
Data-Intensive Distributed Computing

Part 8: Analyzing Graphs, Redux (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 (Fall 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

November 20, 2018

These slides are available at http://lintool.github.io/bigdata-2018f/

Theme for Today:
How things work in the real world

(forget everything I told you…)

Source: Wikipedia (All Souls College, Oxford)

From the Ivory Tower…

Source: Wikipedia (Factory)

… to building sh*t that works

What exactly did I do at Twitter?

data science
data products

I worked on…
– analytics infrastructure to support data science
– data products to surface relevant content to users

Gupta et al. WTF: The Who to Follow Service at Twitter. WWW 2013
Lin and Kolcz. Large-Scale Machine Learning at Twitter. SIGMOD 2012

Busch et al. Earlybird: Real-Time
Search at Twitter. ICDE 2012

Mishne et al. Fast Data in the Era of Big Data: Twitter's Real-
Time Related Query Suggestion Architecture. SIGMOD 2013.

Leibert et al. Automatic Management of Partitioned,
Replicated Search Services. SoCC 2011

I worked on…
– analytics infrastructure to support data science
– data products to surface relevant content to users

Source: https://www.flickr.com/photos/bongtongol/3491316758/

circa ~2010
~150 people total

~60 Hadoop nodes
~6 people use analytics stack daily

circa ~2012
~1400 people total

10s of Ks of Hadoop nodes, multiple DCs
10s of PBs total Hadoop DW capacity

~100 TB ingest daily
dozens of teams use Hadoop daily

10s of Ks of Hadoop jobs daily

WTF
(who to follow)(whom to follow)

~20 billion edges

(Second half of 2012)
#numbers

Myers, Sharma, Gupta, Lin. Information Network or Social Network?
The Structure of the Twitter Follow Graph. WWW 2014.

~175 million active users

42% edges bidirectional
Avg shortest path length: 4.05

40% as many unfollows as follows daily
WTF responsible for ~1/8 of the edges

Graph-based recommendation systems
Why? Increase engagement!

follow

“structural” property
Twitter “verbs” = interactions

tweet

retweet

like

Graphs are core to Twitter

The Journey
From the static follower graph for account recommendations…

… to the real-time interaction graph for content recommendations

In Four Acts...
Source: flickr (https://www.flickr.com/photos/39414578@N03/16042029002)

Act I
WTF and Cassovary

(circa 2010)

In the beginning… the void

Act I
WTF and Cassovary

(circa 2010)

In the beginning… the void
Goal: build a recommendation service quickly

flockDB
(graph database)

Simple graph operations
Set intersection operations

Not appropriate for graph algorithms!

Okay, let’s use MapReduce!
But MapReduce sucks for graphs!

HaLoop (VLDB 2010)

Twister (MapReduce Workshop 2010)

Pregel/Giraph (SIGMOD 2010)

Graphlab (UAI 2010)

PrIter (SoCC 2011)

Datalog on Hyracks (Tech report, 2012)

Spark/GraphX (NSDI 2012, arXiv 2014)

PowerGraph (OSDI 2012)

GRACE (CIDR 2013)

Mizan (EuroSys 2013)

…

What about…?

Let’s build our own system!

Keep entire graph in memory… on a single machine!
Key design decision:

MapReduce sucks for graph algorithms…

Source: Wikipedia (Pistachio)

Right choice at the time!

Why?
Because we can!

Graph partitioning is hard… so don’t do it
Simple architecture

Nuts!

Source: Wikipedia (Heathrow)

The runway argument

Suppose: 10×109 edges
(src, dest) pairs: ~80 GB

12 × 16 GB DIMMS = 192 GB
12 × 32 GB DIMMS = 384 GB

18 × 8 GB DIMMS = 144 GB
18 × 16 GB DIMMS = 288 GB

Source: Wikipedia (Cassowary)

In-memory graph engine

Implemented in Scala
Compact in-memory representations

But no compression

Avoid JVM object overhead!

Open-source

Cassovary

PageRank

“Semi-streaming” algorithm
Keep vertex state in memory, stream over edges

Each pass = one PageRank iteration
Bottlenecked by memory bandwidth

Convergence?
Don’t run from scratch… use previous values

A few passes are sufficient

“Circle of Trust”
Ordered set of important neighbors for a user

Result of egocentric random walk: Personalized PageRank!
Computed online based on various input parameters

One of the features used in search

“circle of trust”

SALSA for Recommendations

“hubs”

“authorities”

CoT of u

users LHS follow

hubs scores:
similarity scores to u

authority scores:
recommendation scores for u

 0

 0.5

 1

 1.5

 2

 2.5

SALSA Pers. PR Sim(followings) MCM Closure

F
T

R

Goel, Lin, Sharma, Wang, and Zadeh. WTF: The Who to Follow Service at Twitter. WWW 2013

FlockDB

WTF DB

HDFS

Cassovary

Blender

Fetcher

FlockDB

WTF DB

HDFS

Cassovary

Blender

Fetcher
What about new users?

Cold start problem: they need
recommendations the most!

FlockDB

WTF DB

HDFS

Cassovary

Blender

FetcherFetcher

Real-time
Recommendations

Spring 2010: no WTF

Summer 2010: WTF launched

seriously, WTF?

Source: Facebook

Act II
RealGraph

(circa 2012)

Goel et al. Discovering Similar Users on Twitter. MLG 2013.

Source: Wikipedia (Pistachio)

We migrated from Cassovary back to Hadoop!
Another “interesting” design choice:

Cassovary was a stopgap!

Right choice at the time!

Whaaaaaa?

Hadoop provides:
Richer graph structure

Simplified production infrastructure
Scaling and fault-tolerance “for free”

The shuffle is what kills you!

Wait, didn’t you say MapReduce sucks?

What exactly is the issue?
Random walks on egocentric 2-hop neighborhood

Naïve approach: self-joins to materialize, then run algorithm

Graph algorithms in MapReduce

Key insights:
Batch and “stich together” partial random walks*

Clever sampling to avoid full materialization

* Sarma et al. Estimating PageRank on Graph Streams. PODS 2008
Bahmani et al. Fast Personalized PageRank on MapReduce. SIGMOD 2011.

Tackle the shuffling problem!

Candidate
Generation

Candidates Classification

Follow graph Retweet graph Favorite graph …

Final Results

Trained Model

Lin and Kolcz. Large-Scale Machine Learning at Twitter. SIGMOD 2012.

Throw in ML while we’re at it…

Source: Wikipedia (Fire hose)

Act III
MagicRecs

(circa 2013)

Source: Wikipedia (Motion Blur)

Isn’t the point of Twitter real-time?
So why is WTF still dominated by batch processing?

Observation: fresh recommendations get better engagement

Logical conclusion: generate recommendations in real time!

From batch to real-time recommendations:
Recommendations based on recent activity

“Trending in your network”

Inverts the WTF problem:
For this user, what recommendations to generate?

Given this new edge, which user to make recommendations to?

A

B1 B3

C2

B2

Why does this work?
A follows B’s because they’re interesting

B’s following C’s because “something’s happening”
(generalizes to any activity)

Gupta, Satuluri, Grewal, Gurumurthy, Zhabiuk, Li, and Lin. Real-Time Twitter Recommendation:
Online Motif Detection in Large Dynamic Graphs. VLDB 2014

Scale of the Problem
O(108) vertices, O(1010) edges

Designed for O(104) events per second

Materialize everyone’s two-hop neighborhood, intersect

Naïve solutions:
Poll each vertex periodically

Idea #2: Partition graph to eliminate non-local intersections

Production solution:
Idea #1: Convert problem into adjacency list intersection

Gupta, Satuluri, Grewal, Gurumurthy, Zhabiuk, Li, and Lin. Real-Time Twitter Recommendation:
Online Motif Detection in Large Dynamic Graphs. VLDB 2014

A

B1 B3

C2

B2

Who we’re making the
recommendations to

Who we’re recommending

“influencers” Bi Cj

Bi Cj

Bi Cj

S “static” structure:
stores inverted adjacency lists

query B, return all A’s that link to it

D “dynamic” structure:
stores inverted adjacency lists

query C, return all B’s that link to it

Single Node Solution

A

B1 B3

C2

B2

Who we’re making the
recommendations to

Who we’re recommending

“influencers”

S “static” structure:
stores inverted adjacency lists

query B, return all A’s that link to it

D “dynamic” structure:
stores inverted adjacency lists

query C, return all B’s that link to it

2. Query D for C2, get B1, B2, B3

3. For each B1, B2, B3, query S

4. Intersect lists to compute A’s

1. Receive B3 to C2

Idea #1: Convert problem into adjacency list intersection

Algorithm

A

B1 B3

C2

B2

Who we’re making the
recommendations to

Who we’re recommending

“influencers”

Replicate on every node

Partition by A
A2

B1 B5B4

Bi Cj

1. Fan out new edge to every node
2. Run algorithm on each partition
3. Gather results from each partition

Idea #2: Partition graph to eliminate non-local intersections

Distributed Solution

Gupta, Satuluri, Grewal, Gurumurthy, Zhabiuk, Li, and Lin. Real-Time Twitter Recommendation:
Online Motif Detection in Large Dynamic Graphs. VLDB 2014

Production Status

Usage Statistics (Circa 2014)
Push recommendations to Twitter mobile users

Billions of raw candidates, millions of push notifications daily

Launched September 2013

Performance
End-to-end latency (from edge creation to delivery):

median 7s, p99 15s

Source: flickr (https://www.flickr.com/photos/martinsfoto/6432093025/)

Act IV
GraphJet

(circa 2014)

Fully bought into the potential of real-time…
but needed something more general

Focused specifically on the interaction graph

users

tweets

LHS

RHS

insertEdge(u, t, r)

getLeftVertexEdges(u)
getLeftVertexRandomEdges(u, k)

getRightVertexEdges(t)
getRightVertexRandomEdges(t, k)

type t

Data Model

Note: design supports revisiting these choices

Make it simple, make it fast!
Noteworthy design decisions

No partitioning
Focus on recent data, fits on a single machine

No deletes
Not meaningful w/ interaction data

No arbitrary edge metadata
Marginally better results at the cost of space – not worthwhile

In
de

x
Se

gm
en

t

In
de

x
Se

gm
en

t

In
de

x
Se

gm
en

t

In
de

x
Se

gm
en

t

In
de

x
Se

gm
en

t

In
de

x
Se

gm
en

t✘
Storage Engine

API Endpoint

requests

Recommendation Engine

insertEdge

getLeftVertexEdges
getLeftVertexRandomEdges

…

Moving Window

users

tweets
LHS

RHS

type t

What tweets might a
user be interested in?

Query User

User’s highly-ranked neighbors

Materialize interaction subgraph

Random walk to
distribute probability
mass

Inject highly-ranked
tweets into user’s
home timeline

Recommendation Algorithm: Subgraph SALSA

users

tweets
LHS

RHS

type t

Query User
Recommend
users to follow Query Tweet

Recommend
Content

Formulation of cosine
similarity in terms of
random walks

Visit prob. ~ sim

getLeftVertexRandomEdges(u, k)
getRightVertexRandomEdges(v, k)

Efficient sampling
API is critical!

Goel et al. Discovering Similar Users on Twitter. MLG 2013.

Recommendation Algorithm: Similarity Query

Kafka

GraphJet

GraphJet

GraphJet

GraphJet

…
Lo

ad
 B

al
an

ce
r

Clients

Clients

Clients

…

Deployment Architecture

Production Status
Started serving production traffic early 2014

Cold startup: ingestion at O(106) edges per sec from Kafka
Steady state: ingestion at O(104) edges per sec

Space usage: O(109) edges in < 30 GB

Sample recommendation algorithm: subgraph SALSA
500 QPS, p50 = 19ms, p99 = 33ms

Dual Intel Xeon 6-cores (E5-2620 v2) at 2.1 GHz

Make things as simple as possible, but not simpler.

With lots of data, algorithms don’t really matter that much

Takeaway lesson #01:

Why a complex architecture when a simple one suffices?

Constraints aren’t always technical.
Takeaway lesson #10:

Source: https://www.flickr.com/photos/43677780@N07/6240710770/

Visiting and revisiting design decisions
Takeaway lesson #11:

Source: https://www.flickr.com/photos/exmachina/8186754683/

Questions?

Twittering Machine. Paul Klee (1922) watercolor and ink

“In theory, there is no difference
between theory and practice. But,
in practice, there is.”

- Jan L.A. van de Snepscheut

