

Data-Intensive Distributed Computing CS 451/651 (Fall 2018)

Part 8: Analyzing Graphs, Redux (1/2) November 15, 2018

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2018f/

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Graph Algorithms, again? (srsly?)

Irregular structure Fun with data structures!

Irregular data access patterns Fun with architectures!

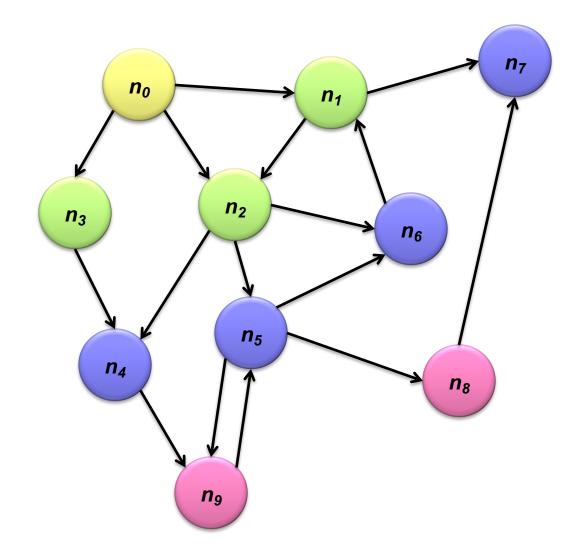
> Iterations Fun with optimizations!

Characteristics of Graph Algorithms

Local computations Message passing along graph edges

Iterations

Visualizing Parallel BFS



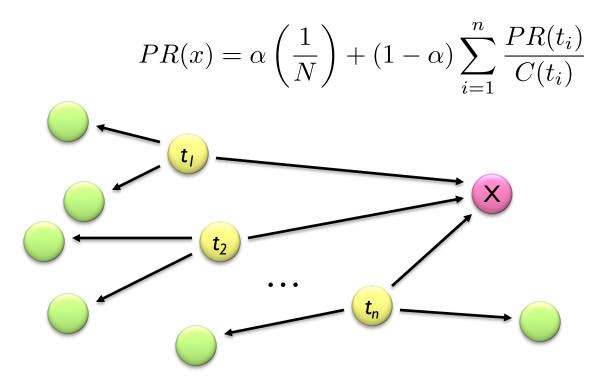
PageRank: Defined

Given page x with inlinks $t_1 \dots t_n$, where

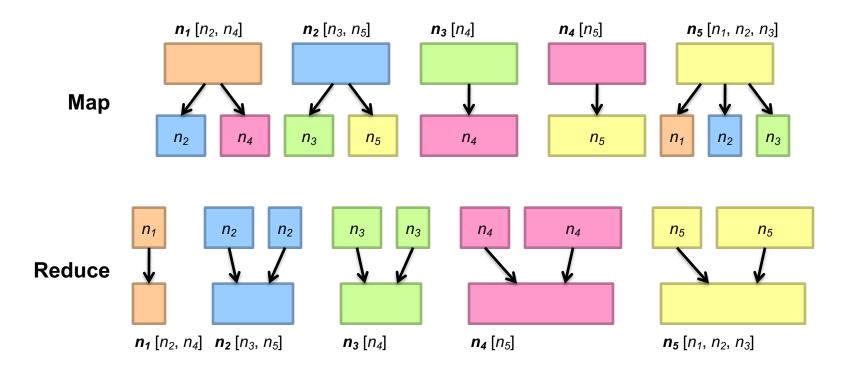
C(t) is the out-degree of t

lpha is probability of random jump

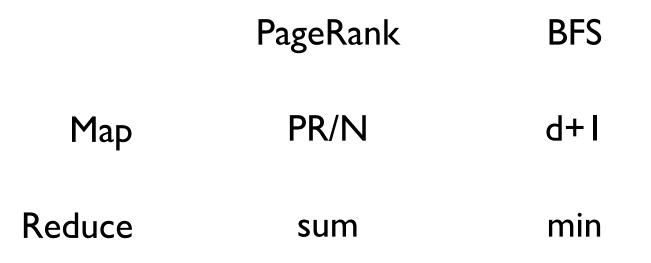
N is the total number of nodes in the graph



PageRank in MapReduce

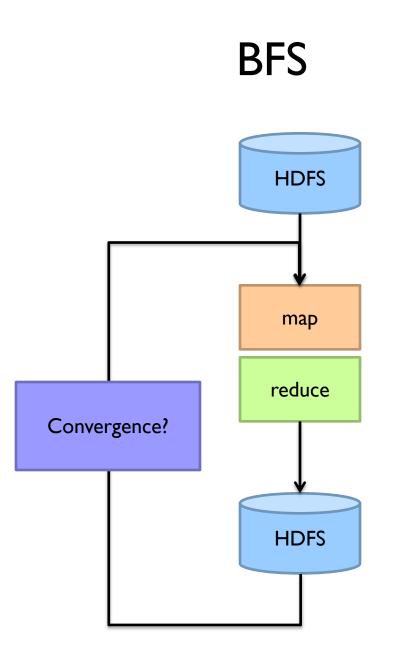


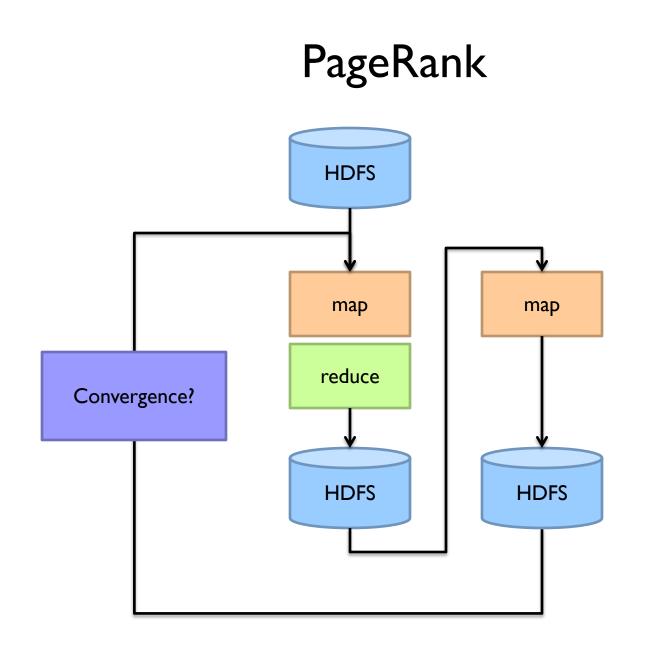
PageRank vs. BFS



Characteristics of Graph Algorithms

Parallel graph traversals Local computations Message passing along graph edges

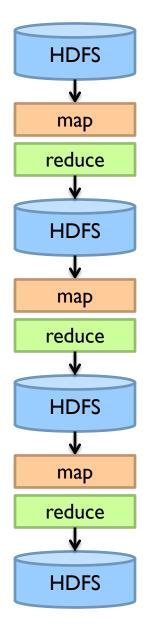


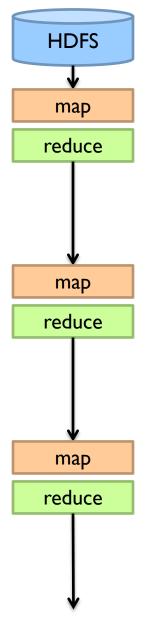


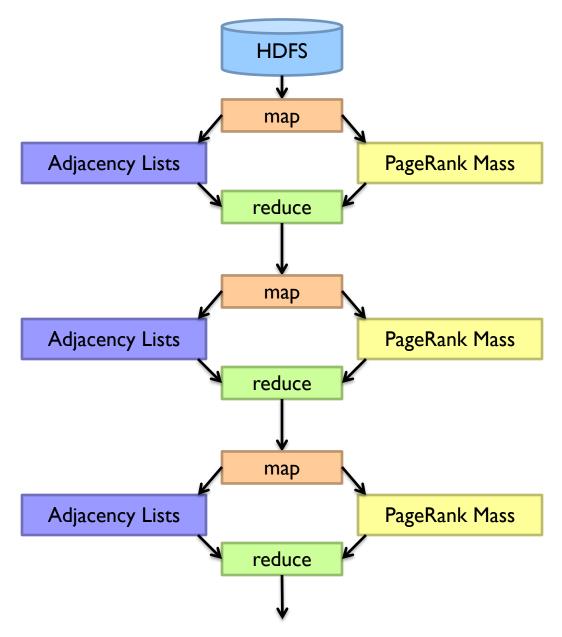
MapReduce Sucks

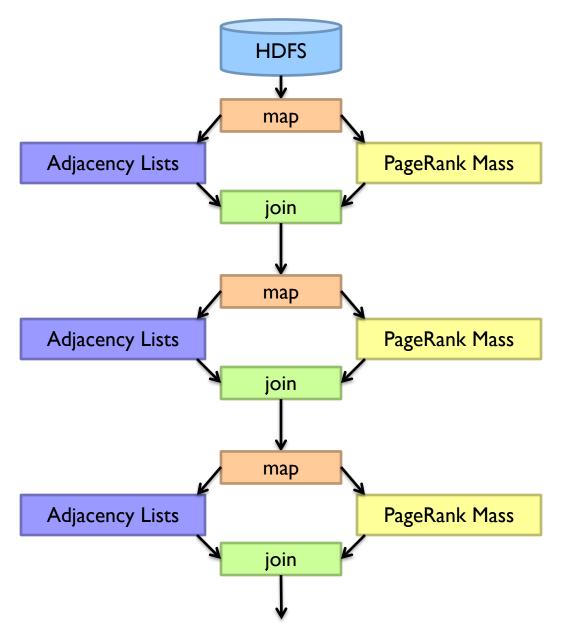
Hadoop task startup time Stragglers Needless graph shuffling Checkpointing at each iteration

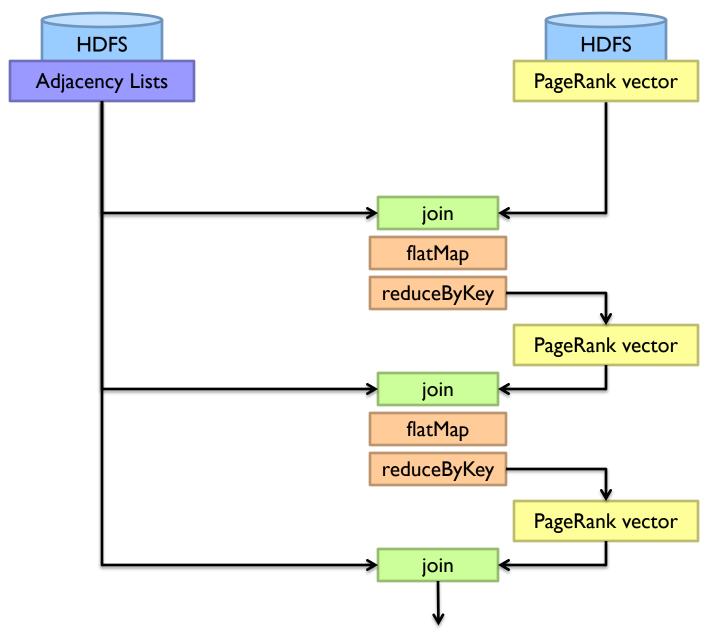
Let's Spark!

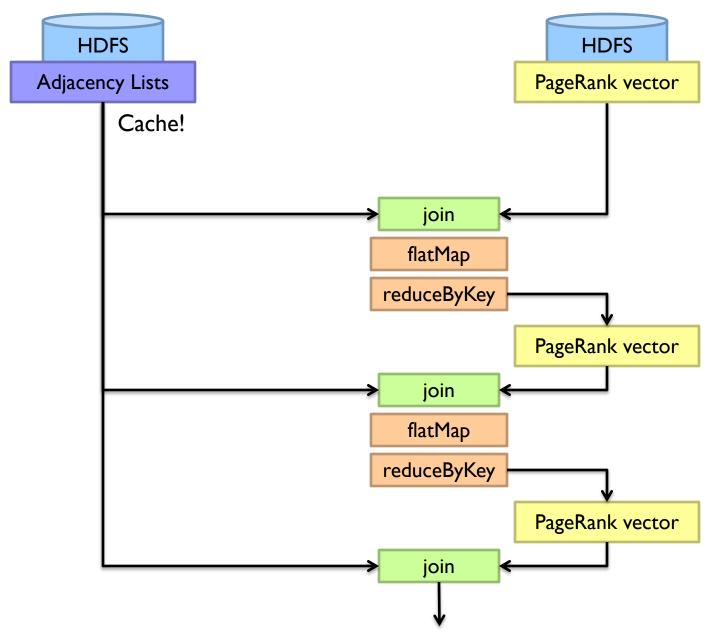




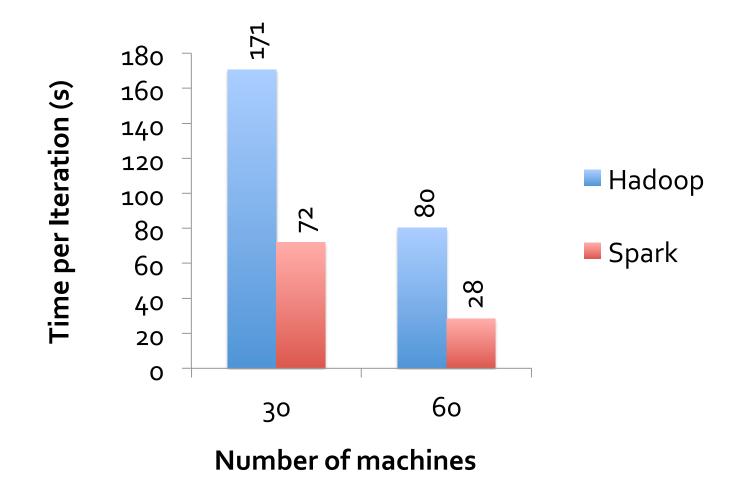








MapReduce vs. Spark



Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

Characteristics of Graph Algorithms

Parallel graph traversals Local computations

Message passing along graph edges

Iterations

Even faster?

Big Data Processing in a Nutshell Let's be smarter about this! Partition

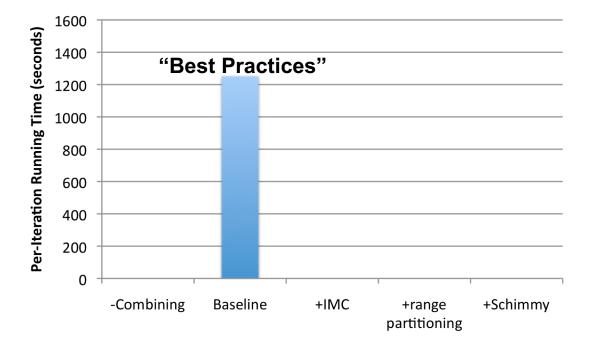
Replicate

Reduce cross-partition communication

Simple Partitioning Techniques

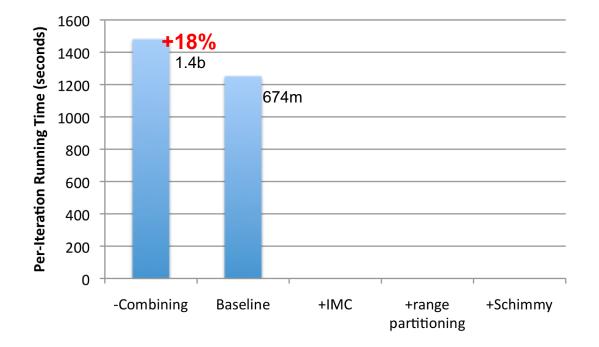
Hash partitioning

Range partitioning on some underlying linearization Web pages: lexicographic sort of domain-reversed URLs

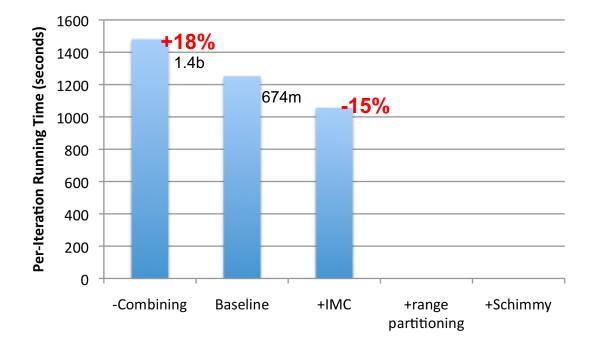


PageRank over webgraph (40m vertices, 1.4b edges)

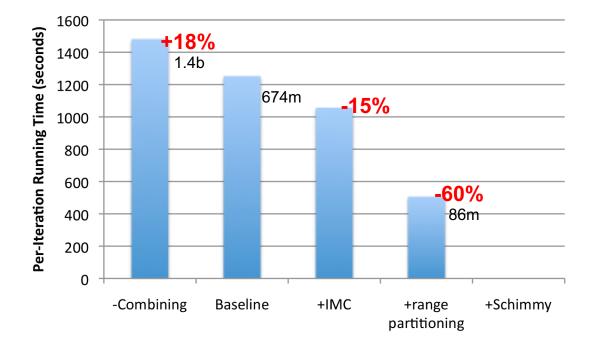
Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.



PageRank over webgraph (40m vertices, 1.4b edges)



PageRank over webgraph (40m vertices, 1.4b edges)



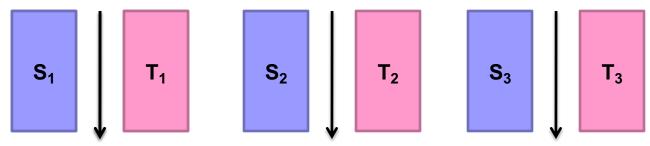
PageRank over webgraph (40m vertices, 1.4b edges)

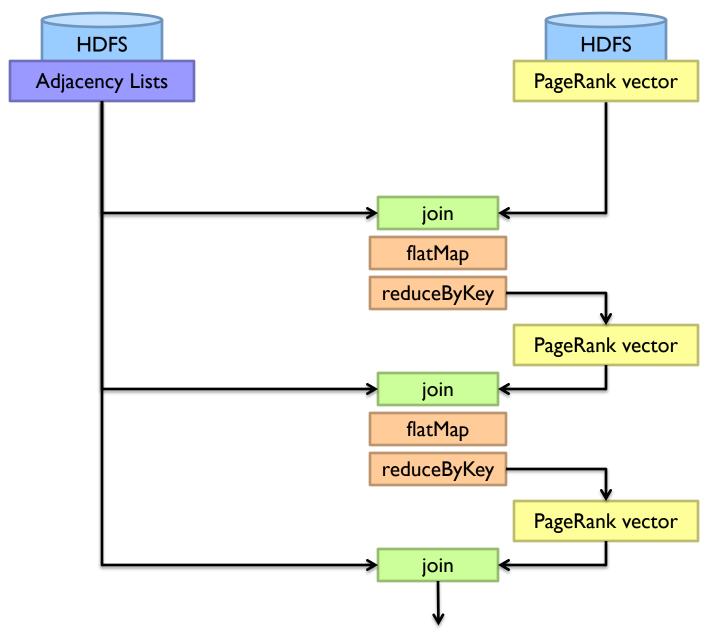
Schimmy Design Pattern

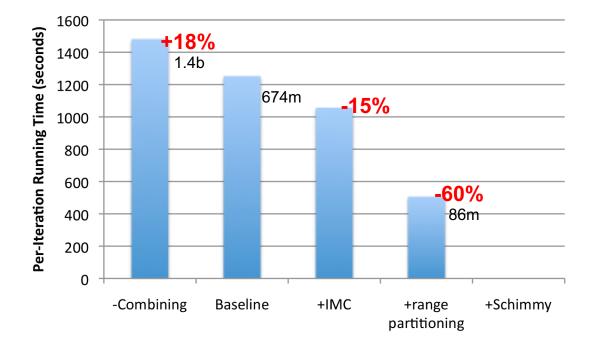
Basic implementation contains two dataflows: Messages (actual computations) Graph structure ("bookkeeping")

Schimmy: separate the two dataflows, shuffle only the messages Basic idea: merge join between graph structure and messages

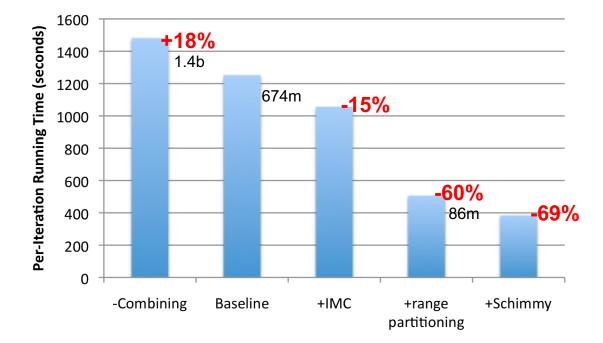
both relationshoeteticitys join kistently partitioned and sorted by join key







PageRank over webgraph (40m vertices, 1.4b edges)



PageRank over webgraph (40m vertices, 1.4b edges)

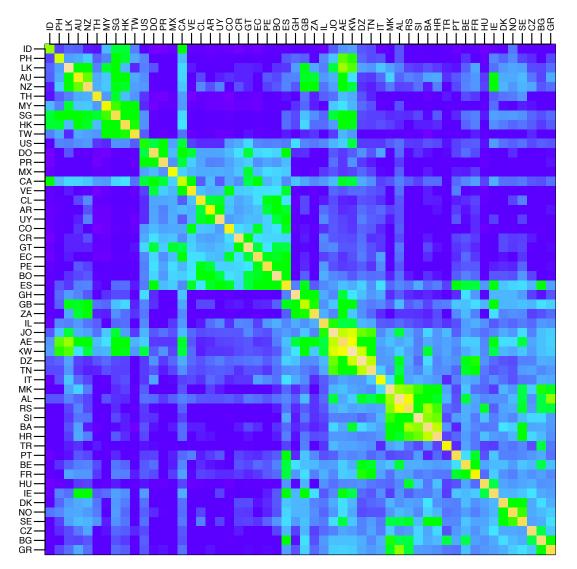
Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization Web pages: lexicographic sort of domain-reversed URLs Social networks: sort by demographic characteristics

Country Structure in Facebook



Analysis of 721 million active users (May 2011)

54 countries w/ >1m active users, >50% penetration

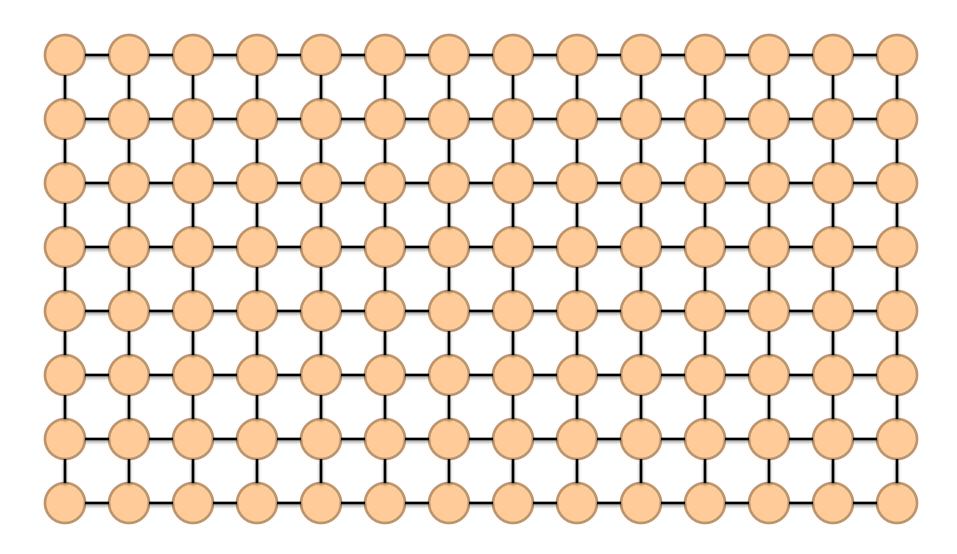
Ugander et al. (2011) The Anatomy of the Facebook Social Graph.

Simple Partitioning Techniques

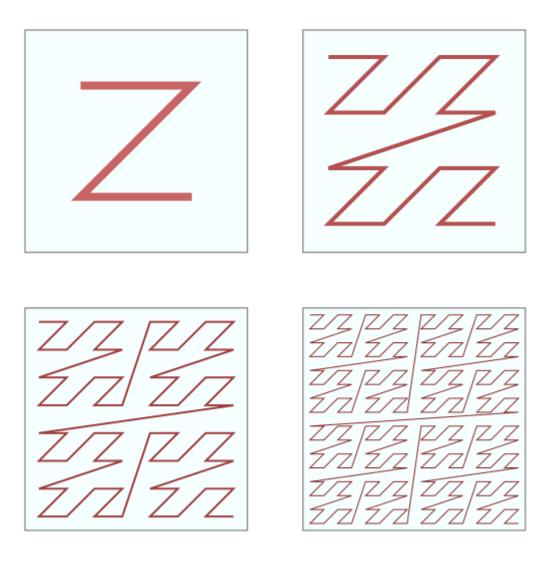
Hash partitioning

Range partitioning on some underlying linearization Web pages: lexicographic sort of domain-reversed URLs Social networks: sort by demographic characteristics Geo data: space-filling curves

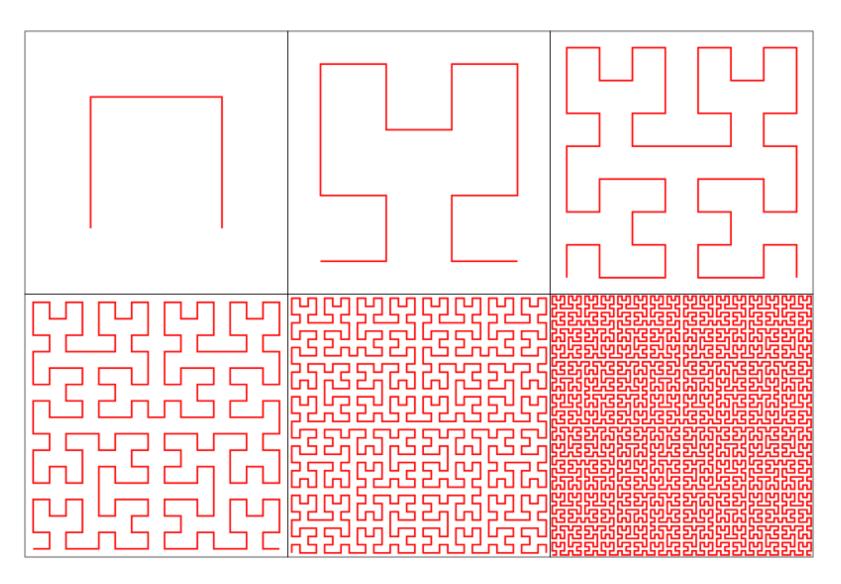
Geo-data = regular graph



Space-filling curves: Z-Order Curves



Space-filling curves: Hilbert Curves



Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization Web pages: lexicographic sort of domain-reversed URLs Social networks: sort by demographic characteristics Geo data: space-filling curves

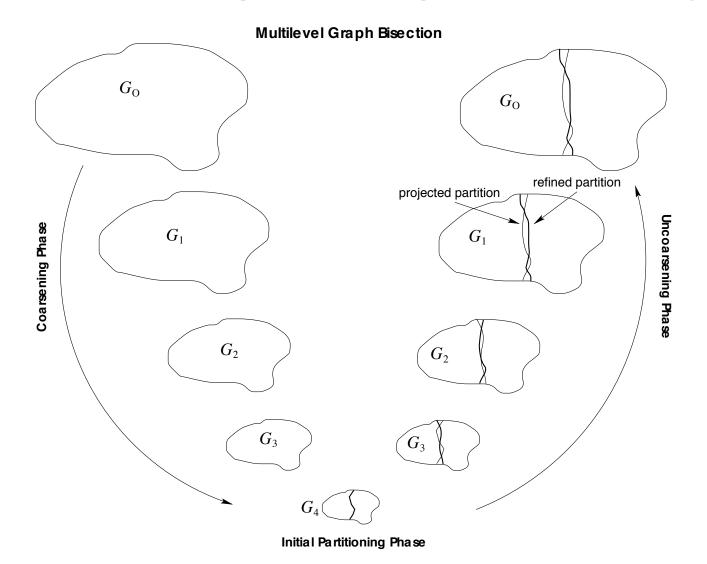
But what about graphs in general?

Source: http://www.flickr.com/photos/fusedforces/4324320625/

General-Purpose Graph Partitioning

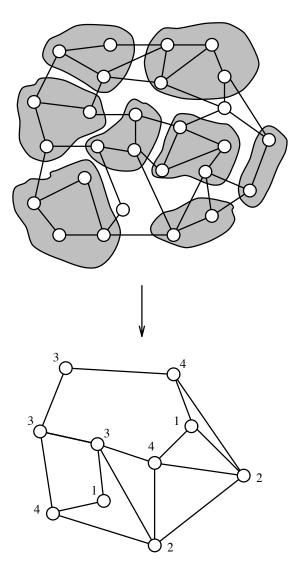
Graph coarsening Recursive bisection

General-Purpose Graph Partitioning



Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

Graph Coarsening



Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

Chicken-and-Egg

To coarsen the graph you need to identify dense local regions To identify dense local regions quickly you to need traverse local edges But to traverse local edges efficiently you need the local structure!

To efficiently partition the graph, you need to already know what the partitions are! Industry solution?

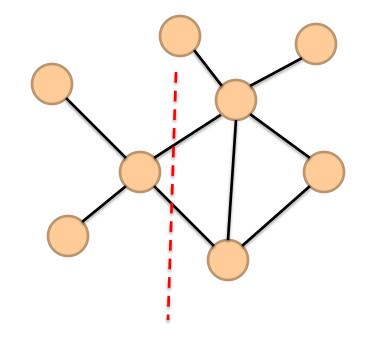
Big Data Processing in a Nutshell

Partition

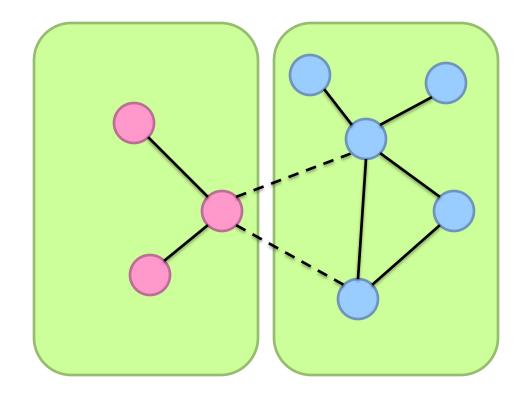
Replicate

Reduce cross-partition communication

Partition



Partition



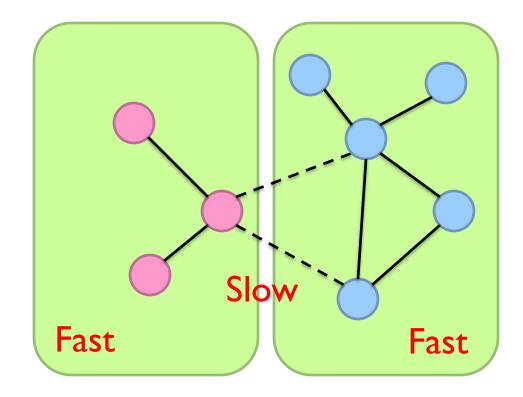
What's the fundamental issue?

Characteristics of Graph Algorithms

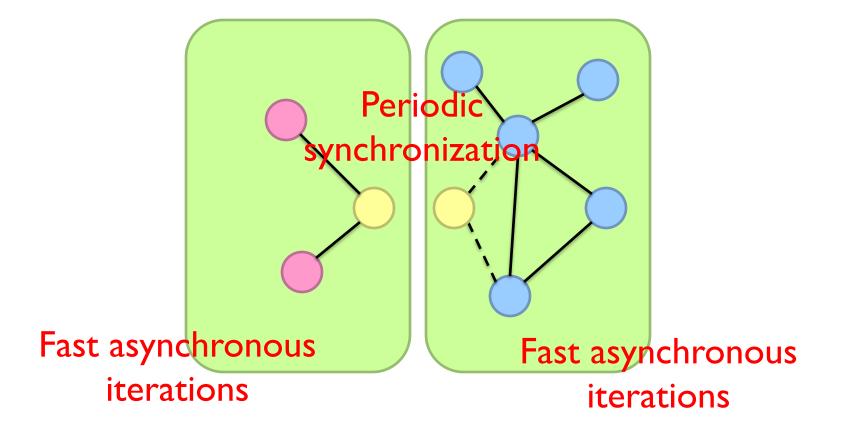
Parallel graph traversals Local computations Message passing along graph edges

Iterations

Partition

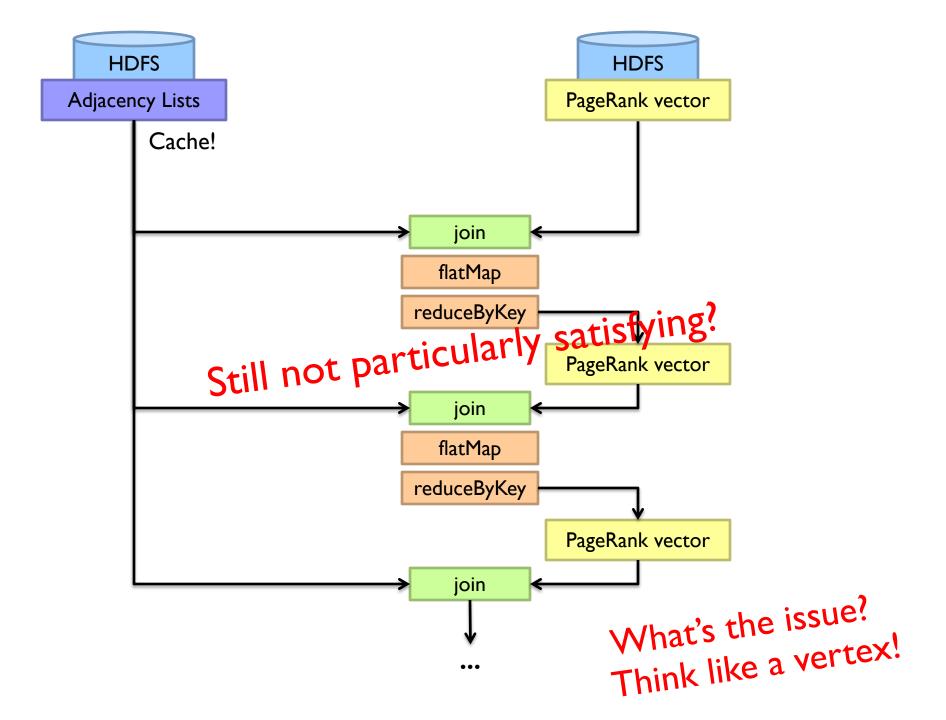


State-of-the-Art Distributed Graph Algorithms



Graph Processing Frameworks

Source: Wikipedia (Waste container)



Pregel: Computational Model

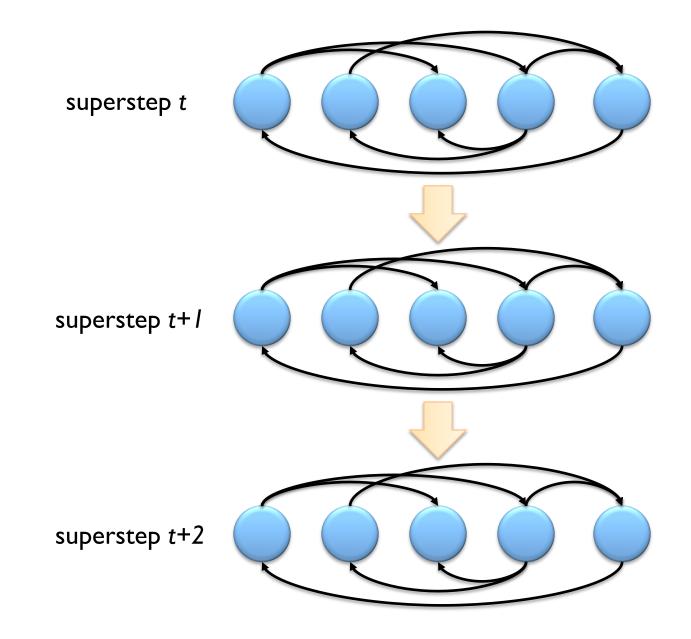
Based on Bulk Synchronous Parallel (BSP) Computational units encoded in a directed graph Computation proceeds in a series of supersteps Message passing architecture

Each vertex, at each superstep:

Receives messages directed at it from previous superstep Executes a user-defined function (modifying state) Emits messages to other vertices (for the next superstep)

Termination:

A vertex can choose to deactivate itself Is "woken up" if new messages received Computation halts when all vertices are inactive



Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: Implementation

Master-Worker architecture

Vertices are hash partitioned (by default) and assigned to workers Everything happens in memory

Processing cycle:

Master tells all workers to advance a single superstep Worker delivers messages from previous superstep, executing vertex computation Messages sent asynchronously (in batches) Worker notifies master of number of active vertices

Fault tolerance

Checkpointing Heartbeat/revert

Pregel: SSSP

```
class ShortestPathVertex : public Vertex<int, int, int> {
  void Compute(MessageIterator* msgs) {
    int mindist = IsSource(vertex id()) ? 0 : INF;
    for (; !msgs->Done(); msgs->Next())
      mindist = min(mindist, msgs->Value());
    if (mindist < GetValue()) {</pre>
      *MutableValue() = mindist;
      OutEdgeIterator iter = GetOutEdgeIterator();
      for (; !iter.Done(); iter.Next())
        SendMessageTo(iter.Target(),
                      mindist + iter.GetValue()):
    VoteToHalt():
};
```

Pregel: PageRank

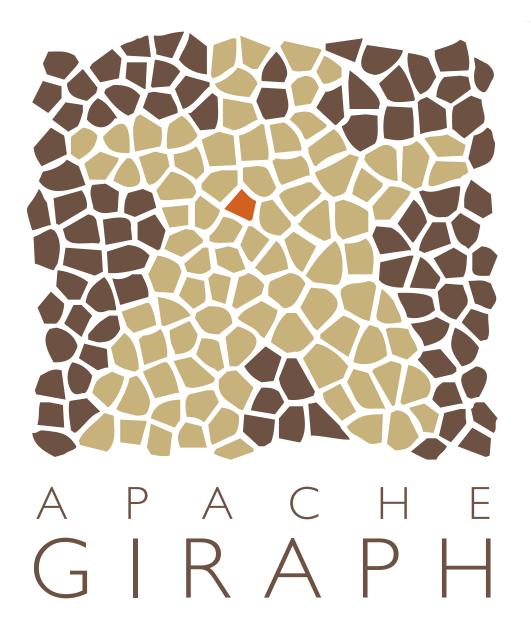
class PageRankVertex : public Vertex<double, void, double> {
 public:

```
virtual void Compute(MessageIterator* msgs) {
    if (superstep() >= 1) {
      double sum = 0;
      for (; !msgs->Done(); msgs->Next())
        sum += msgs->Value();
      *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
    }
    if (superstep() < 30) {
      const int64 n = GetOutEdgeIterator().size();
      SendMessageToAllNeighbors(GetValue() / n);
    } else {
      VoteToHalt();
    }
 }
};
```

Pregel: Combiners

```
class MinIntCombiner : public Combiner<int> {
    virtual void Combine(MessageIterator* msgs) {
```

```
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
    mindist = min(mindist, msgs->Value());
    Output("combined_source", mindist);
}
};
```



Giraph Architecture

Master – Application coordinator Synchronizes supersteps Assigns partitions to workers before superstep begins

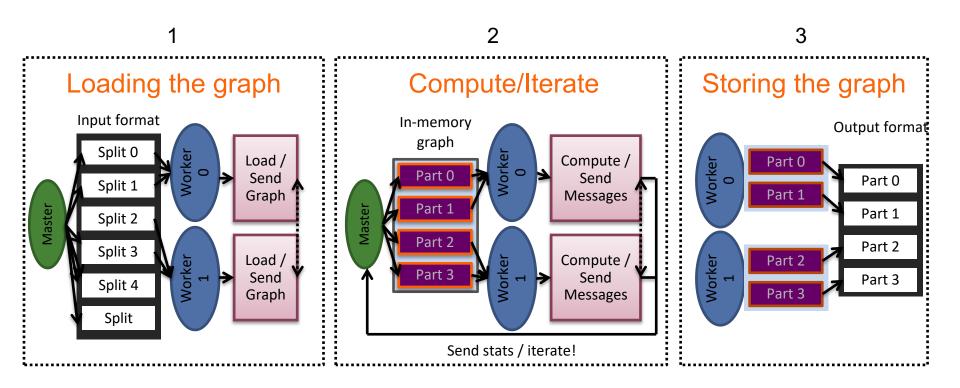
Workers – Computation & messaging

Handle I/O – reading and writing the graph Computation/messaging of assigned partitions

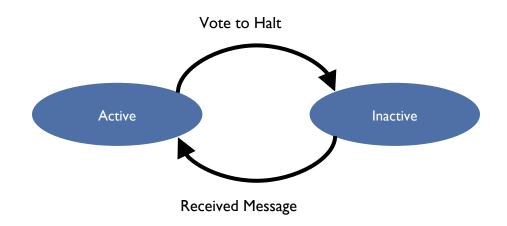
ZooKeeper

Maintains global application state

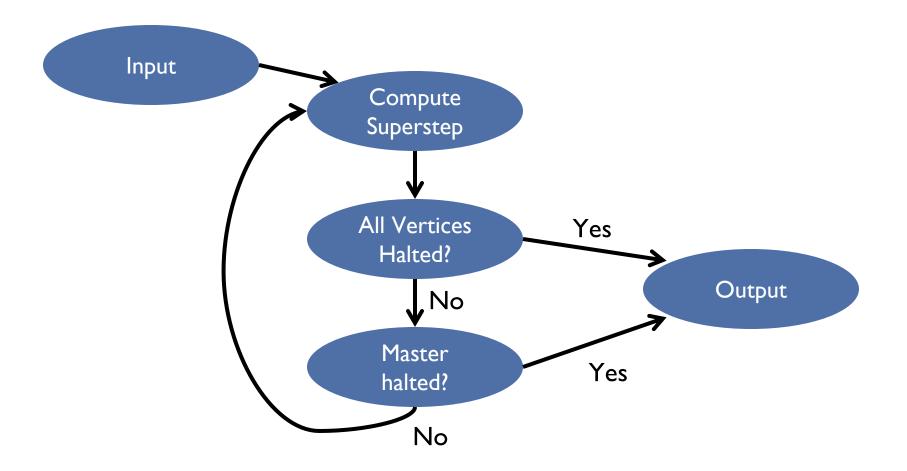
Giraph Dataflow



Giraph Lifecycle



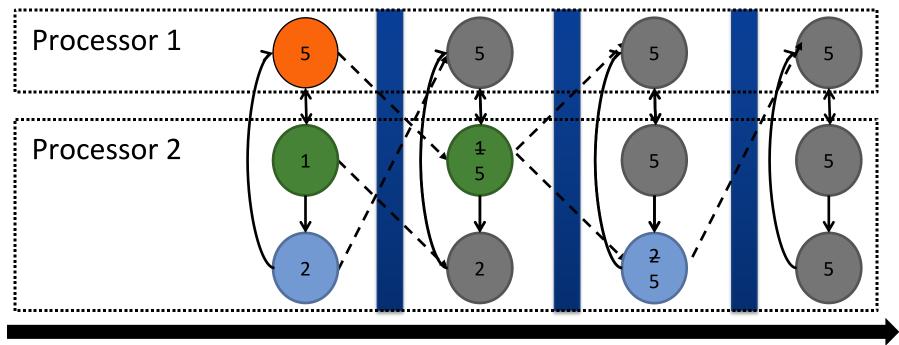
Giraph Lifecycle



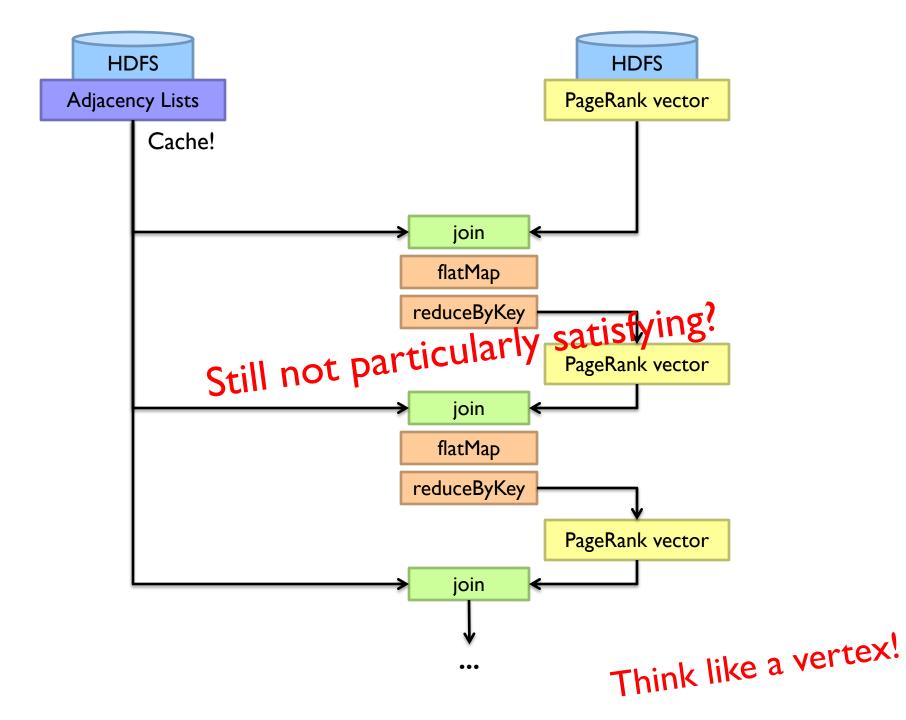
Giraph Example

```
public class MaxComputation extends BasicComputation<IntWritable, IntWritable,
   NullWritable, IntWritable> {
 @Override
 public void compute(Vertex<IntWritable, IntWritable, NullWritable> vertex,
      Iterable<IntWritable> messages) throws IOException
  Ł
   boolean changed = false;
    for (IntWritable message : messages) {
      if (vertex.getValue().get() < message.get()) {</pre>
        vertex.setValue(message);
        changed = true;
   if (getSuperstep() == 0 || changed) {
      sendMessageToAllEdges(vertex, vertex.getValue());
    vertex.voteToHalt();
```

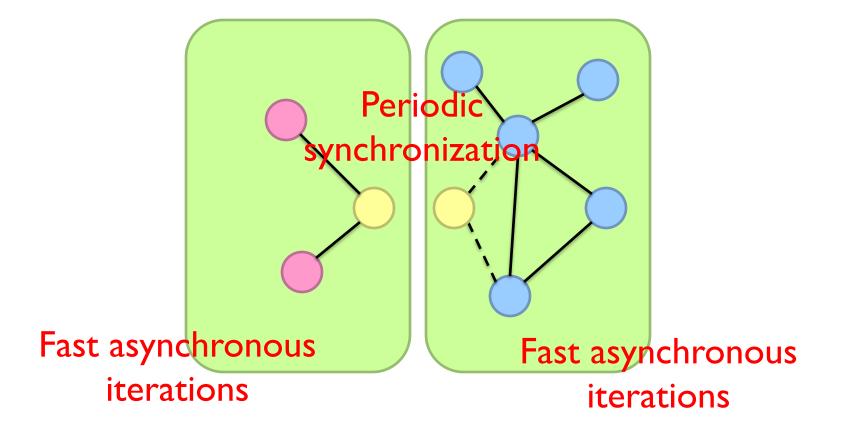
Execution Trace



Time



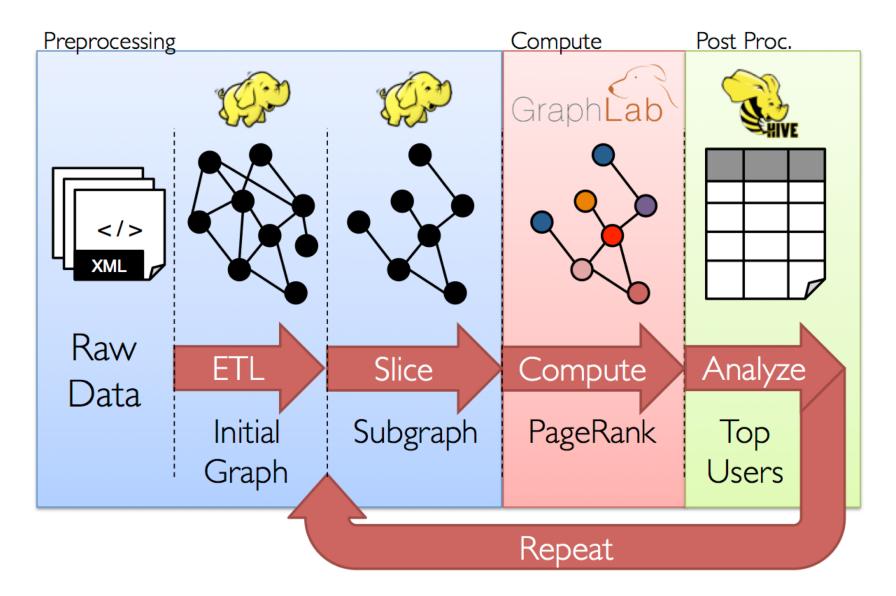
State-of-the-Art Distributed Graph Algorithms



Graph Processing Frameworks

Source: Wikipedia (Waste container)

GraphX: Motivation



GraphX = Spark for Graphs

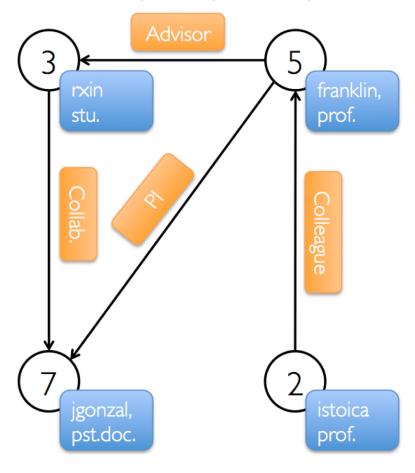
Integration of record-oriented and graph-oriented processing

Extends RDDs to Resilient Distributed Property Graphs

```
class Graph[VD, ED] {
  val vertices: VertexRDD[VD]
  val edges: EdgeRDD[ED]
}
```

Property Graph: Example

Property Graph



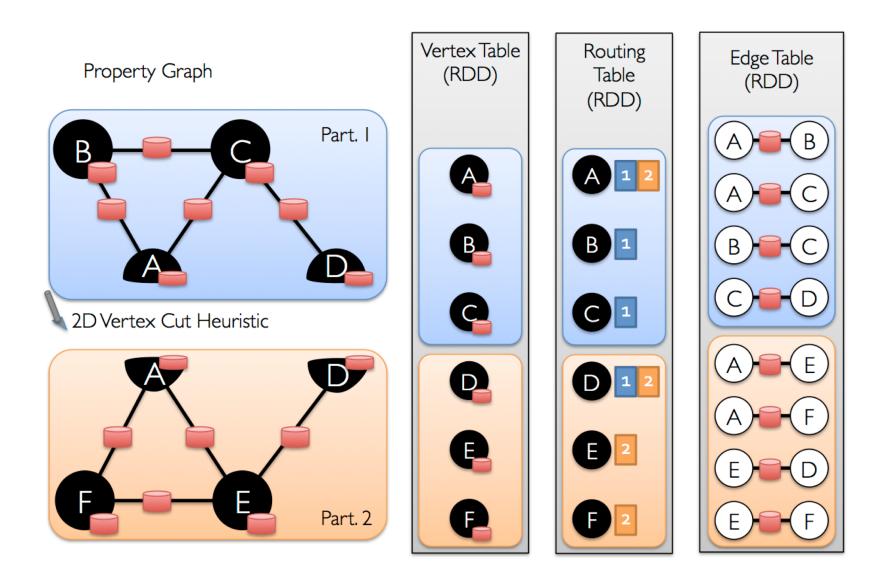
Vertex Table

ld	Property (V)	
3	(rxin, student)	
7	(jgonzal, postdoc)	
5	(franklin, professor)	
2	(istoica, professor)	

Edge Table

Srcld	Dstld	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

Underneath the Covers



GraphX Operators

"collection" view

val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]
val triplets: RDD[EdgeTriplet[VD, ED]]

Transform vertices and edges

mapVertices
mapEdges
mapTriplets

Join vertices with external table

Aggregate messages within local neighborhood Pregel programs

