
Data-Intensive Distributed Computing

Part 4: Analyzing Graphs (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 (Fall 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

October 11, 2018

These slides are available at http://lintool.github.io/bigdata-2018f/



Parallel BFS in MapReduce
Data representation:

Key: node n
Value: d (distance from start), adjacency list

Initialization: for all nodes except for start node, d = ¥

Mapper:
"m Î adjacency list: emit (m, d + 1)

Remember to also emit distance to yourself

Sort/Shuffle:
Groups distances by reachable nodes

Reducer:
Selects minimum distance path for each reachable node

Additional bookkeeping needed to keep track of actual path

Remember to pass along the graph structure!



BFS Pseudo-Code
class Mapper {

def map(id: Long, n: Node) = {
emit(id, n)
val d = n.distance
emit(id, d)
for (m <- n.adjacenyList) {

emit(m, d+1)
}

}

class Reducer {
def reduce(id: Long, objects: Iterable[Object]) = {

var min = infinity
var n = null
for (d <- objects) {

if (isNode(d))    n = d
else if d < min   min = d

}
n.distance = min
emit(id, n)

}
}



reduce

map

HDFS

HDFS

Convergence?

Implementation Practicalities



n0

n3 n2

n1
n7

n6

n5
n4

n9

n8

Visualizing Parallel BFS



Non-toy?



Source: Wikipedia (Crowd)

Application: Social Search



Social Search

When searching, how to rank friends named “John”?
Assume undirected graphs

Rank matches by distance to user

Naïve implementations:
Precompute all-pairs distances

Compute distances at query time

Can we do better?



All Pairs?
Floyd-Warshall Algorithm: difficult to MapReduce-ify…

Multiple-source shortest paths in MapReduce:
Run multiple parallel BFS simultaneously

Assume source nodes { s0 , s1 , … sn }
Instead of emitting a single distance, emit an array of distances, wrt each source

Reducer selects minimum for each element in array

Does this scale?



Landmark Approach (aka sketches)

Lots of details:
How to more tightly bound distances

How to select landmarks (random isn’t the best…)

Compute distances from seeds to every node:

What can we conclude about distances?
Insight: landmarks bound the maximum path length

Select n seeds { s0 , s1 , … sn }

A = [2, 1, 1]
B = [1, 1, 2]
C = [4, 3, 1]
D = [1, 2, 4]

Nodes Distances to seeds

Run multi-source parallel BFS in MapReduce!



Graphs and MapReduce (and Spark)

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph

Generic recipe:
Represent graphs as adjacency lists

Perform local computations in mapper
Pass along partial results via outlinks, keyed by destination node

Perform aggregation in reducer on inlinks to a node
Iterate until convergence: controlled by external “driver”

Don’t forget to pass the graph structure between iterations



PageRank
(The original “secret sauce” for evaluating the importance of web pages)

(What’s the “Page” in PageRank?)



Random Walks Over the Web

Random surfer model:
User starts at a random Web page

User randomly clicks on links, surfing from page to page

PageRank
Characterizes the amount of time spent on any given page

Mathematically, a probability distribution over pages

Use in web ranking
Correspondence to human intuition?

One of thousands of features used in web search



Given page x with inlinks t1…tn, where

C(t) is the out-degree of t
a is probability of random jump

N is the total number of nodes in the graph

X

t1

t2

tn
…

PR(x) = ↵

✓
1

N

◆
+ (1� ↵)

nX

i=1

PR(ti)

C(ti)

PageRank: Defined



Computing PageRank

Remember this?

Sketch of algorithm:
Start with seed PRi values

Each page distributes PRi mass to all pages it links to
Each target page adds up mass from in-bound links to compute PRi+1

Iterate until values converge

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph



Simplified PageRank

First, tackle the simple case:
No random jump factor

No dangling nodes

Then, factor in these complexities…
Why do we need the random jump?

Where do dangling nodes come from?



n1 (0.2)

n4 (0.2)

n3 (0.2)
n5 (0.2)

n2 (0.2)

0.1

0.1

0.2 0.2

0.1 0.1

0.066 0.066
0.066

n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)Iteration 1

Sample PageRank Iteration (1)



n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)

0.033

0.033

0.3 0.166

0.083 0.083

0.1 0.1
0.1

n1 (0.1)

n4 (0.2)

n3 (0.183)
n5 (0.383)

n2 (0.133)Iteration 2

Sample PageRank Iteration (2)



n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce

PageRank in MapReduce



PageRank Pseudo-Code
class Mapper {

def map(id: Long, n: Node) = {
emit(id, n)
p = n.PageRank / n.adjacenyList.length
for (m <- n.adjacenyList) {

emit(m, p)
}

}

class Reducer {
def reduce(id: Long, objects: Iterable[Object]) = {

var s = 0
var n = null
for (p <- objects) {

if (isNode(p))    n = p
else              s += p

}
n.PageRank = s
emit(id, n)

}
}



Map

Reduce

PageRank BFS

PR/N d+1

sum min

PageRank vs. BFS

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph



p is PageRank value from before, p' is updated PageRank value

N is the number of nodes in the graph

m is the missing PageRank mass

p0 = ↵

✓
1

N

◆
+ (1� ↵)

⇣m
N

+ p
⌘

Complete PageRank

Two additional complexities
What is the proper treatment of dangling nodes?
How do we factor in the random jump factor?

Solution: second pass to redistribute “missing PageRank mass” 
and account for random jumps

One final optimization: fold into a single MR job



Convergence?
reduce

map

HDFS

HDFS

map

HDFS

What’s the optimization?

Implementation Practicalities



PageRank Convergence

Alternative convergence criteria
Iterate until PageRank values don’t change

Iterate until PageRank rankings don’t change
Fixed number of iterations

Convergence for web graphs?
Not a straightforward question

Watch out for link spam and the perils of SEO:
Link farms

Spider traps
…



Log Probs
PageRank values are really small…

Product of probabilities = Addition of log probs

Addition of probabilities?

Solution?



More Implementation Practicalities

How do you even extract the webgraph?

Lots of details…



Beyond PageRank

Variations of PageRank
Weighted edges

Personalized PageRank

Variants on graph random walks
Hubs and authorities (HITS)

SALSA



Applications

Static prior for web ranking

Identification of “special nodes” in a network

Link recommendation

Additional feature in any machine learning problem



Convergence?
reduce

map

HDFS

HDFS

map

HDFS

Implementation Practicalities



MapReduce Sucks

Java verbosity

Spark to the rescue?

Hadoop task startup time

Stragglers

Needless graph shuffling

Checkpointing at each iteration



reduce

HDFS

…

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

Let’s Spark!



reduce

HDFS

…

map

reduce

map

reduce

map



reduce

HDFS

map

reduce

map

reduce

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…



join

HDFS

map

join

map

join

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!



PageRank'Performance'

17
1&

80
&

72
&

28
&

0&
20&
40&
60&
80&
100&
120&
140&
160&
180&

30& 60&

Ti
m
e'
pe

r'I
te
ra
ti
on

'(s
)'

Number'of'machines'

Hadoop&

Spark&

Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

MapReduce vs. Spark



Spark to the rescue?

Java verbosity

What have we fixed?

Hadoop task startup time

Stragglers

Needless graph shuffling

Checkpointing at each iteration



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!

Still not particularly satisfying?



Source: https://www.flickr.com/photos/smuzz/4350039327/

Stay Tuned!


