
Data-Intensive Distributed Computing

Part 7: Mutable State (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 (Fall 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

November 13, 2018

These slides are available at http://lintool.github.io/bigdata-2018f/

The Fundamental Problem

We want to keep track of mutable state in a scalable manner

MapReduce won’t do!

Assumptions:
State organized in terms of logical records

State unlikely to fit on single machine, must be distributed

Motivating Scenarios

Money shouldn’t be created or destroyed:
Alice transfers $100 to Bob and $50 to Carol

The total amount of money after the transfer should be the same

Phantom shopping cart:
Bob removes an item from his shopping cart…

Item still remains in the shopping cart
Bob refreshes the page a couple of times… item finally gone

Motivating Scenarios

People you don’t want seeing your pictures:
Alice removes mom from list of people who can view photos

Alice posts embarrassing pictures from Spring Break
Can mom see Alice’s photo?

Why am I still getting messages?
Bob unsubscribes from mailing list and receives confirmation

Message sent to mailing list right after unsubscribe
Does Bob receive the message?

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need distributed transactions!

Need replica coherence protocol!

Need cache coherence protocol!

Source: Wikipedia (Cake)

Morale of the story: there’s no free lunch!

Source: www.phdcomics.com/comics/archive.php?comicid=1475

(Everything is a tradeoff)

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need distributed transactions!

Need replica coherence protocol!

Need cache coherence protocol!

Relational Databases

… to the rescue!

Source: images.wikia.com/batman/images/b/b1/Bat_Signal.jpg

How do RDBMSes do it?

Partition tables to keep transactions on a single machine
Example: partition by user

What about transactions that require multiple machines?
Example: transactions involving multiple users

Transactions on a single machine: (relatively) easy!

Solution: Two-Phase Commit

Coordinator

subordinates

Okay everyone,
PREPARE! YES

YES

YES

Good.
COMMIT!

ACK!

ACK!

ACK!

DONE!

2PC: Sketch

Coordinator

subordinates

Okay everyone,
PREPARE! YES

YES

NO

ABORT!

2PC: Sketch

Coordinator

subordinates

Okay everyone,
PREPARE! YES

YES

YES

Good.
COMMIT!

ACK!

ACK!

2PC: Sketch

2PC: Assumptions and Limitations

Assumptions:
Persistent storage and write-ahead log at every node

WAL is never permanently lost

Limitations:
It’s blocking and slow

What if the coordinator dies?

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need distributed transactions!

Need replica coherence protocol!

Need cache coherence protocol!

Replication possibilities

Update sent to a master
Replication is synchronous
Replication is asynchronous

Combination of both

Update sent to an arbitrary replica

Okay, but if the

master fails?

Replication is synchronous(?)
Replication is asynchronous

Combination of both

Distributed Consensus
More general problem: addresses replication and partitioning

Time

… Paxos

Hi everyone,
let’s change

the value of x.
Hi everyone,

let’s execute a
transaction t.

Replication possibilities

Update sent to a master
Replication is synchronous
Replication is asynchronous

Combination of both

Update sent to an arbitrary replica

Okay, but if the

master fails?

Replication is synchronous(?)
Replication is asynchronous

Combination of both

Guaranteed consistency with a consensus protocol
A buggy mess

“Eventual Consistency”

Consistency

Availability

(Brewer, 2000)

Partition tolerance

… pick two

CAP “Theorem”

CAP Tradeoffs

CA = consistency + availability
E.g., parallel databases that use 2PC

AP = availability + tolerance to partitions
E.g., DNS, web caching

Wait a sec, that
doesn’t sound right!

Source: Abadi (2012) Consistency Tradeoffs in Modern Distributed Database System Design. IEEE Computer, 45(2):37-42

Is this helpful?

CAP not really even a “theorem” because vague definitions
More precise formulation came a few years later

Abadi Says…

CAP says, in the presence of P, choose A or C
But you’d want to make this tradeoff even when there is no P

Fundamental tradeoff is between consistency and latency
Not available = (very) long latency

CP makes no sense!

Move over, CAP

PAC
If there’s a partition, do we choose A or C?

ELC
Otherwise, do we choose Latency or Consistency?

PACELC (“pass-elk”)

At the end of the day…

Guaranteed consistency with a consensus protocol

A buggy mess

“Eventual Consistency”

Sounds reasonable in theory…

What about in practice?

Morale of the story: there’s no free lunch!

Source: www.phdcomics.com/comics/archive.php?comicid=1475

(Everything is a tradeoff)

h = 0h = 2n – 1

Machine fails: What happens?

Solution: Replication
N = 3, replicate +1, –1

Covered!

Covered!

Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

HBase

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need distributed transactions!

Need replica coherence protocol!

Need cache coherence protocol!

Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

Read path:
Look in memcached
Look in MySQL
Populate in memcached

Write path:
Write in MySQL
Remove in memcached

Subsequent read:
Look in MySQL
Populate in memcached

Facebook Architecture

1. User updates first name from “Jason” to “Monkey”.

2. Write “Monkey” in master DB in CA, delete memcached entry in CA and VA.

3. Someone goes to profile in Virginia, read VA replica DB, get “Jason”.

4. Update VA memcache with first name as “Jason”.

5. Replication catches up. “Jason” stuck in memcached until another write!

Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

California

MySQL

memcached

Virginia

Replication lag

Facebook Architecture: Multi-DC

Source: www.facebook.com/note.php?note_id=23844338919

= stream of SQL statements

Solution: Piggyback on replication stream, tweak SQL
REPLACE INTO profile (`first_name`) VALUES ('Monkey’)
WHERE `user_id`='jsobel' MEMCACHE_DIRTY 'jsobel:first_name'

Facebook Architecture: Multi-DC

MySQL

memcached

California

MySQL

memcached

Virginia

Replication

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need distributed transactions!

Need replica coherence protocol!

Need cache coherence protocol!

Source: Google

Now imagine multiple datacenters…
What’s different?

tl;dr -

Implement a global consensus protocol for every transaction
Guarantee consistency, but slow

Eventual consistency
Who knows?

Single row transactions
Easy to implement, obvious limitations

tl;dr -

Implement a global consensus protocol for every transaction
Guarantee consistency, but slow

Eventual consistency
Who knows?

Can we cheat a bit?

Single row transactions
Easy to implement, obvious limitations

tl;dr -

Implement a global consensus protocol for every transaction
Guarantee consistency, but slow

Per partition✗ ✗And fast!

Entity groups
Groups of entities that share affinity

Example: user + user’s photos + user’s posts etc.

Figure 1: Scalable Replication

Figure 2: Operations Across Entity Groups

replicated via Paxos). Operations across entity groups could
rely on expensive two-phase commits, but typically leverage
Megastore’s efficient asynchronous messaging. A transac-
tion in a sending entity group places one or more messages
in a queue; transactions in receiving entity groups atomically
consume those messages and apply ensuing mutations.
Note that we use asynchronous messaging between logi-

cally distant entity groups, not physically distant replicas.
All network traffic between datacenters is from replicated
operations, which are synchronous and consistent.
Indexes local to an entity group obey ACID semantics;

those across entity groups have looser consistency. See Fig-
ure 2 for the various operations on and between entity groups.

2.2.2 Selecting Entity Group Boundaries
The entity group defines the a priori grouping of data

for fast operations. Boundaries that are too fine-grained
force excessive cross-group operations, but placing too much
unrelated data in a single group serializes unrelated writes,
which degrades throughput.
The following examples show ways applications can work

within these constraints:

Email Each email account forms a natural entity group.
Operations within an account are transactional and
consistent: a user who sends or labels a message is
guaranteed to observe the change despite possible fail-
over to another replica. External mail routers handle
communication between accounts.

Blogs A blogging application would be modeled with mul-
tiple classes of entity groups. Each user has a profile,
which is naturally its own entity group. However, blogs

are collaborative and have no single permanent owner.
We create a second class of entity groups to hold the
posts and metadata for each blog. A third class keys
off the unique name claimed by each blog. The appli-
cation relies on asynchronous messaging when a sin-
gle user operation affects both blogs and profiles. For
a lower-traffic operation like creating a new blog and
claiming its unique name, two-phase commit is more
convenient and performs adequately.

Maps Geographic data has no natural granularity of any
consistent or convenient size. A mapping application
can create entity groups by dividing the globe into non-
overlapping patches. For mutations that span patches,
the application uses two-phase commit to make them
atomic. Patches must be large enough that two-phase
transactions are uncommon, but small enough that
each patch requires only a small write throughput.
Unlike the previous examples, the number of entity
groups does not grow with increased usage, so enough
patches must be created initially for sufficient aggre-
gate throughput at later scale.

Nearly all applications built on Megastore have found nat-
ural ways to draw entity group boundaries.

2.2.3 Physical Layout
We use Google’s Bigtable [15] for scalable fault-tolerant

storage within a single datacenter, allowing us to support
arbitrary read and write throughput by spreading operations
across multiple rows.

We minimize latency and maximize throughput by let-
ting applications control the placement of data: through the
selection of Bigtable instances and specification of locality
within an instance.

To minimize latency, applications try to keep data near
users and replicas near each other. They assign each entity
group to the region or continent from which it is accessed
most. Within that region they assign a triplet or quintuplet
of replicas to datacenters with isolated failure domains.

For low latency, cache efficiency, and throughput, the data
for an entity group are held in contiguous ranges of Bigtable
rows. Our schema language lets applications control the
placement of hierarchical data, storing data that is accessed
together in nearby rows or denormalized into the same row.

3. A TOUR OF MEGASTORE
Megastore maps this architecture onto a feature set care-

fully chosen to encourage rapid development of scalable ap-
plications. This section motivates the tradeoffs and de-
scribes the developer-facing features that result.

3.1 API Design Philosophy
ACID transactions simplify reasoning about correctness,

but it is equally important to be able to reason about perfor-
mance. Megastore emphasizes cost-transparent APIs with
runtime costs that match application developers’ intuitions.

Normalized relational schemas rely on joins at query time
to service user operations. This is not the right model for
Megastore applications for several reasons:

• High-volume interactive workloads benefit more from
predictable performance than from an expressive query
language.

Source: Baker et al., CIDR 2011

Google’s Megastore

But what if that’s not enough?

Preserving commit order: example schema

Source: Llyod, 2012

Preserving commit order

Source: Llyod, 2012

Snapshot MapReduce and queries

Initial state

T1@ts1 INSERT INTO ads VALUES (2, “elkhound puppies”)

T2@ts2 INSERT INTO impressions VALUES (US, 2PM, 2)

Source: Llyod, 2012

Source: Llyod, 2012

Google’s Spanner

Features:
Full ACID translations across multiple datacenters, across continents!

External consistency (= linearizability):
system preserves happens-before relationship among transactions

How?
Given write transactions A and B, if A happens-before B, then

timestamp(A) < timestamp(B)

TrueTime → write timestamps

Source: Llyod, 2012

Why this works

Source: Llyod, 2012

TrueTime

Source: Llyod, 2012

Source: The Matrix

What’s the catch?

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Need distributed transactions!

Need replica coherence protocol!

Need cache coherence protocol!

Source: Wikipedia (Cake)

Morale of the story: there’s no free lunch!

Source: www.phdcomics.com/comics/archive.php?comicid=1475

(Everything is a tradeoff)

