
Data-Intensive Distributed Computing

Part 5: Analyzing Relational Data (3/3)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 (Fall 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

October 23, 2018

These slides are available at http://lintool.github.io/bigdata-2018f/

MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access
Schemas are good

Separation of the schema from the application is good
High-level access languages are good

MapReduce is poor implementation
Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features
Bulk loader, indexing, updates, transactions…

MapReduce is incompatible with DBMS tools

Source: Blog post by DeWitt and Stonebraker

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

10

20

30

40

50

60

70

se
co

nd
s

Vertica Hadoop

Figure 4: Grep Task Results – 535MB/node Data Set

25 Nodes 50 Nodes 100 Nodes
0

250

500

750

1000

1250

1500

se
co

nd
s

Vertica Hadoop

Figure 5: Grep Task Results – 1TB/cluster Data Set

two figures. In Figure 4, the two parallel databases perform about
the same, more than a factor of two faster in Hadoop. But in Fig-
ure 5, both DBMS-X and Hadoop perform more than a factor of
two slower than Vertica. The reason is that the amount of data pro-
cessing varies substantially from the two experiments. For the re-
sults in Figure 4, very little data is being processed (535MB/node).
This causes Hadoop’s non-insignificant start-up costs to become the
limiting factor in its performance. As will be described in Section
5.1.2, for short-running queries (i.e., queries that take less than a
minute), Hadoop’s start-up costs can dominate the execution time.
In our observations, we found that takes 10–25 seconds before all
Map tasks have been started and are running at full speed across the
nodes in the cluster. Furthermore, as the total number of allocated
Map tasks increases, there is additional overhead required for the
central job tracker to coordinate node activities. Hence, this fixed
overhead increases slightly as more nodes are added to the cluster
and for longer data processing tasks, as shown in Figure 5, this fixed
cost is dwarfed by the time to complete the required processing.

The upper segments of each Hadoop bar in the graphs represent
the execution time of the additional MR job to combine the output
into a single file. Since we ran this as a separate MapReduce job,
these segments consume a larger percentage of overall time in Fig-
ure 4, as the fixed start-up overhead cost again dominates the work
needed to perform the rest of the task. Even though the Grep task is
selective, the results in Figure 5 show how this combine phase can
still take hundreds of seconds due to the need to open and combine
many small output files. Each Map instance produces its output in
a separate HDFS file, and thus even though each file is small there
are many Map tasks and therefore many files on each node.

For the 1TB/cluster data set experiments, Figure 5 shows that all
systems executed the task on twice as many nodes in nearly half the
amount of time, as one would expect since the total amount of data
was held constant across nodes for this experiment. Hadoop and
DBMS-X performs approximately the same, since Hadoop’s start-
up cost is amortized across the increased amount of data processing
for this experiment. However, the results clearly show that Vertica
outperforms both DBMS-X and Hadoop. We attribute this to Ver-
tica’s aggressive use of data compression (see Section 5.1.3), which
becomes more effective as more data is stored per node.

4.3 Analytical Tasks
To explore more complex uses of both types of systems, we de-

veloped four tasks related to HTML document processing. We first
generate a collection of random HTML documents, similar to that
which a web crawler might find. Each node is assigned a set of

600,000 unique HTML documents, each with a unique URL. In
each document, we randomly generate links to other pages set us-
ing a Zipfian distribution.

We also generated two additional data sets meant to model log
files of HTTP server traffic. These data sets consist of values de-
rived from the HTML documents as well as several randomly gen-
erated attributes. The schema of these three tables is as follows:
CREATE TABLE Documents (

url VARCHAR(100)
PRIMARY KEY,

contents TEXT);

CREATE TABLE Rankings (
pageURL VARCHAR(100)

PRIMARY KEY,
pageRank INT,
avgDuration INT);

CREATE TABLE UserVisits (
sourceIP VARCHAR(16),
destURL VARCHAR(100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(6),
searchWord VARCHAR(32),
duration INT);

Our data generator created unique files with 155 million UserVis-
its records (20GB/node) and 18 million Rankings records (1GB/node)
on each node. The visitDate, adRevenue, and sourceIP fields are
picked uniformly at random from specific ranges. All other fields
are picked uniformly from sampling real-world data sets. Each data
file is stored on each node as a column-delimited text file.

4.3.1 Data Loading
We now describe the procedures for loading the UserVisits and

Rankings data sets. For reasons to be discussed in Section 4.3.5,
only Hadoop needs to directly load the Documents files into its in-
ternal storage system. DBMS-X and Vertica both execute a UDF
that processes the Documents on each node at runtime and loads
the data into a temporary table. We account for the overhead of
this approach in the benchmark times, rather than in the load times.
Therefore, we do not provide results for loading this data set.

Hadoop: Unlike the Grep task’s data set, which was uploaded di-
rectly into HDFS unaltered, the UserVisits and Rankings data sets
needed to be modified so that the first and second columns are sep-
arated by a tab delimiter and all other fields in each line are sepa-
rated by a unique field delimiter. Because there are no schemas in
the MR model, in order to access the different attributes at run time,
the Map and Reduce functions in each task must manually split the
value by the delimiter character into an array of strings.

We wrote a custom data loader executed in parallel on each node
to read in each line of the data sets, prepare the data as needed,
and then write the tuple into a plain text file in HDFS. Loading
the data sets in this manner was roughly three times slower than
using the command-line utility, but did not require us to write cus-

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Grep

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

20

40

60

80

100

120

140

160

se
co

nd
s

←
 0

.3

←
 0

.8

←
 1

.8

←
 4

.7

←
 1

2.
4

Vertica Hadoop

Figure 6: Selection Task Results

tom input handlers in Hadoop; the MR programs are able to use
Hadoop’s KeyValueTextInputFormat interface on the data
files to automatically split lines of text files into key/values pairs by
the tab delimiter. Again, we found that other data format options,
such as SequenceFileInputFormat or custom Writable
tuples, resulted in both slower load and execution times.

DBMS-X: We used the same loading procedures for DBMS-X as
discussed in Section 4.2. The Rankings table was hash partitioned
across the cluster on pageURL and the data on each node was sorted
by pageRank. Likewise, the UserVisits table was hash partitioned
on destinationURL and sorted by visitDate on each node.

Vertica: Similar to DBMS-X, Vertica used the same bulk load com-
mands discussed in Section 4.2 and sorted the UserVisits and Rank-
ings tables by the visitDate and pageRank columns, respectively.

Results & Discussion: Since the results of loading the UserVisits
and Ranking data sets are similar, we only provide the results for
loading the larger UserVisits data in Figure 3. Just as with loading
the Grep 535MB/node data set (Figure 1), the loading times for
each system increases in proportion to the number of nodes used.

4.3.2 Selection Task
The Selection task is a lightweight filter to find the pageURLs

in the Rankings table (1GB/node) with a pageRank above a user-
defined threshold. For our experiments, we set this threshold pa-
rameter to 10, which yields approximately 36,000 records per data
file on each node.

SQL Commands: The DBMSs execute the selection task using the
following simple SQL statement:

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

MapReduce Program: The MR program uses only a single Map
function that splits the input value based on the field delimiter and
outputs the record’s pageURL and pageRank as a new key/value
pair if its pageRank is above the threshold. This task does not re-
quire a Reduce function, since each pageURL in the Rankings data
set is unique across all nodes.

Results & Discussion: As was discussed in the Grep task, the re-
sults from this experiment, shown in Figure 6, demonstrate again
that the parallel DBMSs outperform Hadoop by a rather significant

factor across all cluster scaling levels. Although the relative per-
formance of all systems degrade as both the number of nodes and
the total amount of data increase, Hadoop is most affected. For
example, there is almost a 50% difference in the execution time
between the 1 node and 10 node experiments. This is again due
to Hadoop’s increased start-up costs as more nodes are added to
the cluster, which takes up a proportionately larger fraction of total
query time for short-running queries.

Another important reason for why the parallel DBMSs are able
to outperform Hadoop is that both Vertica and DBMS-X use an in-
dex on the pageRank column and store the Rankings table already
sorted by pageRank. Thus, executing this query is trivial. It should
also be noted that although Vertica’s absolute times remain low, its
relative performance degrades as the number of nodes increases.
This is in spite of the fact that each node still executes the query in
the same amount of time (about 170ms). But because the nodes fin-
ish executing the query so quickly, the system becomes flooded with
control messages from too many nodes, which then takes a longer
time for the system to process. Vertica uses a reliable message layer
for query dissemination and commit protocol processing [4], which
we believe has considerable overhead when more than a few dozen
nodes are involved in the query.

4.3.3 Aggregation Task
Our next task requires each system to calculate the total adRev-

enue generated for each sourceIP in the UserVisits table (20GB/node),
grouped by the sourceIP column. We also ran a variant of this query
where we grouped by the seven-character prefix of the sourceIP col-
umn to measure the effect of reducing the total number of groups
on query performance. We designed this task to measure the per-
formance of parallel analytics on a single read-only table, where
nodes need to exchange intermediate data with one another in order
compute the final value. Regardless of the number of nodes in the
cluster, this tasks always produces 2.5 million records (53 MB); the
variant query produces 2,000 records (24KB).

SQL Commands: The SQL commands to calculate the total adRev-
enue is straightforward:

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

The variant query is:

SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 7);

MapReduce Program: Unlike the previous tasks, the MR program
for this task consists of both a Map and Reduce function. The Map
function first splits the input value by the field delimiter, and then
outputs the sourceIP field (given as the input key) and the adRev-
enue field as a new key/value pair. For the variant query, only the
first seven characters (representing the first two octets, each stored
as three digits) of the sourceIP are used. These two Map functions
share the same Reduce function that simply adds together all of the
adRevenue values for each sourceIP and then outputs the prefix and
revenue total. We also used MR’s Combine feature to perform the
pre-aggregate before data is transmitted to the Reduce instances,
improving the first query’s execution time by a factor of two [8].

Results & Discussion: The results of the aggregation task experi-
ment in Figures 7 and 8 show once again that the two DBMSs out-
perform Hadoop. The DBMSs execute these queries by having each
node scan its local table, extract the sourceIP and adRevenue fields,
and perform a local group by. These local groups are then merged at

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Select

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

1600

1800

se
co

nd
s

Vertica Hadoop

Figure 7: Aggregation Task Results (2.5 million Groups)

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

se
co

nd
s

Vertica Hadoop

Figure 8: Aggregation Task Results (2,000 Groups)

the query coordinator, which outputs results to the user. The results
in Figure 7 illustrate that the two DBMSs perform about the same
for a large number of groups, as their runtime is dominated by the
cost to transmit the large number of local groups and merge them
at the coordinator. For the experiments using fewer nodes, Vertica
performs somewhat better, since it has to read less data (since it
can directly access the sourceIP and adRevenue columns), but it
becomes slightly slower as more nodes are used.

Based on the results in Figure 8, it is more advantageous to use
a column-store system when processing fewer groups for this task.
This is because the two columns accessed (sourceIP and adRev-
enue) consist of only 20 bytes out of the more than 200 bytes per
UserVisits tuple, and therefore there are relatively few groups that
need to be merged so communication costs are much lower than in
the non-variant plan. Vertica is thus able to outperform the other
two systems from not reading unused parts of the UserVisits tuples.

Note that the execution times for all systems are roughly consis-
tent for any number of nodes (modulo Vertica’s slight slow down as
the number of nodes increases). Since this benchmark task requires
the system to scan through the entire data set, the run time is always
bounded by the constant sequential scan performance and network
repartitioning costs for each node.

4.3.4 Join Task
The join task consists of two sub-tasks that perform a complex

calculation on two data sets. In the first part of the task, each sys-
tem must find the sourceIP that generated the most revenue within
a particular date range. Once these intermediate records are gener-
ated, the system must then calculate the average pageRank of all the
pages visited during this interval. We use the week of January 15-
22, 2000 in our experiments, which matches approximately 134,000
records in the UserVisits table.

The salient aspect of this task is that it must consume two data
different sets and join them together in order to find pairs of Rank-
ing and UserVisits records with matching values for pageURL and
destURL. This task stresses each system using fairly complex op-
erations over a large amount of data. The performance results are
also a good indication on how well the DBMS’s query optimizer
produces efficient join plans.

SQL Commands: In contrast to the complexity of the MR program
described below, the DBMSs need only two fairly simple queries to
complete the task. The first statement creates a temporary table and
uses it to store the output of the SELECT statement that performs
the join of UserVisits and Rankings and computes the aggregates.

Once this table is populated, it is then trivial to use a second query
to output the record with the largest totalRevenue field.

SELECT INTO Temp sourceIP,
AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(‘2000-01-15’)
AND Date(‘2000-01-22’)

GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank
FROM Temp

ORDER BY totalRevenue DESC LIMIT 1;

MapReduce Program: Because the MR model does not have an
inherent ability to join two or more disparate data sets, the MR pro-
gram that implements the join task must be broken out into three
separate phases. Each of these phases is implemented together as a
single MR program in Hadoop, but do not begin executing until the
previous phase is complete.

Phase 1 – The first phase filters UserVisits records that are outside
the desired data range and then joins the qualifying records with
records from the Rankings file. The MR program is initially given
all of the UserVisits and Rankings data files as input.

Map Function: For each key/value input pair, we determine its
record type by counting the number of fields produced when split-
ting the value on the delimiter. If it is a UserVisits record, we
apply the filter based on the date range predicate. These qualify-
ing records are emitted with composite keys of the form (destURL,
K1), where K1 indicates that it is a UserVisits record. All Rankings
records are emitted with composite keys of the form (pageURL,
K2), where K2 indicates that it is a Rankings record. These output
records are repartitioned using a user-supplied partitioning function
that only hashes on the URL portion of the composite key.

Reduce Function: The input to the Reduce function is a single
sorted run of records in URL order. For each URL, we divide its
values into two sets based on the tag component of the composite
key. The function then forms the cross product of the two sets to
complete the join and outputs a new key/value pair with the sour-
ceIP as the key and the tuple (pageURL, pageRank, adRevenue) as
the value.

Phase 2 – The next phase computes the total adRevenue and aver-
age pageRank based on the sourceIP of records generated in Phase
1. This phase uses a Reduce function in order to gather all of the

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Aggregation

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

1600

1800

se
co

nd
s

←
 2

1.
5

←
 2

8.
2

←
 3

1.
3

←
 3

6.
1

←
 8

5.
0

←
 1

5.
7

←
 2

8.
0

←
 2

9.
2

←
 2

9.
4

←
 3

1.
9

Vertica DBMS−X Hadoop

Figure 9: Join Task Results

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

1000

2000

3000

4000

5000

6000

7000

8000

se
co

nd
s

Vertica Hadoop

Figure 10: UDF Aggregation Task Results

records for a particular sourceIP on a single node. We use the iden-
tity Map function in the Hadoop API to supply records directly to
the split process [1, 8].

Reduce Function: For each sourceIP, the function adds up the
adRevenue and computes the average pageRank, retaining the one
with the maximum total ad revenue. Each Reduce instance outputs
a single record with sourceIP as the key and the value as a tuple of
the form (avgPageRank, totalRevenue).

Phase 3 – In the final phase, we again only need to define a sin-
gle Reduce function that uses the output from the previous phase to
produce the record with the largest total adRevenue. We only exe-
cute one instance of the Reduce function on a single node to scan
all the records from Phase 2 and find the target record.

Reduce Function: The function processes each key/value pair
and keeps track of the record with the largest totalRevenue field.
Because the Hadoop API does not easily expose the total number
records that a Reduce instance will process, there is no way for
the Reduce function to know that it is processing the last record.
Therefore, we override the closing callback method in our Reduce
implementation so that the MR program outputs the largest record
right before it exits.

Results & Discussion: The performance results for this task is dis-
played in Figure 9. We had to slightly change the SQL used in 100
node experiments for Vertica due to an optimizer bug in the system,
which is why there is an increase in the execution time for Vertica
going from 50 to 100 nodes. But even with this increase, it is clear
that this task results in the biggest performance difference between
Hadoop and the parallel database systems. The reason for this dis-
parity is two-fold.

First, despite the increased complexity of the query, the perfor-
mance of Hadoop is yet again limited by the speed with which the
large UserVisits table (20GB/node) can be read off disk. The MR
program has to perform a complete table scan, while the parallel
database systems were able to take advantage of clustered indexes
on UserVisits.visitDate to significantly reduce the amount of data
that needed to be read. When breaking down the costs of the dif-
ferent parts of the Hadoop query, we found that regardless of the
number of nodes in the cluster, phase 2 and phase 3 took on aver-
age 24.3 seconds and 12.7 seconds, respectively. In contrast, phase
1, which contains the Map task that reads in the UserVisits and
Rankings tables, takes an average of 1434.7 seconds to complete.
Interestingly, it takes approximately 600 seconds of raw I/O to read
the UserVisits and Rankings tables off of disk and then another 300

seconds to split, parse, and deserialize the various attributes. Thus,
the CPU overhead needed to parse these tables on the fly is the lim-
iting factor for Hadoop.

Second, the parallel DBMSs are able to take advantage of the fact
that both the UserVisits and the Rankings tables are partitioned by
the join key. This means that both systems are able to do the join
locally on each node, without any network overhead of repartition-
ing before the join. Thus, they simply have to do a local hash join
between the Rankings table and a selective part of the UserVisits
table on each node, with a trivial ORDER BY clause across nodes.

4.3.5 UDF Aggregation Task
The final task is to compute the inlink count for each document

in the dataset, a task that is often used as a component of PageR-
ank calculations. Specifically, for this task, the systems must read
each document file and search for all the URLs that appear in the
contents. The systems must then, for each unique URL, count the
number of unique pages that reference that particular URL across
the entire set of files. It is this type of task that the MR is believed
to be commonly used for.

We make two adjustments for this task in order to make pro-
cessing easier in Hadoop. First, we allow the aggregate to include
self-references, as it is non-trivial for a Map function to discover
the name of the input file it is processing. Second, on each node
we concatenate the HTML documents into larger files when storing
them in HDFS. We found this improved Hadoop’s performance by
a factor of two and helped avoid memory issues with the central
HDFS master when a large number of files are stored in the system.

SQL Commands: To perform this task in a parallel DBMS re-
quires a user-defined function F that parses the contents of each
record in the Documents table and emits URLs into the database.
This function can be written in a general-purpose language and is
effectively identical to the Map program discussed below. With this
function F, we populate a temporary table with a list of URLs and
then can execute a simple query to calculate the inlink count:

SELECT INTO Temp F(contents) FROM Documents;
SELECT url, SUM(value) FROM Temp GROUP BY url;

Despite the simplicity of this proposed UDF, we found that in
practice it was difficult to implement in the DBMSs.

For DBMS-X, we translated the MR program used in Hadoop
into an equivalent C program that uses the POSIX regular expres-
sion library to search for links in the document. For each URL
found in the document contents, the UDF returns a new tuple (URL,

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

SELECT INTO Temp sourceIP, AVG(pageRank) as avgPageRank, SUM(adRevenue) as totalRevenue
FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL AND UV.visitDate BETWEEN Date('2000-01-15’) AND Date('2000-01-22’)
GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank FROM Temp ORDER BY totalRevenue DESC LIMIT 1;

Hadoop vs. Databases: Join

Source: Wikipedia (Tortoise)

Hadoop is slow...

Source: Wikipedia (Fish)

Something seems fishy…

Integer.parseInt
String.substring
String.split

Hadoop slow because string manipulation is slow?

Why was Hadoop slow?

Key Ideas

Binary representations are good

Binary representations need schemas

Schemas allow logical/physical separation

Logical/physical separation allows you to do cool things

Thrift

Originally developed by Facebook, now an Apache project

Provides a DDL with numerous language bindings
Compact binary encoding of typed structs

Fields can be marked as optional or required
Compiler automatically generates code for manipulating messages

Provides RPC mechanisms for service definitions

Don’t like Thrift? Alternatives include protobufs and Avro

struct Tweet {
1: required i32 userId;
2: required string userName;
3: required string text;
4: optional Location loc;

}

struct Location {
1: required double latitude;
2: required double longitude;

}

Thrift

Why not…
XML or JSON?

REST?

Logical

Physical How bytes are actually
represented in storage…

R1

R2

R3

R1

R2

R3

R4

Row store

Column store

Row vs. Column Stores

Row vs. Column Stores

Row stores
Easier to modify a record: in-place updates

Might read unnecessary data when processing

Column stores
Only read necessary data when processing
Tuple writes require multiple operations

Tuple updates are complex

Frontend

Backend

users

BI tools

analysts

ETL
(Extract, Transform, and Load)

OLAP Data
Warehouse

OLTP
database

Frontend

Backend

users

Frontend

Backend

external APIs

OLTP
database

OLTP
database

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

These are well-known in traditional databases…

Row store

Column store

This compresses better with

off-the-shelf tools, e.g., gzip. Why?

R1

R2

R3

R4

Row vs. Column Stores: Compression

Row store

Column store

Additional opportunities for smarter compression…

R1

R2

R3

R4

Row vs. Column Stores: Compression

Column store

Run-length encoding example:

is a foreign key, relatively small cardinality

In reality:

…

Encode:

3 2 1 …

(even better, boolean)

Columns Stores: RLE

Column store

Say you’re coding a bunch of integers…

Columns Stores: Integer Coding

0

1 0

1 1 0

7 bits

14 bits

21 bits

Beware of branch mispredicts!

VByte

Works okay, easy to implement…

Simple idea: use only as many bytes as needed
Need to reserve one bit per byte as the “continuation bit”

Use remaining bits for encoding value

Remember this?
(Part 3)

28 1-bit numbers

14 2-bit numbers

9 3-bit numbers

7 4-bit numbers

(9 total ways)

“selectors”

Beware of branch mispredicts?

Simple-9
How many different ways can we divide up 28 bits?

Efficient decompression with hard-coded decoders
Simple Family – general idea applies to 64-bit words, etc.

Remember this?
(Part 3)

3 …

4 …

5 …

Beware of branch mispredicts?

Bit Packing

Efficient decompression with hard-coded decoders
PForDelta – bit packing + separate storage of “overflow” bits

What’s the smallest number of bits we need
to code a block (=128) of integers?

Remember this?
(Part 3)

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

big1

join

join

big2 small

project

select

project

select

project
Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
selected(i) = col(i) > 0

}

for (i <- 0 until size by 8) {
selected(i) = col(i) > 0
selected(i+1) = col(i+1) > 0
selected(i+2) = col(i+2) > 0
selected(i+3) = col(i+3) > 0
selected(i+4) = col(i+4) > 0
selected(i+5) = col(i+5) > 0
selected(i+6) = col(i+6) > 0
selected(i+7) = col(i+7) > 0

}

On my laptop: 409ms
(avg over 10 trials)

On my laptop: 174ms
(avg over 10 trials)

Which is faster?
Why?

val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
selected(i) = col(i) > 0

}

for (i <- 0 until size by 8) {
selected(i) = col(i) > 0
selected(i+1) = col(i+1) > 0
selected(i+2) = col(i+2) > 0
selected(i+3) = col(i+3) > 0
selected(i+4) = col(i+4) > 0
selected(i+5) = col(i+5) > 0
selected(i+6) = col(i+6) > 0
selected(i+7) = col(i+7) > 0

}

On my laptop: 409ms
(avg over 10 trials)

On my laptop: 174ms
(avg over 10 trials)

Why does it matter?
SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Each operator implements a common interface

Execution driven by repeated calls
to top of operator tree

open() Initialize, reset internal state, etc.
next() Advance and deliver next tuple
close() Clean up, free resources, etc.

Actually, it’s worse than that!

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Read(Rankings)

pageRank > Xs

pageURL, pageRankp

Very little actual computation is being done!

open() next() next()...
close()

open() next() next()...
close()

open() next() next()...
close()

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Read(Rankings)

pageRank > Xs

pageURL, pageRankp

Solution?

open() next() next()...
close()

open() next() next()...
close()

open() next() next()...
close()

val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
selected(i) = col(i) > 0

}

for (i <- 0 until size by 8) {
selected(i) = col(i) > 0
selected(i+1) = col(i+1) > 0
selected(i+2) = col(i+2) > 0
selected(i+3) = col(i+3) > 0
selected(i+4) = col(i+4) > 0
selected(i+5) = col(i+5) > 0
selected(i+6) = col(i+6) > 0
selected(i+7) = col(i+7) > 0

}

Vectorized Execution

✓✗
next() returns a vector of tuples
All operators rewritten to work on vectors of tuples

Can we do even better?

Compiled Queries

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.

Compiled Queries

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.

Example LLVM query template

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

These are well-known in traditional databases…

Why not in Hadoop?

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

limitation would not help our goal of fast query pro-
cessing for a huge amount of disk scans on massively
growing data sets.

3) Limited by the page-level data manipulation inside a
traditional DBMS engine, PAX uses a fixed page as the
basic unit of data record organization. With such a fixed
size, PAX would not efficiently store data sets with a
highly-diverse range of data resource types of different
sizes in large data processing systems, such as the one
in Facebook.

III. THE DESIGN AND IMPLEMENTATION OF RCFILE

In this section, we present RCFile (Record Columnar File),
a data placement structure designed for MapReduce-based data
warehouse systems, such as Hive. RCFile applies the concept
of “first horizontally-partition, then vertically-partition” from
PAX. It combines the advantages of both row-store and
column-store. First, as row-store, RCFile guarantees that data
in the same row are located in the same node, thus it has
low cost of tuple reconstruction. Second, as column-store,
RCFile can exploit a column-wise data compression and skip
unnecessary column reads.

A. Data Layout and Compression

RCFile is designed and implemented on top of the Hadoop
Distributed File System (HDFS). As demonstrated in the
example shown in Figure 3, RCFile has the following data
layout to store a table:

1) According to the HDFS structure, a table can have
multiple HDFS blocks.

2) In each HDFS block, RCFile organizes records with
the basic unit of a row group. That is to say, all the
records stored in an HDFS block are partitioned into
row groups. For a table, all row groups have the same
size. Depending on the row group size and the HDFS
block size, an HDFS block can have only one or multiple
row groups.

Fig. 3: An example to demonstrate the data layout of RCFile
in an HDFS block.

3) A row group contains three sections. The first section is
a sync marker that is placed in the beginning of the row
group. The sync marker is mainly used to separate two
continuous row groups in an HDFS block. The second
section is a metadata header for the row group. The
metadata header stores the information items on how
many records are in this row group, how many bytes
are in each column, and how many bytes are in each
field in a column. The third section is the table data
section that is actually a column-store. In this section,
all the fields in the same column are stored continuously
together. For example, as shown in Figure 3, the section
first stores all fields in column A, and then all fields in
column B, and so on.

We now introduce how data is compressed in RCFile. In
each row group, the metadata header section and the table
data section are compressed independently as follows.

• First, for the whole metadata header section, RCFile uses
the RLE (Run Length Encoding) algorithm to compress
data. Since all the values of the field lengths in the same
column are continuously stored in this section, the RLE
algorithm can find long runs of repeated data values,
especially for fixed field lengths.

• Second, the table data section is not compressed as a
whole unit. Rather, each column is independently com-
pressed with the Gzip compression algorithm. RCFile
uses the heavy-weight Gzip algorithm in order to get
better compression ratios than other light-weight algo-
rithms. For example, the RLE algorithm is not used since
the column data is not already sorted. In addition, due
to the lazy decompression technology to be discussed
next, RCFile does not need to decompress all the columns
when processing a row group. Thus, the relatively high
decompression overhead of the Gzip algorithm can be
reduced.

Though currently RCFile uses the same algorithm for all
columns in the table data section, it allows us to use different
algorithms to compress different columns. One future work
related to the RCFile project is to automatically select the
best compression algorithm for each column according to its
data type and data distribution.

B. Data Appending

RCFile does not allow arbitrary data writing operations.
Only an appending interface is provided for data writing in
RCFile because the underlying HDFS currently only supports
data writes to the end of a file. The method of data appending
in RCFile is summarized as follows.

1) RCFile creates and maintains an in-memory column

holder for each column. When a record is appended,
all its fields will be scattered, and each field will
be appended into its corresponding column holder. In
addition, RCFile will record corresponding metadata of
each field in the metadata header.

2) RCFile provides two parameters to control how many
records can be buffered in memory before they are

RCFile

Why not in Hadoop?
No reason why not!

set hive.vectorized.execution.enabled = true;

class VectorizedRowBatch {
boolean selectedInUse;
int[] selected;
int size;
ColumnVector[] columns;

}

class LongColumnVector extends ColumnVector {
long[] vector

}

Batch of rows, organized as columns:

Vectorized Execution?✓

class LongColumnAddLongScalarExpression {
int inputColumn;
int outputColumn;
long scalar;

void evaluate(VectorizedRowBatch batch) {
long [] inVector = ((LongColumnVector)
batch.columns[inputColumn]).vector;
long [] outVector = ((LongColumnVector)
batch.columns[outputColumn]).vector;
if (batch.selectedInUse) {

for (int j = 0; j < batch.size; j++) {
int i = batch.selected[j];
outVector[i] = inVector[i] + scalar;

}
} else {

for (int i = 0; i < batch.size; i++) {
outVector[i] = inVector[i] + scalar;

}
}

}
}

Vectorized operator example

Vectorized Execution?✓

LessThan(
Multiply(Attribute("x"),
Divide(Minus(Literal("1"), Attribute("y")), 100)),

434)

SELECT x, y
FROM z WHERE x * (1 – y)/100 < 434;

Predicate is “interpreted” as

Slow!

Dynamic code generation
(feed AST into Scala compiler to generate bytecode):

row.get("x") * (1 – row.get("y"))/100 < 434

Much faster!

Compiled Queries?✓

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

Hadoop can adopt all of these optimizations!

Required: exactly one occurrence
Optional: 0 or 1 occurrence
Repeated: 0 or more occurrences

Columnar Decomposition

What’s the issue?

What about semi-structured data?

Source: https://blog.twitter.com/2013/dremel-made-simple-with-parquet

What’s the solution?

Google’s Dremel storage model

Open-source implementation in Parquet

Optional and Repeated Elements

Columnar Decomposition

What other information

do we need to store?

Tree Decomposition

Definition Level

Definition Level: Illustration

Repetition Level

0 marks new record and implies creating a new level1 and level2 list
1 marks new level1 list and implies creating a new level2 list as well.
2 marks every new element in a level2 list.

Repetition Level: Illustration

Columnar Decomposition

Putting It Together

Project onto contacts.phoneNumber

Sample Projection

Columnar Decomposition

Efficient Representations?

Physical Layout

Key Ideas

Binary representations are good

Binary representations need schemas

Schemas allow logical/physical separation

Logical/physical separation allows you to do cool things

MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access
Schemas are good

Separation of the schema from the application is good
High-level access languages are good

MapReduce is poor implementation
Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features
Bulk loader, indexing, updates, transactions…

MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker

Indexes are a good thing!

Source: Wikipedia (Card Catalog)

status = load ’/tables/statuses/2011/03/01’
using StatusProtobufPigLoader()
as (id: long, user_id: long, text: chararray, ...);

filtered = filter status by text matches ’.*\\bhadoop\\b.*’;
…

Pig performs a brute force scan
Then promptly chucks out most of the data Stupid.

Source: Lin et al. (2011) Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MAPREDUCE Workshop.

Hadoop + Full-Text Indexes

“Trying to find a needle in a haystack… with a snowplow”
@squarecog

Pig performs a brute force scan
Then promptly chucks out most of the data Stupid.

Uhhh… how about an index?
Use Lucene full-text index

status = load ’/tables/statuses/2011/03/01’
using StatusProtobufPigLoader()
as (id: long, user_id: long, text: chararray, ...);

filtered = filter status by text matches ’.*\\bhadoop\\b.*’;
…

Hadoop + Full-Text Indexes

… …

InputSplit InputSplit InputSplit

Mapper Mapper Mapper

Client

LZO blocks

… …
LZO blocks

Lucene
Index

… …

Build “pseudo-document” for each Lzo block

Index for selection on tweet content

Index pseudo-documents with Lucene

Index-time

… …

InputSplit InputSplit InputSplit

Mapper Mapper Mapper

Client

LZO blocks

Lucene
Index

Only process blocks known to satisfy selection criteria

Run-time

Hadoop Integration

Everything encapsulated in the InputFormat

RecordReaders know what blocks to process and skip

Completely transparent to mappers

Experiments

Selection on tweet content

Varied selectivity range

One day sample data (70m tweets, 8/1/2010)

€

f (k;λ) =
λke−λ

k!

€

1− f (k = 0;λ)

Analytical model

Task: prediction LZO blocks scanned by selectivity

Poisson model: P(observing k occurrences in a block)

E(fraction of blocks scanned)

Selectivity 0.001 ® 82% of all blocks
Selectivity 0.002 ® 97% of all blocks

But: can predict a priori!

Total: ~40k blocks

MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access
Schemas are good

Separation of the schema from the application is good
High-level access languages are good

MapReduce is poor implementation
Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features
Bulk loader, indexing, updates, transactions…

MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker

Source: Wikipedia (Japanese rock garden)

