

Data-Intensive Distributed Computing CS 451/651 (Fall 2018)

Part 4: Analyzing Graphs (2/2) October 11, 2018

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2018f/

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Parallel BFS in MapReduce

Data representation:

Key: node *n* Value: *d* (distance from start), adjacency list Initialization: for all nodes except for start node, $d = \infty$

Mapper:

 $\forall m \in adjacency \ list: emit \ (m, d + 1)$ Remember to also emit distance to yourself

Sort/Shuffle:

Groups distances by reachable nodes

Reducer:

Selects minimum distance path for each reachable node Additional bookkeeping needed to keep track of actual path

Remember to pass along the graph structure!

BFS Pseudo-Code

```
class Mapper {
  def map(id: Long, n: Node) = {
    emit(id, n)
    val d = n.distance
    emit(id, d)
    for (m <- n.adjacenyList) {</pre>
      emit(m, d+1)
    }
}
class Reducer {
  def reduce(id: Long, objects: Iterable[Object]) = {
    var min = infinity
    var n = null
    for (d <- objects) {</pre>
      if (isNode(d)) n = d
      else if d < min min = d
    }
    n.distance = min
    emit(id, n)
  }
```

Implementation Practicalities

Visualizing Parallel BFS

Non-toy?

Application: Social Search

---- Ladies Mr

以優

ub & cafe

次即

家族民食屋

迎散

Social Search

When searching, how to rank friends named "John"? Assume undirected graphs Rank matches by distance to user

> Naïve implementations: Precompute all-pairs distances Compute distances at query time

> > Can we do better?

All Pairs?

Floyd-Warshall Algorithm: difficult to MapReduce-ify...

Multiple-source shortest paths in MapReduce: Run multiple parallel BFS simultaneously Assume source nodes $\{s_0, s_1, \dots, s_n\}$ Instead of emitting a single distance, emit an array of distances, wrt each source Reducer selects minimum for each element in array

Does this scale?

Landmark Approach (aka sketches)

Select *n* seeds $\{s_0, s_1, \ldots, s_n\}$

Compute distances from seeds to every node:

A =
$$[2, 1, 1]$$

B = $[1, 1, 2]$
C = $[4, 3, 1]$
D = $[1, 2, 4]$
Distances to seeds

What can we conclude about distances? Insight: landmarks bound the maximum path length

Run multi-source parallel BFS in MapReduce!

Lots of details:

How to more tightly bound distances How to select landmarks (random isn't the best...)

Graphs and MapReduce (and Spark)

A large class of graph algorithms involve: Local computations at each node Propagating results: "traversing" the graph

Generic recipe:

Represent graphs as adjacency lists Perform local computations in mapper Pass along partial results via outlinks, keyed by destination node Perform aggregation in reducer on inlinks to a node Iterate until convergence: controlled by external "driver" Don't forget to pass the graph structure between iterations

PageRank

(The original "secret sauce" for evaluating the importance of web pages)

(What's the "Page" in PageRank?)

Random Walks Over the Web

Random surfer model:

User starts at a random Web page User randomly clicks on links, surfing from page to page

PageRank

Characterizes the amount of time spent on any given page Mathematically, a probability distribution over pages

Use in web ranking Correspondence to human intuition? One of thousands of features used in web search

PageRank: Defined

Given page x with inlinks $t_1 \dots t_n$, where

C(t) is the out-degree of t

lpha is probability of random jump

N is the total number of nodes in the graph

Computing PageRank

Remember this? A large class of graph algorithms involve: Local computations at each node Propagating results: "traversing" the graph

Sketch of algorithm:

Start with seed PR_i values Each page distributes PR_i mass to all pages it links to Each target page adds up mass from in-bound links to compute PR_{i+1} Iterate until values converge

Simplified PageRank

First, tackle the simple case: No random jump factor No dangling nodes

Then, factor in these complexities... Why do we need the random jump? Where do dangling nodes come from?

Sample PageRank Iteration (I)

Sample PageRank Iteration (2)

PageRank in MapReduce

PageRank Pseudo-Code

```
class Mapper {
  def map(id: Long, n: Node) = {
    emit(id, n)
    p = n.PageRank / n.adjacenyList.length
    for (m <- n.adjacenyList) {</pre>
      emit(m, p)
    }
}
class Reducer {
  def reduce(id: Long, objects: Iterable[Object]) = {
    var s = 0
    var n = null
    for (p <- objects) {</pre>
      if (isNode(p)) n = p
      else
               s += p
    }
    n.PageRank = s
    emit(id, n)
  }
}
```

PageRank vs. BFS

A large class of graph algorithms involve: Local computations at each node Propagating results: "traversing" the graph

Complete PageRank

Two additional complexities What is the proper treatment of dangling nodes? How do we factor in the random jump factor?

Solution: second pass to redistribute "missing PageRank mass" and account for random jumps

$$p' = \alpha \left(\frac{1}{N}\right) + (1-\alpha)\left(\frac{m}{N} + p\right)$$

p is PageRank value from before, p' is updated PageRank value N is the number of nodes in the graph m is the missing PageRank mass

One final optimization: fold into a single MR job

Implementation Practicalities

PageRank Convergence

Alternative convergence criteria Iterate until PageRank values don't change Iterate until PageRank rankings don't change Fixed number of iterations

Convergence for web graphs? Not a straightforward question

Watch out for link spam and the perils of SEO: Link farms Spider traps

. . .

Log Probs PageRank values are *really* small... Solution?

Product of probabilities = Addition of log probs

Addition of probabilities?

$$a \oplus b = \begin{cases} b + \log(1 + e^{a-b}) & a < b \\ a + \log(1 + e^{b-a}) & a \ge b \end{cases}$$

More Implementation Practicalities

How do you even extract the webgraph? Lots of details...

Beyond PageRank

Variations of PageRank Weighted edges Personalized PageRank

Variants on graph random walks Hubs and authorities (HITS) SALSA

Applications

Static prior for web ranking Identification of "special nodes" in a network Link recommendation Additional feature in any machine learning problem

Implementation Practicalities

MapReduce Sucks

Java verbosity Hadoop task startup time Stragglers Needless graph shuffling Checkpointing at each iteration

Let's Spark!

MapReduce vs. Spark

Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

Spark to the rescue?

Java verbosity Hadoop task startup time Stragglers Needless graph shuffling Checkpointing at each iteration

Source: https://www.flickr.com/photos/smuzz/4350039327/