
Data-Intensive Distributed Computing

Part 4: Analyzing Graphs (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 (Fall 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

October 4, 2018

These slides are available at http://lintool.github.io/bigdata-2018f/

Structure of the Course

“Core” framework features
and algorithm design

An
al

yz
in

g
Te

xt

An
al

yz
in

g
G

ra
ph

s

An
al

yz
in

g
Re

la
tio

na
l D

at
a

Da
ta

 M
in

in
g

What’s a graph?
G = (V,E), where

V represents the set of vertices (nodes)
E represents the set of edges (links)
Edges may be directed or undirected

Both vertices and edges may contain additional information

vertex (node)

edges (links)

edges (links)

outgoing
(outbound) edges

incoming
(inbound) edges

out-degree

in-degree

“incident”

outlinks

inlinks

Examples of Graphs

Hyperlink structure of the web
Physical structure of computers on the Internet

Interstate highway system
Social networks

We’re mostly interested in sparse graphs!

Source: Wikipedia (Königsberg)

Source: Wikipedia (Kaliningrad)

Some Graph Problems

Finding shortest paths
Routing Internet traffic and UPS trucks

Finding minimum spanning trees
Telco laying down fiber

Finding max flow
Airline scheduling

Identify “special” nodes and communities
Halting the spread of avian flu

Bipartite matching
match.com

Web ranking
PageRank

What makes graphs hard?

Irregular structure
Fun with data structures!

Irregular data access patterns
Fun with architectures!

Iterations
Fun with optimizations!

Graphs and MapReduce (and Spark)

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph

Key questions:
How do you represent graph data in MapReduce (and Spark)?

How do you traverse a graph in MapReduce (and Spark)?

Representing Graphs

Adjacency matrices

Adjacency lists

Edge lists

1 2 3 4
1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

1

2

3

4

Adjacency Matrices

Represent a graph as an n x n square matrix M
n = |V|

Mij = 1 iff an edge from vertex i to j

Adjacency Matrices: Critique

Advantages
Amenable to mathematical manipulation

Intuitive iteration over rows and columns

Disadvantages
Lots of wasted space (for sparse matrices)

Easy to write, hard to compute

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3

1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

Wait, where have we

seen this before?

Adjacency Lists

Take adjacency matrix… and throw away all the zeros

Adjacency Lists: Critique

Advantages
Much more compact representation (compress!)

Easy to compute over outlinks

Disadvantages
Difficult to compute over inlinks

(1, 2)
(1, 4)
(2, 1)
(2, 3)
(2, 4)
(3, 1)
(4, 1)
(4, 3)

1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

Edge Lists

Explicitly enumerate all edges

Edge Lists: Critique

Advantages
Easily support edge insertions

Disadvantages
Wastes spaces

…

…

Vertex
Partitioning

Edge
Partitioning

Graph Partitioning

(A lot more detail later…)

Storing Undirected Graphs
Standard Tricks

1. Store both edges
Make sure your algorithm de-dups

2. Store one edge, e.g., (x, y) st. x < y
Make sure your algorithm handles the asymmetry

Basic Graph Manipulations

Invert the graph
flatMap and regroup

Adjacency lists to edge lists
flatMap adjacency lists to emit tuples

Framework does all the heavy lifting!

Edge lists to adjacency lists
groupBy

Co-occurrence of characters in Les Misérables

Source: http://bost.ocks.org/mike/miserables/

Co-occurrence of characters in Les Misérables

Source: http://bost.ocks.org/mike/miserables/

Co-occurrence of characters in Les Misérables

Source: http://bost.ocks.org/mike/miserables/

How are visualizations like this generated?

Limitations?

What does the web look like?

Meusel et al. Graph Structure in the Web — Revisited. WWW 2014.
Analysis of a large webgraph from the common crawl: 3.5 billion pages, 129 billion links

Figure 5: Frequency plot of the distribution of SCCs

Figure 6: Size-rank plot of the distribution of components

• the core is given by the giant strongly connected component
(LSCC);

• the IN component contains non-core pages that can reach the
core via a directed path;

• the OUT component contains non-core pages that can be
reached from the core;

• the TUBES are formed by non-core pages reachable from IN
and that can reach OUT;

• pages reachable from IN, or that can reach OUT, but are not
listed above, are called TENDRILS;

• the remaining pages are DISCONNECTED.

All these components are easily computed by visiting the direct

acyclic graph of strongly connected components (SCC DAG): it is
a graph having one node for each strongly connected component
with an arc from x to y if some node in the component associated
with x is connected with a node in the component associated with y.
Such a graph can be easily generated using WebGraph’s facilities.
Figure 7 shows the size of bow-tie component.

Table 3 compares the sizes of the different components of the
bow-tie structure between the web graph discussed in this paper
(column two and three) and the web graph analysed by Broder et al.

in 2000 (column four and five).12

12Broder et al. did not report the number of nodes belonging to the
TUBE component separately, as they define as TUBE as a TEN-
DRIL from the IN component hooked into the TENDRIL of a node
from the OUT component.

Figure 7: Bow-tie structure of the web graph

The main constant is the existence of a LSCC, which in our graph
has almost doubled in relative size. We also witness a much smaller
OUT component and a larger IN component. The different propor-
tions are most likely to be attributed to different crawling strategies
(in particular, to our large number of nodes with indegree zero,
which cannot belong to the LSCC or OUT component). Unfortu-
nately, basic data such as the seed size, the type of visit strategy,
etc. are not available for the Broder et al. crawl. Certainly, how-
ever, the web has become significantly more dense and connected
in the last 13 years.

Common Crawl 2012 Broder et al.

nodes % nodes # nodes % nodes
Component (in thousands) (in %) (in thousands) (in %)
LSCC 1 827 543 51.28 56 464 27.74
IN 1 138 869 31.96 43 343 21.29
OUT 215 409 6.05 43 166 21.21
TENDRILS 164 465 4.61 43 798 21.52
TUBES 9 099 0.26 - -
DISC. 208 217 5.84 16 778 8.24

Table 3: Comparison of sizes of bow-tie components

3.5 Diameter and Distances
In this paper we report, for the first time, accurate measurements

of distance-related features of a large web crawl. Previous work
has tentatively used a small number of breadth-visit samples, but
convergence guarantees are extremely weak (in fact, almost non-
existent) for graphs that are not strongly connected. The data we
report have been computed using HyperBall [8], a diffusion-based
algorithm that computes an approximation of the distance distri-
bution (technically, we computed four runs with relative standard
deviation 9.25%). We report, for each datum, the empirical stan-
dard error computed by the jackknife resampling method.

In our web graph, 48.15±2.14% of the pairs of pages have a con-
necting directed path. Moreover, the average distance is 12.84 ±
0.09 and the harmonic diameter (the harmonic mean of all dis-
tances, see [15] and [7] for motivation) is 24.43± 0.97. These fig-
ures should be compared with the 25% of connected pairs and the
average distance 16.12 reported by Broder et al. (which however
have been computed averaging the result of few hundred breadth-
first samples): even if our crawl is more than 15 times larger, it
is significantly more connected, in contrast to commonly accepted
predictions of logarithmic growth of the diameter in terms of the

Broder’s Bowtie (2000) – revisited

What does the web look like?
Very roughly, a scale-free network

P (k) ⇠ k��
Fraction of k nodes having k connections:

(i.e., distribution follows a power law)

same host/pay-level-domain, and there is an arc between nodes x
and y if there is at least one arc from a page in the set associated
with x to a page in the set associated with y. Table 1 provides basic
data about the size of the graphs.

Granularity # Nodes in millions # Arcs in millions
Page Graph 3 563 128 736
Host Graph 101 2 043
PLD Graph 43 623

Table 1: Sizes of the graphs

3. ANALYSIS OF THE WEB GRAPH
Most of the analyses presented in the following section have

been performed using the “big” version of the WebGraph frame-
work [6], which can handle more than 231 nodes. The BV compres-
sion scheme was able to compress the graph in crawl order at 3.52
bits per link, which is just 12.6% of the information-theoretical
lower bound (under a suitable permutation of the node identifiers it
is common to obtain slightly more than one bit per link). The whole
graph occupied in compressed form just 57.5GB, which made it
possible to run resource intensive computations such as the compu-
tation of the strongly connected components.

3.1 Indegree & Outdegree Distribution
The simplest indicator of density of web graphs is the average

degree, that is, the ratio between the number of arcs and the number
of nodes in the graph.7

Broder et al. report an average degree of 7.5 links per page. Sim-
ilar low values can be found in crawls of the same years—for in-
stance, in the crawls made by the Stanford WebBase project.8 In
contrast our graph has average degree of 36.8, meaning that the av-
erage degree is factor 4.9 larger than in the earlier crawls. Similar
values can be found in 2007 .uk crawls performed by the Labora-
tory for Web Algorithmics, and the ClueWeb12 crawl has average
degree 45.1.9 A possible explanation for the increase of the aver-
age degree is the wide adoption of content management systems,
which tend to create dense websites.

Figures 1 and 2 show frequency plots of indegrees and outde-
grees in log-log scale. For each d, we plot a point with an ordinate
equal to the number of pages with that have degree d. Note that
we included the data for degree zero, which is omitted in most of
the literature. We then aggregate the values using Fibonacci bin-

ning [19] to show the approximate shape of the distribution.
Finally, we try to fit a power law to a tail of the data. This part is

somewhat delicate: previous work in the late 90’s has often claimed
to find power laws just by noting an approximate linear shape in
log-log plots: unfortunately, almost all distributions (even, some-
time, non-monotone ones) look like a line on a log-log plot [20].
Tails exhibiting high variability, in particular, are very noisy (see
the typical “clouds of points” in the right part of degree plots) and
difficult to interpret.
7Technically speaking, the density of a graph is the ratio between
the square of the number of nodes and the number of arcs, but for
very sparse graphs one obtains abysmally small numbers that are
difficult to interpret.
8http://dbpubs.stanford.edu:8091/~testbed/
doc2/WebBase/
9We remark that all these values are actually an underestimation,
as they represent the average number of outgoing arcs in the web

graph built from the crawl. The average number of links per page
can be higher, as several links will point outside the graph.

Figure 1: Frequency plot of the indegree distribution

Figure 2: Frequency plot of the outdegree distribution

We thus follow the methodological suggestions of Clauset et al. [11].
We use the plfit10 tool to attempt a maximum-likelihood fitting of
a power law starting from each possible degree, keeping the start-
ing point and the exponent providing the best likelihood. After that
we perform a goodness-of-fit test and estimate a p-value.

The first important fact we report is that the p-value of the best

fits is 0 (±0.01). In other words, from a statistical viewpoint, in
spite of some nice graphical overlap the tail of the distribution is
not a power law. We remark that this paper applies for the first time
a sound methodology to a large dataset: it is not surprising that the
conclusions diverge significantly from previous literature.

To have some intuition about the possibility of a heavy tail (i.e.,
that the tail of the distribution is not exponentially bounded) we
draw the size-rank plot, as suggested in [14]. The size-rank plot is
the discrete version of the complementary cumulative distribution
function in probability: if the data fits a power law it should display
as a line on a log-log scale. Concavity indicates a superpolynomial
decay. Size-rank plots are monotonically decreasing functions, and
do not suffer the “cloud of points” problem.

Figure 3 shows the size-rank plot of the degree distributions of
our graph and the best power-law fit: from what we can ascertain
visually, there is a clear concavity, indicating once again that the tail
of the distribution is not a power law. The concavity leaves open
the possibility of a non-fat heavy tail, such as that of a lognormal
distribution.

10https://github.com/ntamas/plfit

same host/pay-level-domain, and there is an arc between nodes x
and y if there is at least one arc from a page in the set associated
with x to a page in the set associated with y. Table 1 provides basic
data about the size of the graphs.

Granularity # Nodes in millions # Arcs in millions
Page Graph 3 563 128 736
Host Graph 101 2 043
PLD Graph 43 623

Table 1: Sizes of the graphs

3. ANALYSIS OF THE WEB GRAPH
Most of the analyses presented in the following section have

been performed using the “big” version of the WebGraph frame-
work [6], which can handle more than 231 nodes. The BV compres-
sion scheme was able to compress the graph in crawl order at 3.52
bits per link, which is just 12.6% of the information-theoretical
lower bound (under a suitable permutation of the node identifiers it
is common to obtain slightly more than one bit per link). The whole
graph occupied in compressed form just 57.5GB, which made it
possible to run resource intensive computations such as the compu-
tation of the strongly connected components.

3.1 Indegree & Outdegree Distribution
The simplest indicator of density of web graphs is the average

degree, that is, the ratio between the number of arcs and the number
of nodes in the graph.7

Broder et al. report an average degree of 7.5 links per page. Sim-
ilar low values can be found in crawls of the same years—for in-
stance, in the crawls made by the Stanford WebBase project.8 In
contrast our graph has average degree of 36.8, meaning that the av-
erage degree is factor 4.9 larger than in the earlier crawls. Similar
values can be found in 2007 .uk crawls performed by the Labora-
tory for Web Algorithmics, and the ClueWeb12 crawl has average
degree 45.1.9 A possible explanation for the increase of the aver-
age degree is the wide adoption of content management systems,
which tend to create dense websites.

Figures 1 and 2 show frequency plots of indegrees and outde-
grees in log-log scale. For each d, we plot a point with an ordinate
equal to the number of pages with that have degree d. Note that
we included the data for degree zero, which is omitted in most of
the literature. We then aggregate the values using Fibonacci bin-

ning [19] to show the approximate shape of the distribution.
Finally, we try to fit a power law to a tail of the data. This part is

somewhat delicate: previous work in the late 90’s has often claimed
to find power laws just by noting an approximate linear shape in
log-log plots: unfortunately, almost all distributions (even, some-
time, non-monotone ones) look like a line on a log-log plot [20].
Tails exhibiting high variability, in particular, are very noisy (see
the typical “clouds of points” in the right part of degree plots) and
difficult to interpret.
7Technically speaking, the density of a graph is the ratio between
the square of the number of nodes and the number of arcs, but for
very sparse graphs one obtains abysmally small numbers that are
difficult to interpret.
8http://dbpubs.stanford.edu:8091/~testbed/
doc2/WebBase/
9We remark that all these values are actually an underestimation,
as they represent the average number of outgoing arcs in the web

graph built from the crawl. The average number of links per page
can be higher, as several links will point outside the graph.

Figure 1: Frequency plot of the indegree distribution

Figure 2: Frequency plot of the outdegree distribution

We thus follow the methodological suggestions of Clauset et al. [11].
We use the plfit10 tool to attempt a maximum-likelihood fitting of
a power law starting from each possible degree, keeping the start-
ing point and the exponent providing the best likelihood. After that
we perform a goodness-of-fit test and estimate a p-value.

The first important fact we report is that the p-value of the best

fits is 0 (±0.01). In other words, from a statistical viewpoint, in
spite of some nice graphical overlap the tail of the distribution is
not a power law. We remark that this paper applies for the first time
a sound methodology to a large dataset: it is not surprising that the
conclusions diverge significantly from previous literature.

To have some intuition about the possibility of a heavy tail (i.e.,
that the tail of the distribution is not exponentially bounded) we
draw the size-rank plot, as suggested in [14]. The size-rank plot is
the discrete version of the complementary cumulative distribution
function in probability: if the data fits a power law it should display
as a line on a log-log scale. Concavity indicates a superpolynomial
decay. Size-rank plots are monotonically decreasing functions, and
do not suffer the “cloud of points” problem.

Figure 3 shows the size-rank plot of the degree distributions of
our graph and the best power-law fit: from what we can ascertain
visually, there is a clear concavity, indicating once again that the tail
of the distribution is not a power law. The concavity leaves open
the possibility of a non-fat heavy tail, such as that of a lognormal
distribution.

10https://github.com/ntamas/plfit

Figure from: Newman, M. E. J. (2005) “Power laws, Pareto
distributions and Zipf's law.” Contemporary Physics 46:323–351.

Power Laws are
 everywhere!

10 -8
10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1
10 0

10 0 10 1 10 2 10 3 10 4 10 5

P
(D

e
g
re

e
)

In Degree

(a) In degree (All)

10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1

10 0 10 1 10 2 10 3 10 4

P
(D

e
g
re

e
)

Out Degree

(b) Out degree (All)

10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1
10 0

10 0 10 1 10 2 10 3 10 4 10 5

P
(D

e
g
re

e
)

Mutual Degree

(c) Mutual degree (All)

10 -8
10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1
10 0

10 0 10 1 10 2 10 3 10 4 10 5

P
(D

e
g
re

e
)

In Degree

Brazil
JP

USA

(d) In degree (country)

10 -8
10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1

10 0 10 1 10 2 10 3 10 4 10 5

P
(D

e
g
re

e
)

Out Degree

Brazil
JP

USA

(e) Out degree (country)

10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1
10 0

10 0 10 1 10 2 10 3 10 4

P
(D

e
g
re

e
)

Mutual Degree

Brazil
JP

USA

(f) Mutual degree (country)

Figure 1: Degree distributions in the follow graph.

Our findings are contrasted with studies of other social
networks: Facebook [1, 14] (721m vertices, 68.7b undirected
edges) and the network from users of MSN Messenger [8, 13]
(180m vertices, 1.3b undirected edges). Properties of these
two social networks provide a point of reference.

When considering the size of the Twitter graph, comput-
ing exact values of di↵erent statistical quantities is challeng-
ing. In many cases, we performed approximations, noted
in each section. All analyses in this work were conducted
on Twitter’s Hadoop analytics stack using Pig. More de-
tails about analytics infrastructure at Twitter can be found
elsewhere [10].

3. GRAPH CHARACTERISTICS

3.1 Degree Distributions
Since the Twitter follow graph is directed, vertices have

both an inbound degree, or in-degree (the number of users
who follow them) and an outbound degree, or out-degree
(the number of users who they follow). Figure 1(a) shows
the in-degree distribution across all users. Not surprisingly,
we see a heavy tail resembling a power-law distribution. The
out-degree distribution in Figure 1(b) also exhibits a heavy
tail, although not to the same extent as the in-degree distri-
bution. This is interesting, as one might expect that users’
limited capacity to consume information would set a rela-
tively low upper bound on the number of people they can
follow. Instead, some users follow hundreds of thousands of
accounts. These are often celebrities who choose to recip-
rocate the follows of some of their fans (in some cases, au-
tomatically). For example, in Summer 2012, the pop singer
Lady Gaga was the most-followed user on Twitter, and she

Network 25% 50% 75% 95% Max ↵ µ �2

In-All 4 16 65 339 14.7m 1.35 2.83 3.36
Out-All 11 39 121 470 757k 1.28 3.56 2.87
Mut-All 3 13 50 223 563k 1.39 2.59 3.03
In-BR 6 32 127 514 3.0m 1.30 3.34 3.76
Out-BR 16 69 209 894 140k 1.25 4.03 3.28
Mut-BR 5 19 57 204 115k 1.35 2.83 2.63
In-JP 4 17 60 347 1.2m 1.35 2.84 3.21
Out-JP 6 23 71 360 297k 1.32 3.08 2.93
Mut-JP 4 15 50 253 276k 1.37 2.72 2.90
In-US 4 20 89 402 5.1m 1.33 3.01 3.59
Out-US 11 43 138 509 325k 1.28 3.62 3.05
Mut-US 4 16 64 257 235k 1.36 2.76 3.14

Table 1: Statistics for the degree distributions (in-

bound, outbound, and mutual) for the four graphs

we examined. The parameter ↵ assumes P (x) ⇠ x�↵

for degree x (power law). The µ and �2
parameters

assume P (x) ⇠ 1
x exp

h
(ln x�µ)2

2�2

i
(log-normal).

followed more than 130k other users; Barack Obama had
21m followers and followed more than 600k people. In an-
other common case, businesses will reciprocate follows to
better connect with customers (for example, the grocery
store chain Whole Foods followed more than 500k people).
More commonly, journalists have been found to follow many
thousands of people.
The presence of users with thousands of followings is in-

dicative of“non-social”behavior. It has been well-established
that individuals are only able to maintain around 150 stable
social relationships at a time [3]. Furthermore, it has been
established through studying reciprocated direct messaging
on Twitter that the number of social relationships a user can
e↵ectively maintain is limited by this constraint as well [5].
Also of note in the out-degree distribution is the apparent
spike at 2,000 followings. Spambots have been observed in
the past to arbitrarily follow a large number of people. To
curtail this, Twitter does not allow users to follow more
than 2,000 accounts unless they themselves have more than
2,200 followers. This is not to imply that all users who fall
in this spike are spambots, but only more well-known users
can “break through” this limit.
The degree distribution of the mutual graph is shown in

Figure 1(c). Here, we still observe relatively large degrees,
although smaller than both the in-degrees and out-degrees.
Figures 1(d), 1(e), and 1(f) show the various degree distribu-
tions for each of the three country subgraphs. Surprisingly,
there is very little variation between them.
Finally, Table 1 shows the statistics of the various degree

distributions. In addition to the percentiles of each distri-
bution, we also tried fitting each to both a power law and
a log-normal distribution. Interestingly, both the in-degree
distribution and the mutual degree distributions were best
fit by a power law, while the out-degree distribution was best
fit by a log-normal. Furthermore, each of the percentiles re-
ported are higher for the out-degree distributions compared
to the in-degree or mutual degree, even though the max-
imum out-degree is much smaller than the maximum in-
degree. This means that the typical Twitter user follows
more people than she has followers, but this does not hold
for a small population of “celebrity” users who have very
large in-degrees (i.e., many followers).

Figure from: Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. Information
Network or Social Network? The Structure of the Twitter Follow Graph. WWW 2014.

What ab
out Facebook?

What does the web look like?
Very roughly, a scale-free network

Why?

Other Examples:
Internet domain routers

Co-author network
Citation network

Movie-Actor network

(In this installment of “learn fancy terms for simple ideas”)

Preferential Attachment

Matthew Effect
Also:

For unto every one that hath shall be given, and he
shall have abundance: but from him that hath not

shall be taken even that which he hath.

— Matthew 25:29, King James Version.

BTW, how do we compute these graphs?

Source: http://www.flickr.com/photos/guvnah/7861418602/

Count.

BTW, how do we extract the webgraph?
The webgraph… is big?!

Integerize vertices (montone minimal perfect hashing)
Sort URLs

Integer compression

A few tricks:

Meusel et al. Graph Structure in the Web — Revisited. WWW 2014.
webgraph from the common crawl: 3.5 billion pages, 129 billion links

58 GB!

Graphs and MapReduce (and Spark)

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph

Key questions:
How do you represent graph data in MapReduce (and Spark)?

How do you traverse a graph in MapReduce (and Spark)?

Single-Source Shortest Path

Problem: find shortest path from a
source node to one or more target nodes

Shortest might also mean lowest weight or cost

First, a refresher: Dijkstra’s Algorithm…

0

¥

¥

¥

¥

10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm Example

0

10

5

¥

¥

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

14

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

13

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

9

7

1

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

9

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

Single-Source Shortest Path

Problem: find shortest path from a
source node to one or more target nodes

Shortest might also mean lowest weight or cost

Single processor machine: Dijkstra’s Algorithm

MapReduce: parallel breadth-first search (BFS)

Finding the Shortest Path
Consider simple case of equal edge weights

Solution to the problem can be defined inductively:
Define: b is reachable from a if b is on adjacency list of a

DISTANCETO(s) = 0

For all nodes p reachable from s,
DISTANCETO(p) = 1

For all nodes n reachable from some other set of nodes M,
DISTANCETO(n) = 1 + min(DISTANCETO(m), m Î M)

s

m3

m2

m1

n

…

…

…

d1

d2

d3

Source: Wikipedia (Wave)

n0

n3 n2

n1
n7

n6

n5
n4

n9

n8

Visualizing Parallel BFS

From Intuition to Algorithm

Data representation:
Key: node n

Value: d (distance from start), adjacency list
Initialization: for all nodes except for start node, d = ¥

Mapper:
"m Î adjacency list: emit (m, d + 1)

Remember to also emit distance to yourself

Sort/Shuffle:
Groups distances by reachable nodes

Reducer:
Selects minimum distance path for each reachable node

Additional bookkeeping needed to keep track of actual path

Preserving graph structure:
Problem: Where did the adjacency list go?

Solution: mapper emits (n, adjacency list) as well

Ugh! This is u
gly!

Multiple Iterations Needed

Each MapReduce iteration advances the “frontier” by one hop
Subsequent iterations include more reachable nodes as frontier expands

Multiple iterations are needed to explore entire graph

BFS Pseudo-Code
class Mapper {

def map(id: Long, n: Node) = {
emit(id, n)
val d = n.distance
emit(id, d)
for (m <- n.adjacenyList) {

emit(m, d+1)
}

}

class Reducer {
def reduce(id: Long, objects: Iterable[Object]) = {

var min = infinity
var n = null
for (d <- objects) {

if (isNode(d)) n = d
else if d < min min = d

}
n.distance = min
emit(id, n)

}
}

Stopping Criterion

How many iterations are needed in parallel BFS?

Convince yourself: when a node is first “discovered”,
we’ve found the shortest path

What does it have to do with
six degrees of separation?

Practicalities of MapReduce implementation…

(equal edge weight)

reduce

map

HDFS

HDFS

Convergence?

Implementation Practicalities

Comparison to Dijkstra

Dijkstra’s algorithm is more efficient
At each step, only pursues edges from minimum-cost path inside frontier

MapReduce explores all paths in parallel
Lots of “waste”

Useful work is only done at the “frontier”

Why can’t we do better using MapReduce?

Single Source: Weighted Edges

Now add positive weights to the edges
Simple change: add weight w for each edge in adjacency list

Simple change: add weight w for each edge in adjacency list
In mapper, emit (m, d + wp) instead of (m, d + 1) for each node m

That’s it?

Not true!

How many iterations are needed in parallel BFS?

Stopping Criterion

Convince yourself: when a node is first “discovered”,
we’ve found the shortest path

(positive edge weight)

s

p
q

r

search frontier

10

n1

n2
n3

n4

n5

n6 n7
n8

n9

1

1
1

1

1

1
1

1

Additional Complexities

Stopping Criterion

How many iterations are needed in parallel BFS?

Practicalities of MapReduce implementation…

(positive edge weight)

Source: Wikipedia (Japanese rock garden)

