
Data-Intensive Distributed Computing

Part 9: Real-Time Data Analytics (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 (Fall 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

November 27, 2018

These slides are available at http://lintool.github.io/bigdata-2018f/

Since last time…

Storm/Heron
Gives you pipes, but you gotta connect everything up yourself

Spark Streaming
Gives you RDDs, transformations and windowing –

but no event/processing time distinction

Beam
Gives you transformations and windowing, event/processing time distinction –

but too complex

Source: Wikipedia (River)

Stream Processing Frameworks

Spark Structured Streaming

Step 1: From RDDs to DataFrames
Step 2: From bounded to unbounded tables

Source: Spark Structured Streaming Documentation

Source: Spark Structured Streaming Documentation

Source: Spark Structured Streaming Documentation

Source: Spark Structured Streaming Documentation

Source: Spark Structured Streaming Documentation

Source: Wikipedia (River)

Interlude

Streams Processing Challenges

Inherent challenges
Latency requirements

Space bounds

System challenges
Bursty behavior and load balancing

Out-of-order message delivery and non-determinism
Consistency semantics (at most once, exactly once, at least once)

Algorithmic Solutions

Throw away data
Sampling

Accepting some approximations
Hashing

Reservoir Sampling

Task: select s elements from a
stream of size N with uniform probability

N can be very very large
We might not even know what N is! (infinite stream)

Solution: Reservoir sampling
Store first s elements

For the k-th element thereafter, keep with probability s/k
(randomly discard an existing element)

Example: s = 10
Keep first 10 elements

11th element: keep with 10/11
12th element: keep with 10/12

…

Reservoir Sampling: How does it work?

Example: s = 10
Keep first 10 elements

11th element: keep with 10/11

General case: at the (k + 1)th element
Probability of selecting each item up until now is s/k

Probability existing item is discarded: s/(k+1) × 1/s = 1/(k + 1)
Probability existing item survives: k/(k + 1)

Probability each item survives to (k + 1)th round:
(s/k) × k/(k + 1) = s/(k + 1)

If we decide to keep it: sampled uniformly by definition
probability existing item is discarded: 10/11 × 1/10 = 1/11
probability existing item survives: 10/11

Hashing for Three Common Tasks

Cardinality estimation
What’s the cardinality of set S?

How many unique visitors to this page?

Set membership
Is x a member of set S?

Has this user seen this ad before?

Frequency estimation
How many times have we observed x?

How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS

HyperLogLog Counter

Task: cardinality estimation of set
size() → number of unique elements in the set

Observation: hash each item and examine the hash code
On expectation, 1/2 of the hash codes will start with 0
On expectation, 1/4 of the hash codes will start with 00
On expectation, 1/8 of the hash codes will start with 000

On expectation, 1/16 of the hash codes will start with 0000
…

How do we take advantage of this observation?

Bloom Filters

Task: keep track of set membership
put(x) → insert x into the set

contains(x) → yes if x is a member of the set

0 0 0 0 0 0 0 0 0 0 0 0

Components
m-bit bit vector

k hash functions: h1 … hk

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11

Bloom Filters: put

0 1 0 0 1 0 0 0 0 0 1 0

xput

Bloom Filters: put

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

AND = YES
A[h1(x)]
A[h2(x)]
A[h3(x)]

Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

What’s going on here?

AND = NO
A[h1(y)]
A[h2(y)]
A[h3(y)]

Bloom Filters: contains

Bloom Filters

Error properties: contains(x)
False positives possible

No false negatives

Usage
Constraints: capacity, error probability

Tunable parameters: size of bit vector m, number of hash functions k

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

m

k

Count-Min Sketches

Task: frequency estimation
put(x) → increment count of x by one
get(x) → returns the frequency of x

Components
m by k array of counters
k hash functions: h1 … hk

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: put

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput

Count-Min Sketches: put

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: put

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

xput

Count-Min Sketches: put

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

yput h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

Count-Min Sketches: put

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yput

Count-Min Sketches: put

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

A[h3(x)]
MIN = 2

A[h1(x)]
A[h2(x)]

A[h4(x)]

Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

MIN = 1 A[h3(y)]

A[h1(y)]
A[h2(y)]

A[h4(y)]

Count-Min Sketches: get

Count-Min Sketches

Error properties: get(x)
Reasonable estimation of heavy-hitters

Frequent over-estimation of tail

Usage
Constraints: number of distinct events, distribution of events, error bounds

Tunable parameters: number of counters m and hash functions k, size of counters

Hashing for Three Common Tasks

Cardinality estimation
What’s the cardinality of set S?

How many unique visitors to this page?

Set membership
Is x a member of set S?

Has this user seen this ad before?

Frequency estimation
How many times have we observed x?

How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS

Source: Wikipedia (River)

Stream Processing Frameworks

Frontend

Backend

users

BI tools

analysts

ETL
(Extract, Transform, and Load)

Data
Warehouse

OLTP
database

My data is a
day old… Yay!

Kafka, Heron, Spark
Streaming, Spark
Structured Streaming,
…

Source: Wikipedia (Cake)

What about our cake?

client
online

batch m
er

gi
ng

Example: count historical clicks and clicks in real time
Hybrid Online/Batch Processing

Online
results

Kafka
Online

processing

Batch
results

HDFS
Batch

processing

Online
results

client

Kafka
Storm

topology

store1source2 source3 … store2 store3 …source1

read
write

ingest

HDFS

read write

query

query

online

batch

cl
ie

nt
 li

br
ar

y

Example: count historical clicks and clicks in real time
Hybrid Online/Batch Processing

Hadoop
job

Batch
results

(I hate this.)
λ

Online
results

client

Kafka
Storm

topology

store1source2 source3 … store2 store3 …source1

read
write

ingest

HDFS

read write

query

query

online

batch

cl
ie

nt
 li

br
ar

y

Example: count historical clicks and clicks in real time
Hybrid Online/Batch Processing

Hadoop
job

Batch
results

This is nuts!

Can we do

better?

A domain-specific language (in Scala) designed
to integrate batch and online MapReduce computations

Idea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

Probabilistic data structures as monoids
Idea #2: For many tasks, close enough is good enough

Boykin, Ritchie, O’Connell, and Lin. Summingbird: A Framework for Integrating
Batch and Online MapReduce Computations. PVLDB 7(13):1441-1451, 2014.

Summingbird

“map”
flatMap[T, U](fn: T => List[U]): List[U]

map[T, U](fn: T => U): List[U]

filter[T](fn: T => Boolean): List[T]

sumByKey

“reduce”

Batch and Online MapReduce

Semigroup = (M , ⊕)
⊕ : M ✕ M → M, s.t., ∀m1, m2, m3 ∋ M

Idea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

(m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3)

Monoid = Semigroup + identity

Commutative Monoid = Monoid + commutativity

ε s.t., ε⊕ m = m ⊕ ε = m, ∀m ∋ M

∀m1, m2 ∋ M, m1 ⊕ m2 = m2 ⊕ m1

Simplest example: integers with + (addition)

(a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f)

You can put the parentheses anywhere!

Batch = Hadoop

Mini-batches

Online = Storm

Summingbird values must be at least semigroups
(most are commutative monoids in practice)

(((((a ⊕ b) ⊕ c) ⊕ d) ⊕ e) ⊕ f)

((a ⊕ b ⊕ c) ⊕ (d ⊕ e ⊕ f))

Idea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

Power of associativity =

Results are exactly the same!

def wordCount[P <: Platform[P]]
(source: Producer[P, String],
store: P#Store[String, Long]) =
source.flatMap { sentence =>

toWords(sentence).map(_ -> 1L)
}.sumByKey(store)

Scalding.run {
wordCount[Scalding](
Scalding.source[Tweet]("source_data"),
Scalding.store[String, Long]("count_out")

)
}

Storm.run {
wordCount[Storm](
new TweetSpout(),
new MemcacheStore[String, Long]

)
}

Summingbird Word Count

Run on Scalding (Cascading/Hadoop)

Run on Storm

where data comes from
where data goes

“map”

“reduce”

read from HDFS

write to HDFS

read from message queue

write to KV store

Map Map Map

Input Input Input

Reduce Reduce

Output Output

Spout

Bolt

memcached

Bolt Bolt

Bolt Bolt

addition, multiplication, max, min

moments (mean, variance, etc.)

sets

hashmaps with monoid values

More interesting monoids?

tuples of monoids

“Boring” monoids

Idea #2: For many tasks, close enough is good enough!

Bloom filters (set membership)

HyperLogLog counters (cardinality estimation)

Count-min sketches (event counts)

“Interesting” monoids

Set membership

Set cardinality

Frequency count

set

set

hashmap

Bloom filter

hyperloglog counter

count-min sketches

Exact Approximate

Cheat Sheet

def wordCount[P <: Platform[P]]
(source: Producer[P, Query],
store: P#Store[Long, Map[String, Long]]) =
source.flatMap { query =>

(query.getHour, Map(query.getQuery -> 1L))
}.sumByKey(store)

def wordCount[P <: Platform[P]]
(source: Producer[P, Query],
store: P#Store[Long, SketchMap[String, Long]])
(implicit countMonoid: SketchMapMonoid[String, Long]) =
source.flatMap { query =>

(query.getHour,
countMonoid.create((query.getQuery, 1L)))

}.sumByKey(store)

Exact with hashmaps

Approximate with CMS

Example: Count queries by hour

Online
results

client
Summingbird

program

Kafka
Storm

topology

store1source2 source3 … store2 store3 …source1

read
write

ingest

HDFS

read write

query

query

online

batch

cl
ie

nt
 li

br
ar

y

Example: count historical clicks and clicks in real time
Hybrid Online/Batch Processing

Hadoop
job

Batch
results

TSAR, a TimeSeries AggregatoR!

Source: https://blog.twitter.com/2014/tsar-a-timeseries-aggregator

client
online

batch m
er

gi
ng

Example: count historical clicks and clicks in real time
Hybrid Online/Batch Processing

Online
results

Kafka
Online

processing

Batch
results

HDFS
Batch

processing

Summingbird
program

But this is still too painful...

client

Example: count historical clicks and clicks in real time
Hybrid Online/Batch Processing

Online
results

Kafka
Online

processing

Wait, but how can this work?

Idea: everything is streaming
Batch processing is just streaming through a historic dataset!

client

Everything is Streaming!

ResultsKafka
Kafka

Streams

StreamsBuilder builder = new StreamsBuilder();
KStream<String, String> textLines = builder.stream("TextLinesTopic");
KTable<String, Long> wordCounts = textLines

.flatMapValues(textLine ->
Arrays.asList(textLine.toLowerCase().split("\\W+")))

.groupBy((key, word) -> word)

.count(Materialized.<String, Long,
KeyValueStore<Bytes, byte[]>>as("counts-store"));

wordCounts.toStream().to("WordsWithCountsTopic",
Produced.with(Serdes.String(), Serdes.Long()));

KafkaStreams streams = new KafkaStreams(builder.build(), config);
streams.start();

Cut out the middleman!

(I hate this too.)
κ

The Vision

Source: https://cloudplatform.googleblog.com/2016/01/Dataflow-and-open-source-proposal-to-join-the-Apache-Incubator.html

Processing Bounded Datasets

Pipeline p = Pipeline.create(options);

p.apply(TextIO.Read.from("gs://your/input/"))

.apply(FlatMapElements.via((String word) ->
Arrays.asList(word.split("[^a-zA-Z']+"))))

.apply(Filter.by((String word) -> !word.isEmpty()))

.apply(Count.perElement())

.apply(MapElements.via((KV<String, Long> wordCount) ->
wordCount.getKey() + ": " + wordCount.getValue()))

.apply(TextIO.Write.to("gs://your/output/"));

Processing Unbounded Datasets

Pipeline p = Pipeline.create(options);

p.apply(KafkaIO.read("tweets")
.withTimestampFn(new TweetTimestampFunction())
.withWatermarkFn(kv ->

Instant.now().minus(Duration.standardMinutes(2))))
.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))

.triggering(AtWatermark()
.withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))
.withLateFirings(AtCount(1)))

.accumulatingAndRetractingFiredPanes())
.apply(FlatMapElements.via((String word) ->

Arrays.asList(word.split("[^a-zA-Z']+"))))
.apply(Filter.by((String word) -> !word.isEmpty()))
.apply(Count.perElement())
.apply(KafkaIO.write("counts")) Where in event time?

When in processing time?
How do refines relate?

Source: flickr (https://www.flickr.com/photos/39414578@N03/16042029002)

