Instant.now().minus(Duration.standardMinutes(2))))
 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))
    .triggering(AtWatermark()
        .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))
        .withLateFirings(AtCount(1)))
    .accumulatingAndRetractingFiredPanes())
 .apply(FlatMapElements.via((String word) ->
    Arrays.asList(word.split("[^a-zA-Z']+"))))
 .apply(Filter.by((String word) -> !word.isEmpty()))
 .apply(Count.perElement())
 .apply(KafkaIO.write("counts"))
                                           Where in event time?
```

When in processing time? How do refines relate?

