

Data-Intensive Distributed Computing CS 451/651 (Fall 2018)

Part 8: Analyzing Graphs, Redux (2/2) November 20, 2018

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2018f/

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Theme for Today:

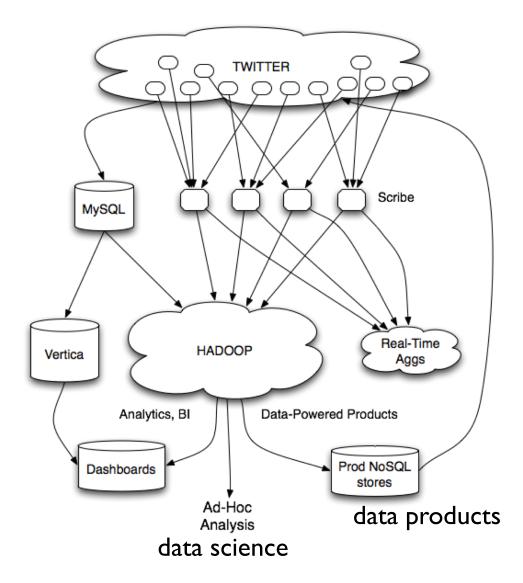
How things work in the real world (forget everything I told you...)

From the Ivory Tower...

Source: Wikipedia (All Souls College, Oxford)

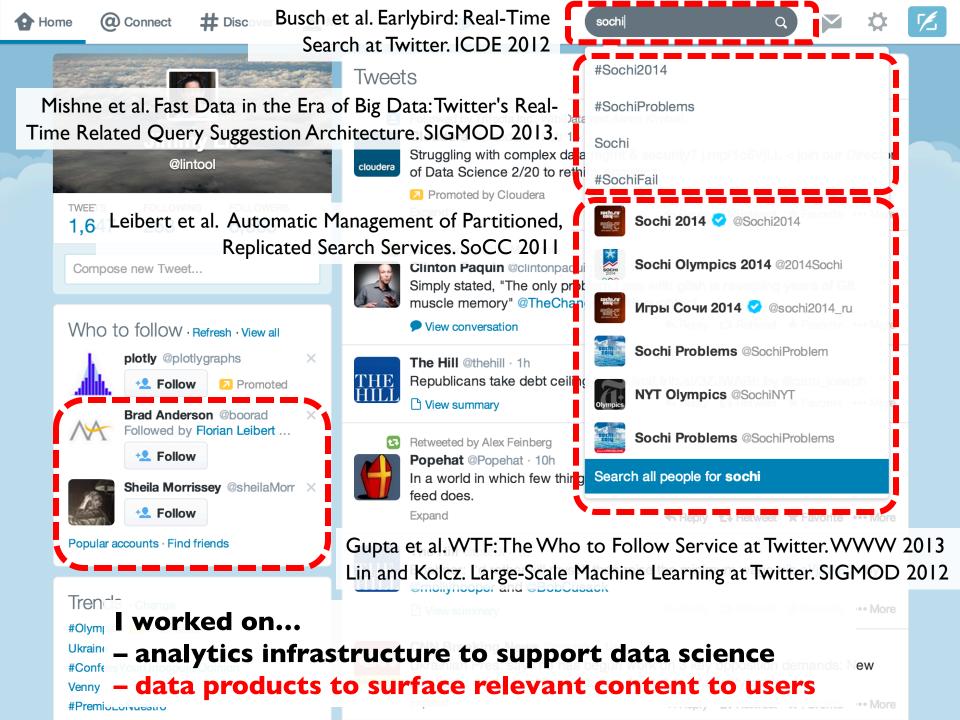
to building sh*t that works

What exactly did I do at Twitter?



I worked on...

- analytics infrastructure to support data science
- data products to surface relevant content to users



circa ~2010

~150 people total ~60 Hadoop nodes ~6 people use analytics stack daily

circa ~2012

~1400 people total 10s of Ks of Hadoop nodes, multiple DCs 10s of PBs total Hadoop DW capacity ~100 TB ingest daily dozens of teams use Hadoop daily 10s of Ks of Hadoop jobs daily

((what cof follow))

Similar to @ryanhall3 · view all

RunnerSpace_com RunnerSpace.com · Follow RunnerSpace.com has the latest in news and media...

chrislieto chris lieto · Follow Chris Lieto is a top ranked World Class Triathlete, ...

runningtimes runningtimes · Follow

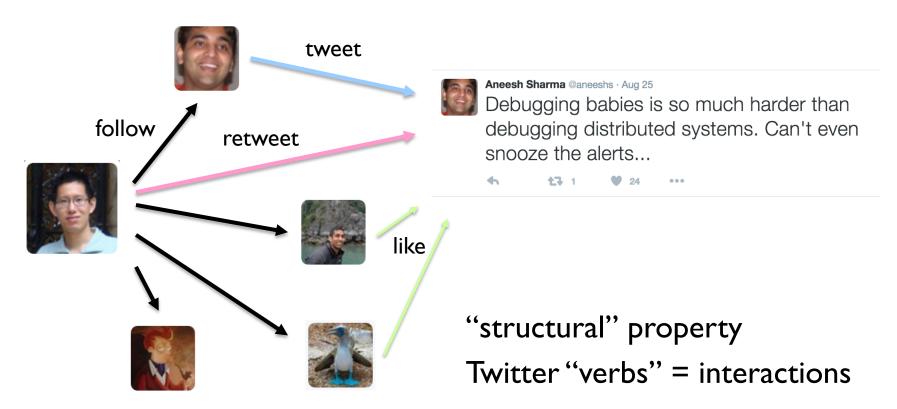
#numbers

(Second half of 2012)

~175 million active users ~20 billion edges 42% edges bidirectional Avg shortest path length: 4.05 40% as many unfollows as follows daily WTF responsible for ~1/8 of the edges

Myers, Sharma, Gupta, Lin. Information Network or Social Network? The Structure of the Twitter Follow Graph.WWW 2014.

Graphs are core to Twitter



Graph-based recommendation systems Why? Increase engagement!

ne journe

From the static follower graph for account recommendations... to the real-time interaction graph for content recommendations

e: fljckr (https://www.flickr.com/photos/39414578@N03/16042029002)

In Four Acts...

In the beginning... the void

Act I WTF and Cassovary

(circa 2010)

In the beginning... the void Goal: build a recommendation service quickly

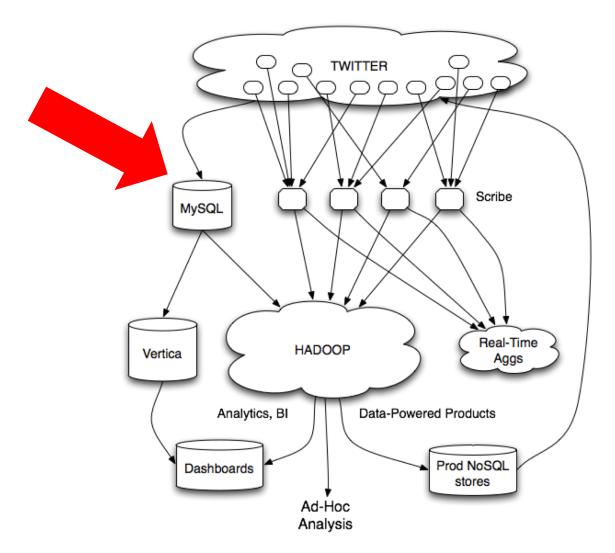
Act I WTF and Cassovary

(circa 2010)

flockDB (graph database)

Simple graph operations Set intersection operations

Not appropriate for graph algorithms!



Okay, let's use MapReduce! But MapReduce sucks for graphs!

What about...?

HaLoop (VLDB 2010) Twister (MapReduce Workshop 2010) Pregel/Giraph (SIGMOD 2010) Graphlab (UAI 2010) Prlter (Socc 2011) Datalog on Hyracks (Tech report, 2012) Spark/GraphX (NSDI 2012, arXiv 2014) PowerGraph (OSDI 2012) GRACE (CIDR 2013) Mizan (EuroSys 2013)

• • •

MapReduce sucks for graph algorithms... Let's build our own system!

Key design decision:

Keep entire graph in memory... on a single machine!

Nuts!

Why?

Because we can! Graph partitioning is hard... so don't do it Simple architecture

Right choice at the time!

The runway argument

.......

......

QANTAS

Source: Wikipedia (Heathrow)

18 × 8 GB DIMMS = 144 GB
18 × 16 GB DIMMS = 288 GB
12 × 16 GB DIMMS = 192 GB
12 × 32 GB DIMMS = 384 GB

Suppose: 10×10⁹ edges (src, dest) pairs: ~80 GB

Cassovary

In-memory graph engine Implemented in Scala Compact in-memory representations But no compression Avoid JVM object overhead! Open-source

PageRank

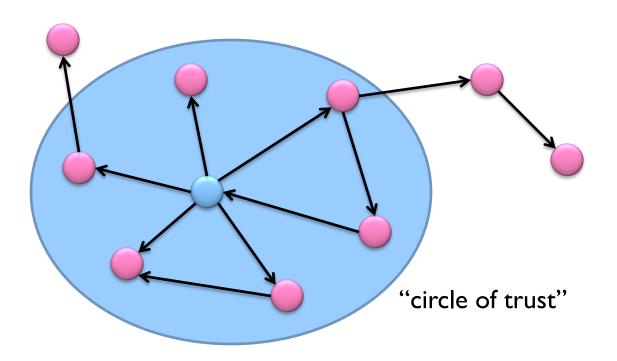
"Semi-streaming" algorithm Keep vertex state in memory, stream over edges Each pass = one PageRank iteration Bottlenecked by memory bandwidth

Convergence?

Don't run from scratch... use previous values A few passes are sufficient

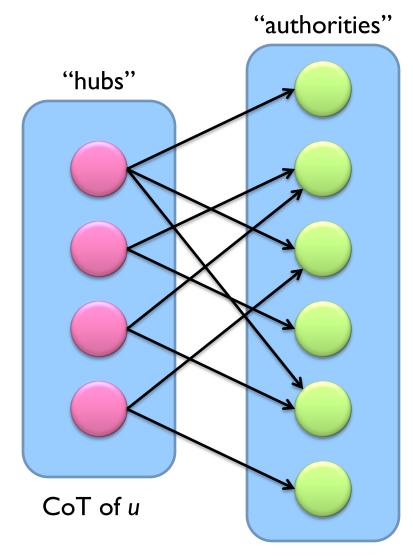
"Circle of Trust"

Ordered set of important neighbors for a user Result of egocentric random walk: Personalized PageRank! Computed online based on various input parameters



One of the features used in search

SALSA for Recommendations



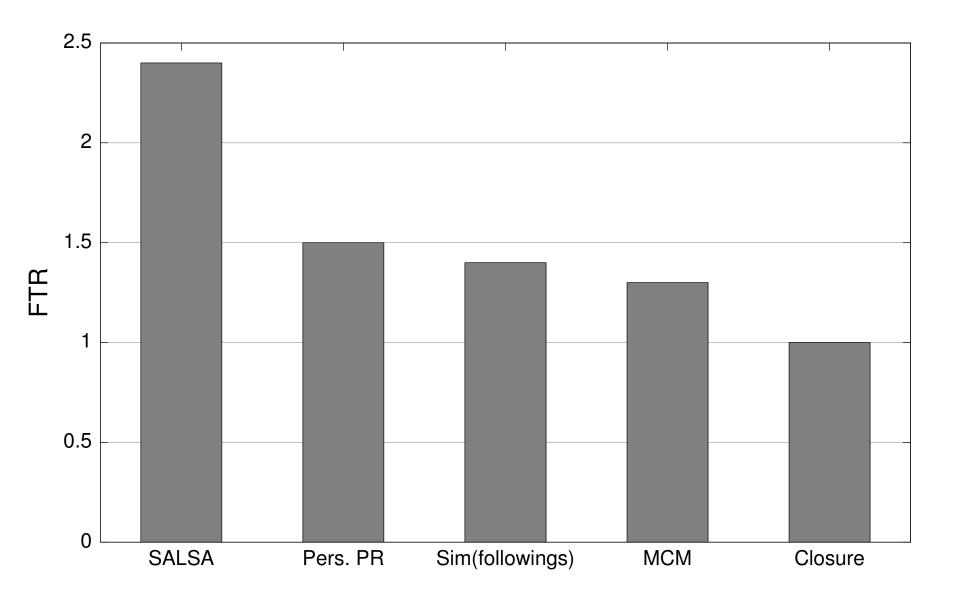
users LHS follow

hubs scores:

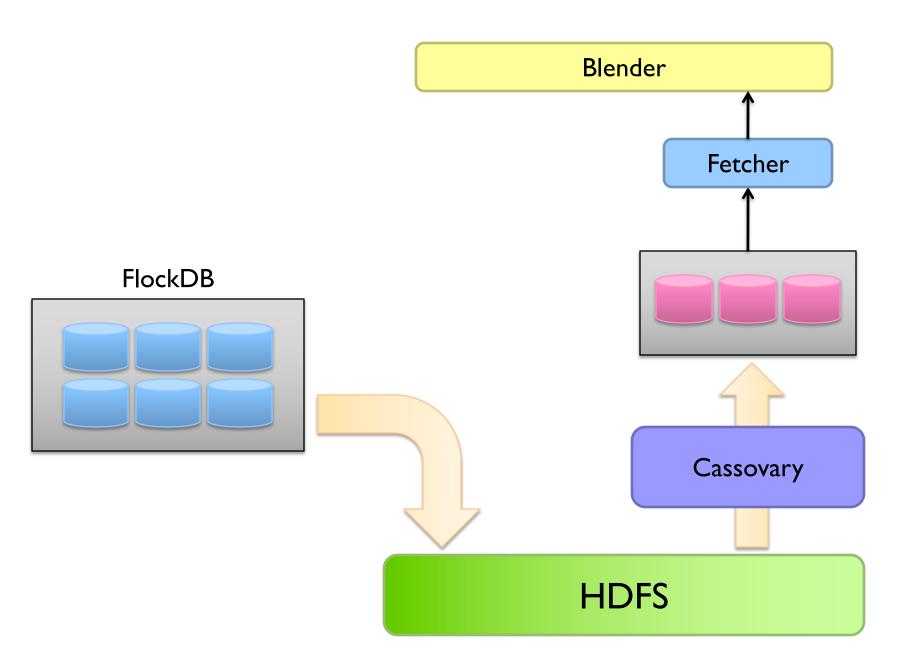
similarity scores to u

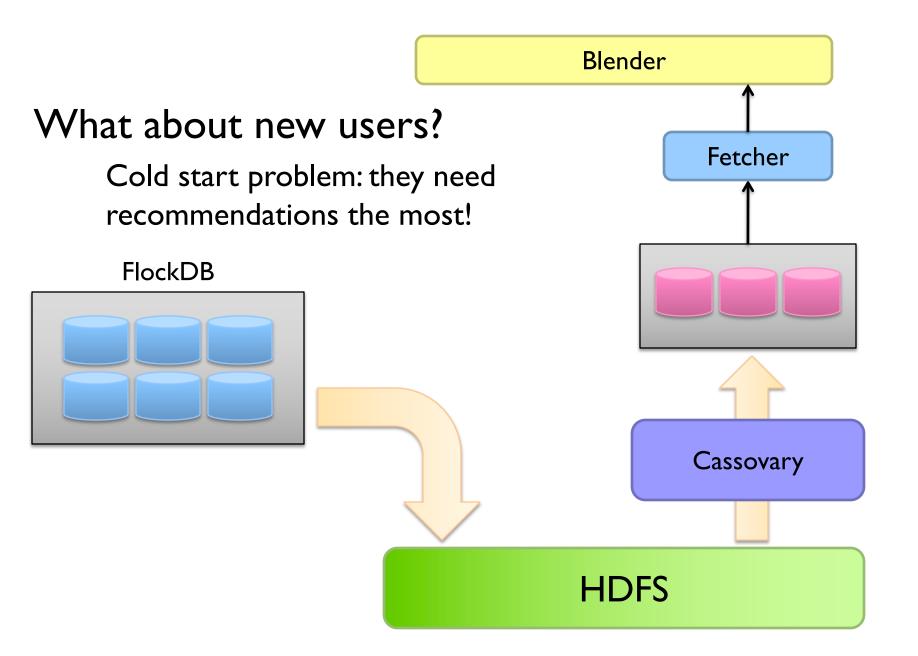
authority scores:

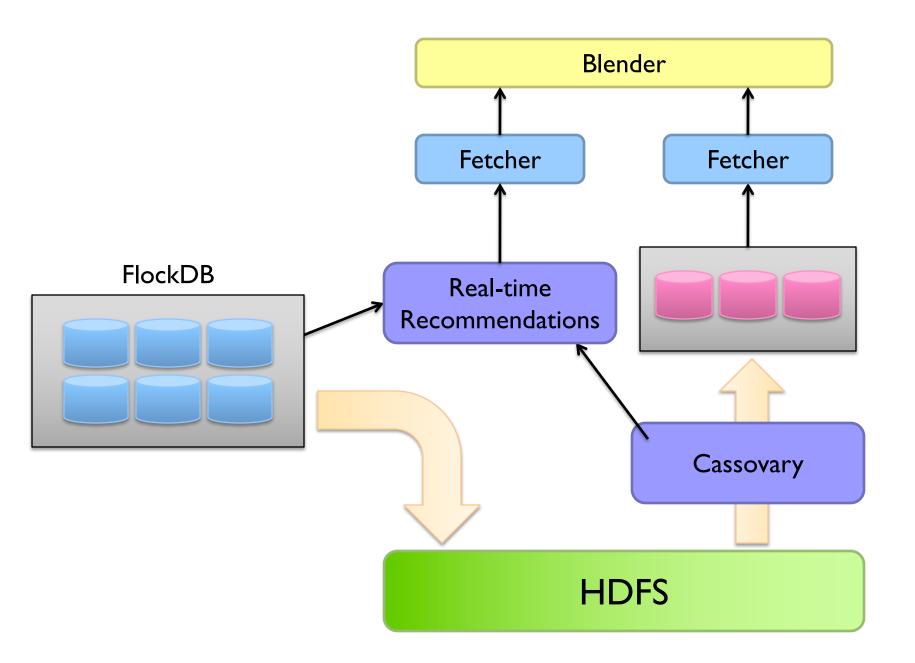
recommendation scores for u



Goel, Lin, Sharma, Wang, and Zadeh. WTF: The Who to Follow Service at Twitter. WWW 2013







Spring 2010: no WTF seriously, WTF?

Summer 2010:WTF launched

Act II RealGraph July

Goel et al. Discovering Similar Users on Twitter. MLG 2013.

Source: Facebook

Another "interesting" design choice: We migrated from Cassovary back to Hadoop!

Whaaaaaa?

Cassovary was a stopgap!

Hadoop provides: Richer graph structure Simplified production infrastructure Scaling and fault-tolerance "for free"

Right choice at the time!

Wait, didn't you say MapReduce sucks?

What exactly is the issue?

Random walks on egocentric 2-hop neighborhood Naïve approach: self-joins to materialize, then run algorithm

The shuffle is what kills you!

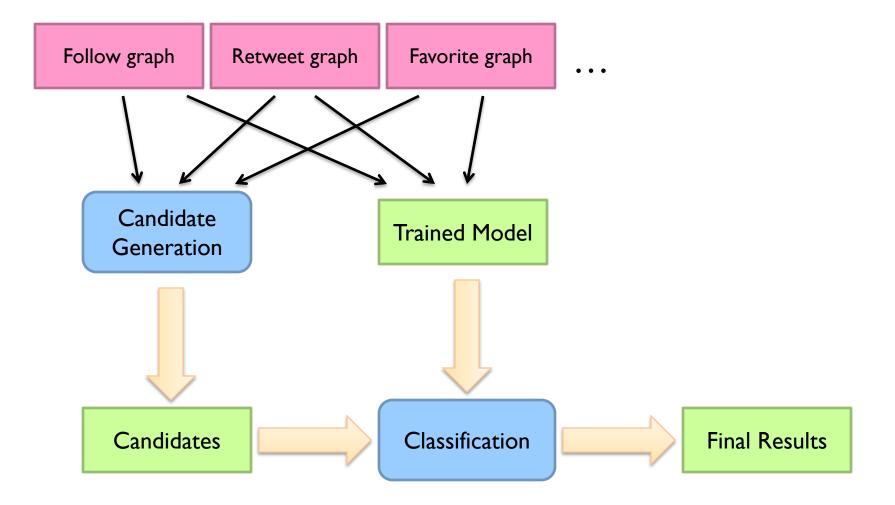
Graph algorithms in MapReduce

Tackle the shuffling problem!

Key insights: Batch and "stich together" partial random walks* Clever sampling to avoid full materialization

* Sarma et al. Estimating PageRank on Graph Streams. PODS 2008 Bahmani et al. Fast Personalized PageRank on MapReduce. SIGMOD 2011.

Throw in ML while we're at it...



Lin and Kolcz. Large-Scale Machine Learning at Twitter. SIGMOD 2012.

Act III MagicRecs

(circa 2013)

Source: Wikipedia (Fire hose)

Isn't the point of Twitter real-time? So why is WTF still dominated by batch processing?

AUT

TELEPHONE

Source: Wikipedia (Motion Blur)

@dickc

them. #mwc11

14 Feb via web 🖒 Favorite 🛱 Retweet 🖘 Reply

Our mission: Instantly connect people

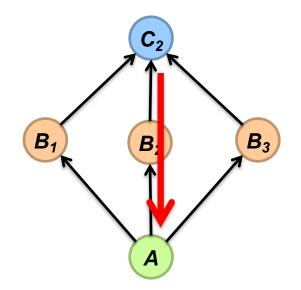
everywhere to what's most meaningful to

Observation: fresh recommendations get better engagement Logical conclusion: generate recommendations in real time!

> From batch to real-time recommendations: Recommendations based on recent activity "Trending in your network"

Inverts the WTF problem:

For this user, what recommendations to generate? Given this new edge, which user to make recommendations to?



Why does this work?

A follows B's because they're interesting B's following C's because "something's happening" (generalizes to any activity)

Gupta, Satuluri, Grewal, Gurumurthy, Zhabiuk, Li, and Lin. Real-Time Twitter Recommendation: Online Motif Detection in Large Dynamic Graphs.VLDB 2014

Scale of the Problem

 $O(10^8)$ vertices, $O(10^{10})$ edges Designed for $O(10^4)$ events per second

Naïve solutions:

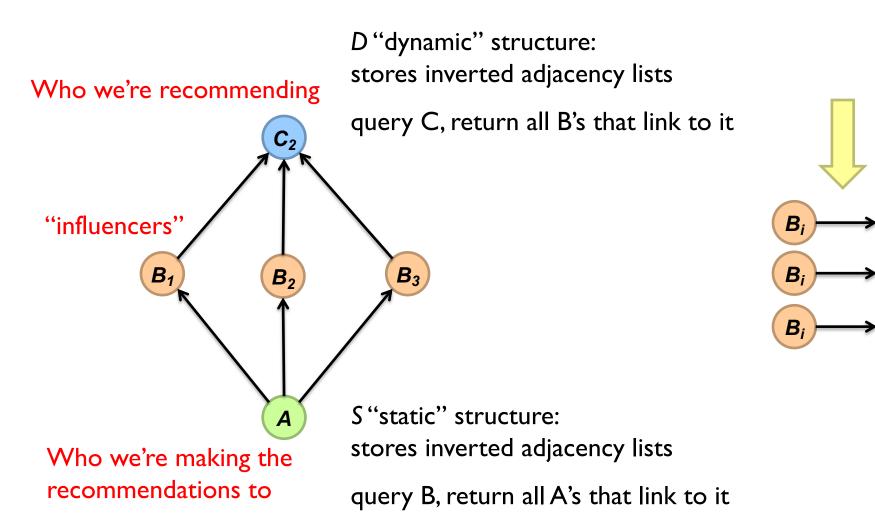
Poll each vertex periodically Materialize everyone's two-hop neighborhood, intersect

Production solution:

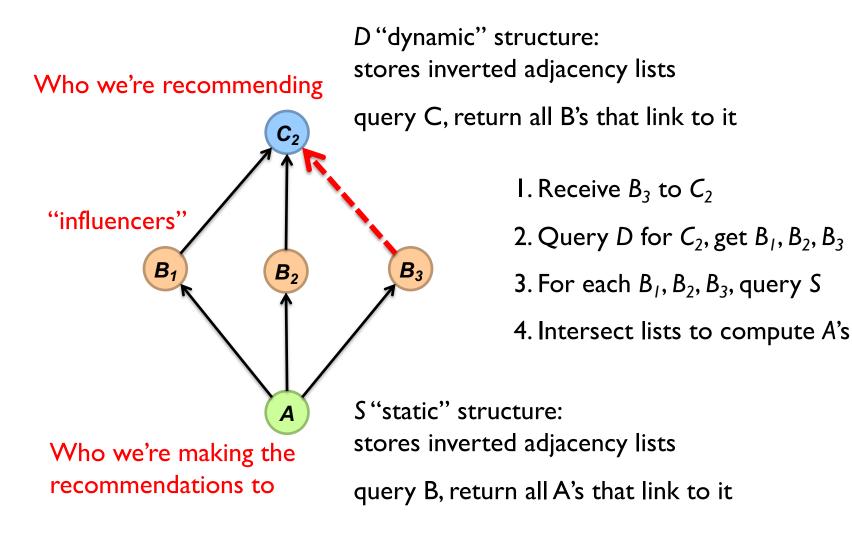
Idea #1: Convert problem into adjacency list intersection Idea #2: Partition graph to eliminate non-local intersections

Gupta, Satuluri, Grewal, Gurumurthy, Zhabiuk, Li, and Lin. Real-Time Twitter Recommendation: Online Motif Detection in Large Dynamic Graphs.VLDB 2014

Single Node Solution

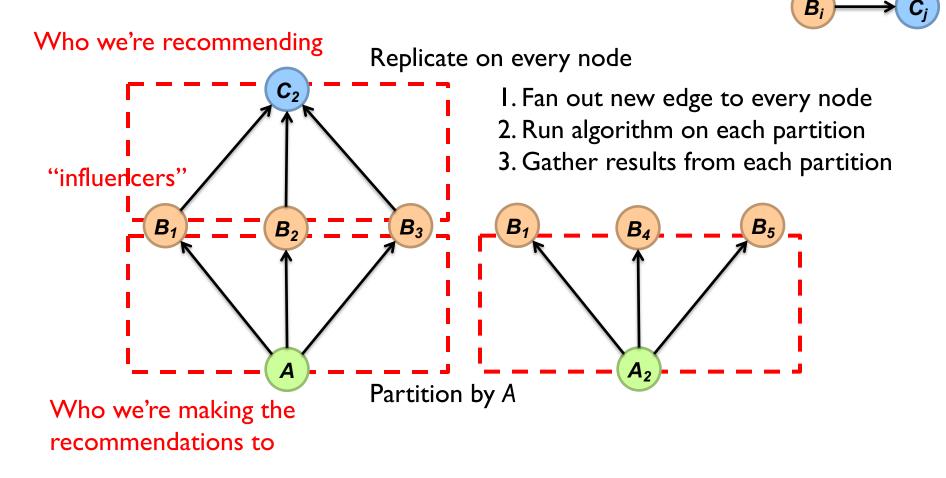


Algorithm



Idea #I: Convert problem into adjacency list intersection

Distributed Solution



Idea #2: Partition graph to eliminate non-local intersections

Production Status Launched September 2013

Usage Statistics (Circa 2014)

Push recommendations to Twitter mobile users Billions of raw candidates, millions of push notifications daily

Performance

End-to-end latency (from edge creation to delivery): median 7s, p99 15s

Gupta, Satuluri, Grewal, Gurumurthy, Zhabiuk, Li, and Lin. Real-Time Twitter Recommendation: Online Motif Detection in Large Dynamic Graphs.VLDB 2014

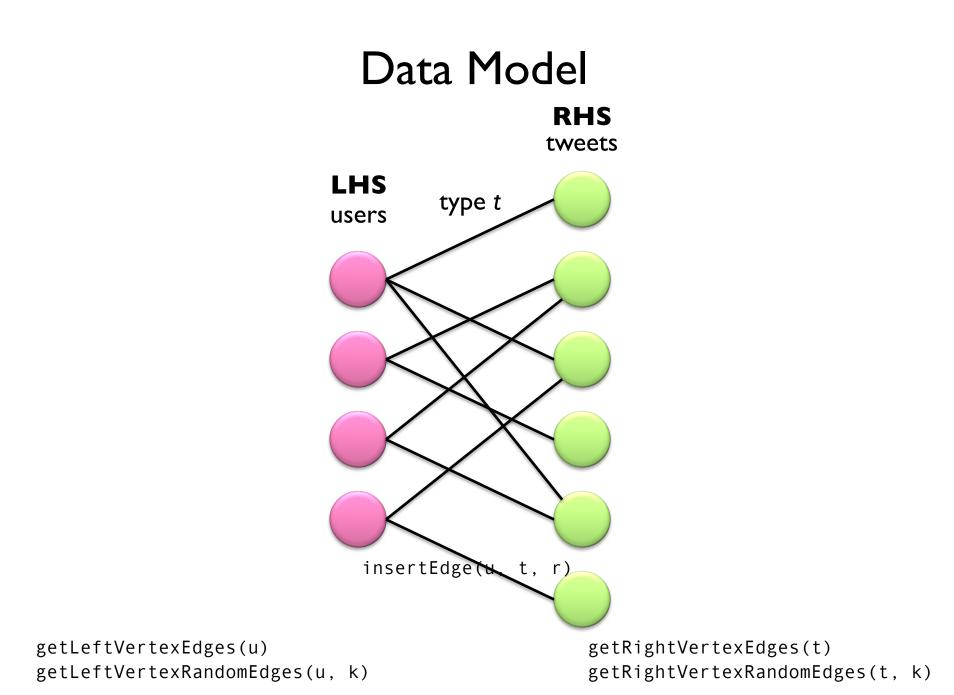
Act IV GraphJet

(circa 2014)

Fully bought into the potential of real-time... but needed something more general

Focused specifically on the interaction graph

Source: flickr (https://www.flickr.com/photos/martinsfoto/6432093025/)



Noteworthy design decisions Make it simple, make it fast!

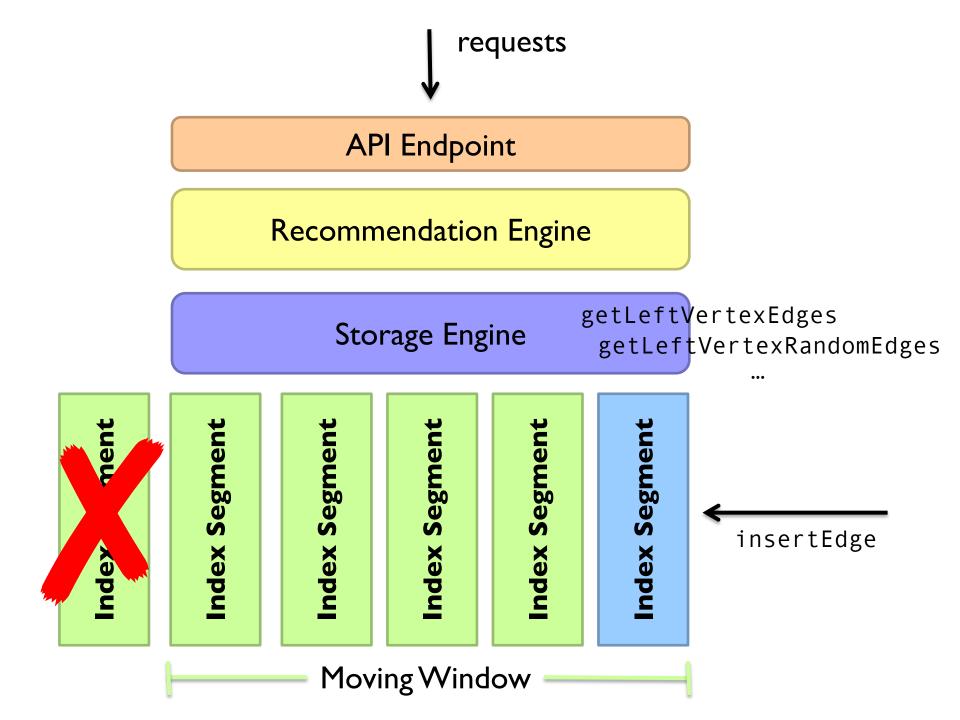
No partitioning Focus on recent data, fits on a single machine

No deletes

Not meaningful w/ interaction data

No arbitrary edge metadata Marginally better results at the cost of space – not worthwhile

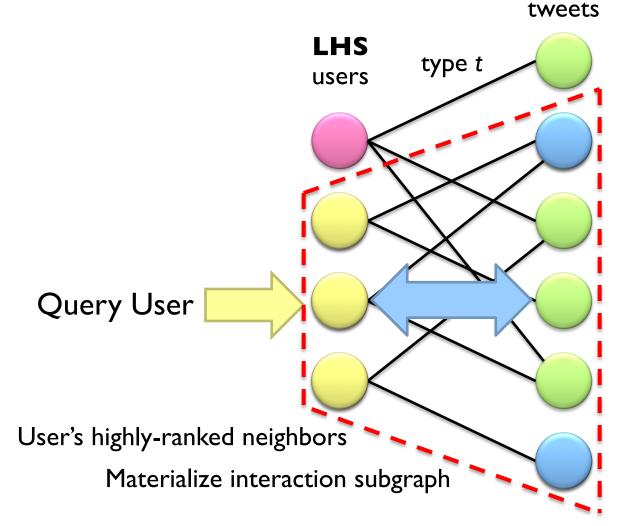
Note: design supports revisiting these choices



Recommendation Algorithm: Subgraph SALSA

RHS

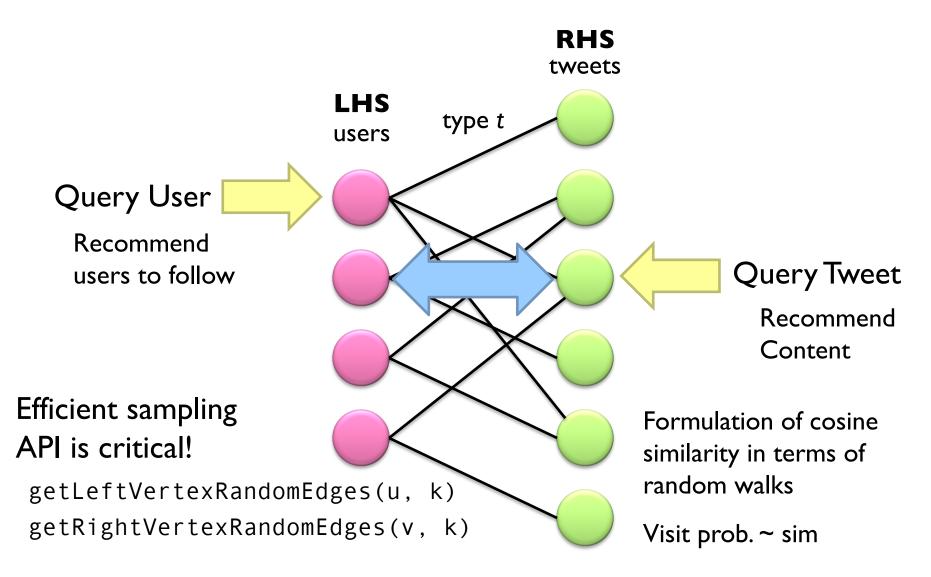
What tweets might a user be interested in?



Random walk to distribute probability mass

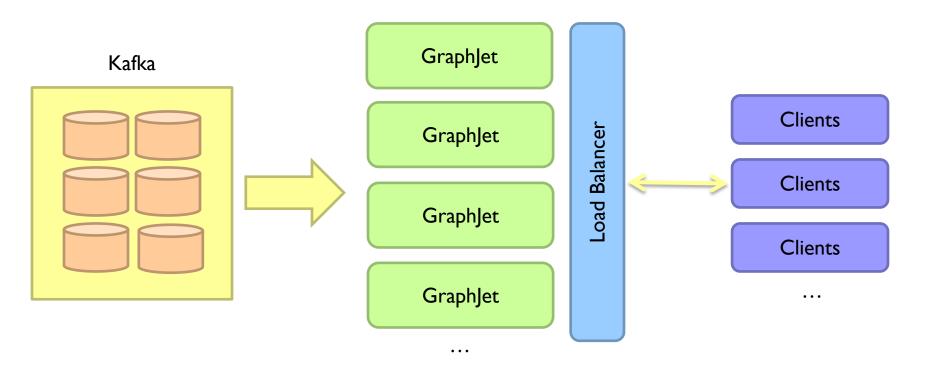
Inject highly-ranked tweets into user's home timeline

Recommendation Algorithm: Similarity Query



Goel et al. Discovering Similar Users on Twitter. MLG 2013.

Deployment Architecture



Production Status Started serving production traffic early 2014

Dual Intel Xeon 6-cores (E5-2620 v2) at 2.1 GHz

Cold startup: ingestion at $O(10^6)$ edges per sec from Kafka Steady state: ingestion at $O(10^4)$ edges per sec

Space usage: $O(10^9)$ edges in < 30 GB

Sample recommendation algorithm: subgraph SALSA 500 QPS, p50 = 19ms, p99 = 33ms

Takeaway lesson #01: Make things as simple as possible, but not simpler.

With lots of data, algorithms don't really matter that much Why a complex architecture when a simple one suffices?

Takeaway lesson #10: Constraints aren't always technical.

Source: https://www.flickr.com/photos/43677780@N07/6240710770/

Takeaway lesson #11: Visiting and revisiting design decisions

_1-

Source: https://www.flickr.com/photos/exmachina/8186754683/

Questions?

"In theory, there is no difference between theory and practice. But, in practice, there is."

- Jan L.A. van de Snepscheut

Twittering Machine. Paul Klee (1922) watercolor and ink