
Data-Intensive Distributed Computing

Part 8: Analyzing Graphs, Redux (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 (Fall 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

November 15, 2018

These slides are available at http://lintool.github.io/bigdata-2018f/

Graph Algorithms, again?
(srsly?)

What makes graphs hard?

Irregular structure
Fun with data structures!

Irregular data access patterns
Fun with architectures!

Iterations
Fun with optimizations!

Fun!✗

Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations

n0

n3 n2

n1
n7

n6

n5
n4

n9

n8

Visualizing Parallel BFS

Given page x with inlinks t1…tn, where

C(t) is the out-degree of t
a is probability of random jump

N is the total number of nodes in the graph

X

t1

t2

tn
…

PR(x) = ↵

✓
1

N

◆
+ (1� ↵)

nX

i=1

PR(ti)

C(ti)

PageRank: Defined

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce

PageRank in MapReduce

Map

Reduce

PageRank BFS

PR/N d+1

sum min

PageRank vs. BFS

Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations

reduce

map

HDFS

HDFS

Convergence?

BFS

Convergence?
reduce

map

HDFS

HDFS

map

HDFS

PageRank

MapReduce Sucks

Hadoop task startup time

Stragglers

Needless graph shuffling

Checkpointing at each iteration

reduce

HDFS

…

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

Let’s Spark!

reduce

HDFS

…

map

reduce

map

reduce

map

reduce

HDFS

map

reduce

map

reduce

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…

join

HDFS

map

join

map

join

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!

PageRank'Performance'

17
1&

80
&

72
&

28
&

0&
20&
40&
60&
80&
100&
120&
140&
160&
180&

30& 60&

Ti
m
e'
pe

r'I
te
ra
ti
on

'(s
)'

Number'of'machines'

Hadoop&

Spark&

Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

MapReduce vs. Spark

Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations

Even faster?

Big Data Processing in a Nutshell

Partition

Replicate

Reduce cross-partition communication

Let’s be smarter about this!

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs

“Best Practices”

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

+18%
1.4b

674m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

+18%

-15%

1.4b

674m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

+18%

-15%

-60%

1.4b

674m

86m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

Schimmy Design Pattern

Basic implementation contains two dataflows:
Messages (actual computations)

Graph structure (“bookkeeping”)

Schimmy: separate the two dataflows, shuffle only the messages
Basic idea: merge join between graph structure and messages

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

S T

both relations sorted by join key

S1 T1 S2 T2 S3 T3

both relations consistently partitioned and sorted by join key

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

+18%

-15%

-60%

1.4b

674m

86m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

+18%

-15%

-60%
-69%

1.4b

674m

86m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLsWeb pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics

Ugander et al. (2011) The Anatomy of the Facebook Social Graph.

Analysis of 721 million active
users (May 2011)

54 countries w/ >1m active
users, >50% penetration

12

ID PH LK AU NZ TH M
Y

SG HK TW US DO PR M
X

CA VE CL AR UY CO CR G
T

EC PE BO ES G
H

G
B

ZA IL JO AE KW DZ TN IT M
K

AL RS SI BA HR TR PT BE FR HU IE DK NO SE CZ BG G
R

GR
BG
CZ
SE
NO
DK
IE
HU
FR
BE
PT
TR
HR
BA
SI
RS
AL
MK
IT
TN
DZ
KW
AE
JO
IL
ZA
GB
GH
ES
BO
PE
EC
GT
CR
CO
UY
AR
CL
VE
CA
MX
PR
DO
US
TW
HK
SG
MY
TH
NZ
AU
LK
PH
ID

Figure 9. Normalized country adjacency matrix. Matrix of edges between countries with > 1
million users and > 50% Facebook penetration shown on a log scale. To normalize, we divided each
element of the adjacency matrix by the product of the row country degree and column country degree.

country, and the data shows that 84.2% percent of edges are within countries. So the network divides fairly
cleanly along country lines into network clusters or communities. This mesoscopic-scale organization is
to be expected as Facebook captures social relationships divided by national borders. We can further
quantify this division using the modularity Q [37] which is the fraction of edges within communities
minus the expected fraction of edges within communities in a randomized version of the network that
preserves the degrees for each individual [38], but is otherwise random. In this case, the communities
are the countries. The computed value is Q = 0.7486 which is quite large [39] and indicates a strongly
modular network structure at the scale of countries. Especially considering that unlike numerous studies
using the modularity to detect communities, we in no way attempted to maximize it directly, and instead
merely utilized the given countries as community labels.

We visualize this highly modular structure in Fig. 9. The figure displays a heatmap of the number
of edges between the 54 countries where the active Facebook user population exceeds one million users
and is more than 50% of the internet-enabled population [40]. To be entirely accurate, the shown matrix
contains each edge twice, once in both directions, and therefore has twice the number of edges in diagonal
elements. The number of edges was normalized by dividing the ijth entry by the row and column sums,
equal to the product of the degrees of country i and j. The ordering of the countries was then determined
via complete linkage hierarchical clustering.

Country Structure in Facebook

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics
Web pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics
Geo data: space-filling curves

Aside: Partitioning Geo-data

Geo-data = regular graph

Space-filling curves: Z-Order Curves

Space-filling curves: Hilbert Curves

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics
Geo data: space-filling curves

But what about graphs in general?

Source: http://www.flickr.com/photos/fusedforces/4324320625/

General-Purpose Graph Partitioning

Graph coarsening
Recursive bisection

MULTILEVEL GRAPH PARTITIONING 363

G
G

1

projected partition
refined partition

C
oa

rs
en

in
g

Ph
as

e
Uncoarsening Phase

Initial Partitioning Phase

Multilevel Graph Bisection

G

G3

G2

G1

O

G

2G

O

4

G3

Fig. 1. The various phases of the multilevel graph bisection. During the coarsening phase, the
size of the graph is successively decreased; during the initial partitioning phase, a bisection of the
smaller graph is computed; and during the uncoarsening phase, the bisection is successively refined as
it is projected to the larger graphs. During the uncoarsening phase the light lines indicate projected
partitions, and dark lines indicate partitions that were produced after refinement.

Formally, a multilevel graph bisection algorithm works as follows: consider a
weighted graph G0 = (V0, E0), with weights both on vertices and edges. A multilevel
graph bisection algorithm consists of the following three phases.

Coarsening phase. The graph G0 is transformed into a sequence of smaller
graphs G1, G2, . . . , Gm such that |V0| > |V1| > |V2| > · · · > |Vm|.

Partitioning phase. A 2-way partition Pm of the graph Gm = (Vm, Em) is
computed that partitions Vm into two parts, each containing half the vertices
of G0.

Uncoarsening phase. The partition Pm of Gm is projected back to G0 by going
through intermediate partitions Pm�1, Pm�2, . . . , P1, P0.

3. Coarsening phase. During the coarsening phase, a sequence of smaller
graphs, each with fewer vertices, is constructed. Graph coarsening can be achieved in
various ways. Some possibilities are shown in Figure 2.

In most coarsening schemes, a set of vertices of Gi is combined to form a single
vertex of the next level coarser graph Gi+1. Let V

v
i be the set of vertices of Gi

combined to form vertex v of Gi+1. We will refer to vertex v as a multinode. In order
for a bisection of a coarser graph to be good with respect to the original graph, the

Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

General-Purpose Graph Partitioning

Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

364 GEORGE KARYPIS AND VIPIN KUMAR

1

1

2

2

1

1

1

1

1
1

1
1

1 1

1

1

1

1

11
1

1

1

1

11

1

5

3

3
3

2

2
1

1

4

4

44

4

1 1

1

1
1

1

2

5

1

1

1

2

2

1

11
1

1

2

2
2

2

5

2

2
2

Fig. 2. Di↵erent ways to coarsen a graph.

weight of vertex v is set equal to the sum of the weights of the vertices in V
v
i . Also,

in order to preserve the connectivity information in the coarser graph, the edges of
v are the union of the edges of the vertices in V

v
i . In the case where more than one

vertex of V v
i contains edges to the same vertex u, the weight of the edge of v is equal

to the sum of the weights of these edges. This is useful when we evaluate the quality
of a partition at a coarser graph. The edge-cut of the partition in a coarser graph
will be equal to the edge-cut of the same partition in the finer graph. Updating the
weights of the coarser graph is illustrated in Figure 2.

Two main approaches have been proposed for obtaining coarser graphs. The first
approach is based on finding a random matching and collapsing the matched vertices
into a multinode [4, 26], while the second approach is based on creating multinodes
that are made of groups of vertices that are highly connected [7, 19, 20, 10]. The
later approach is suited for graphs arising in VLSI applications, since these graphs
have highly connected components. However, for graphs arising in finite element
applications, most vertices have similar connectivity patterns (i.e., the degree of each
vertex is fairly close to the average degree of the graph). In the rest of this section
we describe the basic ideas behind coarsening using matchings.

Given a graph Gi = (Vi, Ei), a coarser graph can be obtained by collapsing
adjacent vertices. Thus, the edge between two vertices is collapsed and a multinode
consisting of these two vertices is created. This edge collapsing idea can be formally
defined in terms of matchings. A matching of a graph is a set of edges no two of
which are incident on the same vertex. Thus, the next level coarser graph Gi+1 is
constructed from Gi by finding a matching of Gi and collapsing the vertices being
matched into multinodes. The unmatched vertices are simply copied over to Gi+1.
Since the goal of collapsing vertices using matchings is to decrease the size of the graph
Gi, the matching should contain a large number of edges. For this reason, maximal

matchings are used to obtain the successively coarse graphs. A matching is maximal
if any edge in the graph that is not in the matching has at least one of its endpoints
matched. Note that depending on how matchings are computed, the number of edges

Graph Coarsening

Chicken-and-Egg

To coarsen the graph you need to identify dense local regions
To identify dense local regions quickly you to need traverse local edges

But to traverse local edges efficiently you need the local structure!

To efficiently partition the graph, you need to already know what the partitions are!
Industry solution?

Big Data Processing in a Nutshell

Partition

Replicate

Reduce cross-partition communication

Partition

Partition

What’s the fundamental issue?

Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations

Partition

FastFast
Slow

State-of-the-Art Distributed Graph Algorithms

Fast asynchronous
iterations

Fast asynchronous
iterations

Periodic
synchronization

Source: Wikipedia (Waste container)

Graph Processing Frameworks

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!

Still not particularly satisfying?

What’s the issue?

Think like a vertex!

Pregel: Computational Model

Based on Bulk Synchronous Parallel (BSP)
Computational units encoded in a directed graph
Computation proceeds in a series of supersteps

Message passing architecture

Each vertex, at each superstep:
Receives messages directed at it from previous superstep

Executes a user-defined function (modifying state)
Emits messages to other vertices (for the next superstep)

Termination:
A vertex can choose to deactivate itself
Is “woken up” if new messages received

Computation halts when all vertices are inactive

superstep t

superstep t+1

superstep t+2

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: Implementation

Master-Worker architecture
Vertices are hash partitioned (by default) and assigned to workers

Everything happens in memory

Processing cycle:
Master tells all workers to advance a single superstep

Worker delivers messages from previous superstep, executing vertex computation
Messages sent asynchronously (in batches)

Worker notifies master of number of active vertices

Fault tolerance
Checkpointing

Heartbeat/revert

class ShortestPathVertex : public Vertex<int, int, int> {
void Compute(MessageIterator* msgs) {

int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {

*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),
mindist + iter.GetValue());

}
VoteToHalt();

}
};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: SSSP

class PageRankVertex : public Vertex<double, void, double> {
public:

virtual void Compute(MessageIterator* msgs) {
if (superstep() >= 1) {

double sum = 0;
for (; !msgs->Done(); msgs->Next())

sum += msgs->Value();
*MutableValue() = 0.15 / NumVertices() + 0.85 * sum;

}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

}
}

};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: PageRank

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {

int mindist = INF;
for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());
Output("combined_source", mindist);

}

};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: Combiners

Giraph Architecture

Master – Application coordinator
Synchronizes supersteps

Assigns partitions to workers before superstep begins

Workers – Computation & messaging
Handle I/O – reading and writing the graph

Computation/messaging of assigned partitions

ZooKeeper
Maintains global application state

Part 0

Part 1

Part 2

Part 3

Compute /
Send

Messages

W
or

ke
r

1

Compute /
Send

Messages

M
as

te
r

W
or

ke
r

0

In-memory
graph

Send stats / iterate!

Compute/Iterate

2

W
or

ke
r

1
W

or
ke

r
0 Part 0

Part 1

Part 2

Part 3

Output format

Part 0

Part 1

Part 2

Part 3

Storing the graph

3

Split 0

Split 1

Split 2

Split 3

W
or

ke
r

1

M
as

te
r

W
or

ke
r

0

Input format

Load /
Send

Graph

Load /
Send

Graph

Loading the graph

1

Split 4

Split

Giraph Dataflow

Active Inactive

Vote to Halt

Received Message

Vertex Lifecycle

Giraph Lifecycle

Output

All Vertices
Halted?

Input
Compute
Superstep

No

Master
halted?

No

Yes

Yes

Giraph Lifecycle

Giraph Example

5

1
5

2

5

5

2
5

5

5

5

5

1

2

Processor 1

Processor 2

Time

Execution Trace

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!

Still not particularly satisfying?

Think like a vertex!

State-of-the-Art Distributed Graph Algorithms

Fast asynchronous
iterations

Fast asynchronous
iterations

Periodic
synchronization

Source: Wikipedia (Waste container)

Graph Processing Frameworks

GraphX: Motivation

GraphX = Spark for Graphs

Integration of record-oriented and graph-oriented processing

Extends RDDs to Resilient Distributed Property Graphs

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]

}

Property Graph: Example

Underneath the Covers

GraphX Operators

val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]
val triplets: RDD[EdgeTriplet[VD, ED]]

“collection” view

Transform vertices and edges
mapVertices
mapEdges
mapTriplets

Join vertices with external table

Aggregate messages within local neighborhood

Pregel programs

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!

Still not particularly satisfying?

Think like a vertex!

(Yeah, but it’s still re
ally all just RDDs)

Source: Wikipedia (Japanese rock garden)

