
Data-Intensive Distributed Computing

Part 2: From MapReduce to Spark (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 (Fall 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

September 20, 2018

These slides are available at http://lintool.github.io/bigdata-2018f/

Source: Wikipedia (The Scream)

Debugging at Scale

Real-world data is messy!
There’s no such thing as “consistent data”

Watch out for corner cases
Isolate unexpected behavior, bring local

Works on small datasets, won’t scale… why?
Memory management issues (buffering and object creation)

Too much intermediate data
Mangled input records

Source: Google

The datacenter is the computer!
What’s the instruction set?

Source: Wikipedia (ENIAC)

So you like programming in assembly?

(circa 2007)
Hadoop is great, but it’s really waaaaay too low level!

Source: Wikipedia (DeLorean time machine)

Design a higher-level language

Write a compiler

What’s the solution?

Hadoop is great, but it’s really waaaaay too low level!
(circa 2007)

What we really need is SQL!
What we really need is a

scripting language!

Answer: Answer:

SQL Pig Scripts

Both open-source projects today!

reduce

reduce

reduce

map

map

map

…

…

reduce
reduce

reduce

map
map

map

…

…

reducereducereduce

mapmapmap
…

…

reduce

reduce

reduce

map

map

map

…

…

reduce

reduce

reduce

map

map

map

…

…

reduce
reduce

reduce

map
map

map

…

…

reducereducereduce

mapmapmap
…

…

reduce

reduce

reduce

map

map

map

…

…

Aside: Why not just

use a database?

“On the first day of logging the Facebook clickstream, more than 400 gigabytes of data
was collected. The load, index, and aggregation processes for this data set really taxed the
Oracle data warehouse. Even after significant tuning, we were unable to aggregate a day of
clickstream data in less than 24 hours.”

Jeff Hammerbacher, Information Platforms and the Rise of the Data Scientist.
In, Beautiful Data, O’Reilly, 2009.

Story for another day….

Source: Wikipedia (Pig)

Pig!

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Url Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits URL Info

Task: Find the top 10 most visited pages in each category

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example Script

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Query Plan

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Map1

Reduce1 Map2

Reduce2

Map3

Reduce3

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: MapReduce Execution

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);
urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;
gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

This?

Or this?

But isn’t Pig slower?
Sure, but c can be slower than assembly too…

Pig: Basics

Data model
atoms
tuples
bags
maps
json

Sequence of statements manipulating relations (aliases)

Pig: Common Operations

LOAD: load data (from HDFS)

FOREACH … GENERATE: per tuple processing

FILTER: discard unwanted tuples

GROUP/COGROUP: group tuples

JOIN: relational join

STORE: store data (to HDFS)

“map”

“reduce”

(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

A = LOAD 'myfile.txt’ AS (f1: int, f2: int, f3: int);

X = GROUP A BY f1;

(1, {(1, 2, 3)})
(4, {(4, 2, 1), (4, 3, 3)})
(7, {(7, 2, 5)})
(8, {(8, 3, 4), (8, 4, 3)})

Pig: GROUPing

A:
(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

B:
(2, 4)
(8, 9)
(1, 3)
(2, 7)
(2, 9)
(4, 6)
(4, 9)

X = COGROUP A BY $0, B BY $0;

(1, {(1, 2, 3)}, {(1, 3)})
(2, {}, {(2, 4), (2, 7), (2, 9)})
(4, {(4, 2, 1), (4, 3, 3)}, {(4, 6),(4, 9)})
(7, {(7, 2, 5)}, {})
(8, {(8, 3, 4), (8, 4, 3)}, {(8, 9)})

Pig: COGROUPing

X = JOIN A BY $0, B BY $0;

(1,2,3,1,3)
(4,2,1,4,6)
(4,3,3,4,6)
(4,2,1,4,9)
(4,3,3,4,9)
(8,3,4,8,9)
(8,4,3,8,9)

Pig: JOINing

A:
(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

B:
(2, 4)
(8, 9)
(1, 3)
(2, 7)
(2, 9)
(4, 6)
(4, 9)

Pig UDFs

User-defined functions:
Java

Python
JavaScript

Ruby
…

UDFs make Pig arbitrarily extensible
Express “core” computations in UDFs

Take advantage of Pig as glue code for scale-out plumbing

Source: Google

The datacenter is the computer!
What’s the instruction set?

Okay, let’s fix this!

Analogy: NAND Gates are universal

Let’s design a data processing
language “from scratch”!

(Why is MapReduce the way it is?)

What ops do you need?

We have a collection of records,
want to apply a bunch of operations

to compute some result

Assumption: static collection of records

Data-Parallel Dataflow Languages

(what’s the limitation here?)

We need per-record processing

r'n-1 rnr’3 r’4r’1 r'2 …

mapmapmap …

rn-1 rnr3 r4r1 r2 …

Remarks: Easy to parallelize maps,
record to “mapper” assignment is an implementation detail

(If we want more than embarrassingly parallel processing)
Map alone isn’t enough

Where do intermediate results go?
We need an addressing mechanism!

What’s the semantics of the group by?

Once we resolve the addressing, apply another computation
That’s what we call reduce!

(What’s with the sorting then?)

MapReduce

reducereducereduce

r'n-1 rnr’3 r’4r’1 r'2

rn-1 rnr3 r4r1 r2

mapmapmap …

…

…

…

MapReduce is the minimally “interesting” dataflow!

map
f: (K1, V1)

⇒ List[(K2, V2)]

List[(K1,V1)]

List[K3,V3])

reduce
g: (K2, Iterable[V2])

⇒ List[(K3, V3)]

MapReduce

(note we’re abstracting the “data-parallel” part)

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

What’s wrong?

MapReduce Workflows

map

HDFS

HDFS

map

HDFS

map

HDFS

map

HDFS

✗

Want MM?

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

reduce

HDFS

HDFS

✗

Want MRR?

Source: Google

The datacenter is the computer!
Let’s enrich the instruction set!

AS = A^n

nA A

BS = B^n

nB B

E = (AS >= C >= BS)

n

n

C

A A

B B

E || (AS >= BS)

n

n

C

A A

B B

(A>=C>=D>=B) || (A>=F>=B)

D

C
F

A

B

A A

BB

AS >> BS

n

n B

C D

(B >= C) || (B >= D)AS >= BS

A A

nB B

n

a c d e

f g h

b

Figure 3: The operators of the graph description language. Circles are vertices and arrows are graph edges. A triangle at the bottom of a
vertex indicates an input and one at the top indicates an output. Boxes (a) and (b) demonstrate cloning individual vertices using the ^ operator.
The two standard connection operations are pointwise composition using >= shown in (c) and complete bipartite composition using >> shown in
(d). (e) illustrates a merge using ||. The second line of the figure shows more complex patterns. The merge in (g) makes use of a “subroutine”
from (f) and demonstrates a bypass operation. For example, each A vertex might output a summary of its input to C which aggregates them
and forwards the global statistics to every B. Together the B vertices can then distribute the original dataset (received from A) into balanced
partitions. An asymmetric fork/join is shown in (h).

3.3 Merging two graphs
The final operation in the language is ||, which merges

two graphs. C = A || B creates a new graph:

C = ⟨VA ⊕∗ VB, EA ∪ EB, IA ∪∗ IB, OA ∪∗ OB⟩

where, in contrast to the composition operations, it is not
required that A and B be disjoint. VA ⊕∗ VB is the con-
catenation of VA and VB with duplicates removed from the
second sequence. IA ∪∗ IB means the union of A and B’s in-
puts, minus any vertex that has an incoming edge following
the merge (and similarly for the output case). If a vertex
is contained in VA ∩ VB its input and output edges are con-
catenated so that the edges in EA occur first (with lower
port numbers). This simplification forbids certain graphs
with “crossover” edges, however we have not found this re-
striction to be a problem in practice. The invariant that the
merged graph be acyclic is enforced by a run-time check.

The merge operation is extremely powerful and makes it
easy to construct typical patterns of communication such as
fork/join and bypass as shown in Figures 3(f)–(h). It also
provides the mechanism for assembling a graph “by hand”
from a collection of vertices and edges. So for example, a
tree with four vertices a, b, c, and d might be constructed
as G = (a>=b) || (b>=c) || (b>=d).

The graph builder program to construct the query graph
in Figure 2 is shown in Figure 4.

3.4 Channel types
By default each channel is implemented using a tempo-

rary file: the producer writes to disk (typically on its local
computer) and the consumer reads from that file.

In many cases multiple vertices will fit within the re-
sources of a single computer so it makes sense to execute
them all within the same process. The graph language has
an “encapsulation” command that takes a graph G and re-
turns a new vertex vG. When vG is run as a vertex pro-
gram, the job manager passes it a serialization of G as an
invocation parameter, and it runs all the vertices of G si-
multaneously within the same process, connected by edges
implemented using shared-memory FIFOs. While it would
always be possible to write a custom vertex program with
the same semantics as G, allowing encapsulation makes it ef-
ficient to combine simple library vertices at the graph layer
rather than re-implementing their functionality as a new
vertex program.

Sometimes it is desirable to place two vertices in the same
process even though they cannot be collapsed into a single
graph vertex from the perspective of the scheduler. For ex-
ample, in Figure 2 the performance can be improved by
placing the first D vertex in the same process as the first
four M and S vertices and thus avoiding some disk I/O,
however the S vertices cannot be started until all of the D
vertices complete.

When creating a set of graph edges, the user can option-
ally specify the transport protocol to be used. The available
protocols are listed in Table 1. Vertices that are connected
using shared-memory channels are executed within a single
process, though they are individually started as their inputs
become available and individually report completion.

Because the dataflow graph is acyclic, scheduling dead-
lock is impossible when all channels are either written to
temporary files or use shared-memory FIFOs hidden within

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Dryad: Graph Operators

At run time each channel is used to transport a finite se-
quence of structured items. This channel abstraction has
several concrete implementations that use shared memory,
TCP pipes, or files temporarily persisted in a file system.
As far as the program in each vertex is concerned, channels
produce and consume heap objects that inherit from a base
type. This means that a vertex program reads and writes its
data in the same way regardless of whether a channel seri-
alizes its data to buffers on a disk or TCP stream, or passes
object pointers directly via shared memory. The Dryad sys-
tem does not include any native data model for serializa-
tion and the concrete type of an item is left entirely up to
applications, which can supply their own serialization and
deserialization routines. This decision allows us to support
applications that operate directly on existing data includ-
ing exported SQL tables and textual log files. In practice
most applications use one of a small set of library item types
that we supply such as newline-terminated text strings and
tuples of base types.

A schematic of the Dryad system organization is shown
in Figure 1. A Dryad job is coordinated by a process called
the “job manager” (denoted JM in the figure) that runs
either within the cluster or on a user’s workstation with
network access to the cluster. The job manager contains
the application-specific code to construct the job’s commu-
nication graph along with library code to schedule the work
across the available resources. All data is sent directly be-
tween vertices and thus the job manager is only responsible
for control decisions and is not a bottleneck for any data
transfers.

Files, FIFO, Network
Job schedule Data plane

Control plane

D D DNS

V V V

JM

Figure 1: The Dryad system organization. The job manager (JM)
consults the name server (NS) to discover the list of available com-
puters. It maintains the job graph and schedules running vertices (V)
as computers become available using the daemon (D) as a proxy.
Vertices exchange data through files, TCP pipes, or shared-memory
channels. The shaded bar indicates the vertices in the job that are
currently running.

The cluster has a name server (NS) that can be used to
enumerate all the available computers. The name server
also exposes the position of each computer within the net-
work topology so that scheduling decisions can take account
of locality. There is a simple daemon (D) running on each
computer in the cluster that is responsible for creating pro-
cesses on behalf of the job manager. The first time a vertex
(V) is executed on a computer its binary is sent from the job
manager to the daemon and subsequently it is executed from
a cache. The daemon acts as a proxy so that the job man-
ager can communicate with the remote vertices and monitor
the state of the computation and how much data has been

read and written on its channels. It is straightforward to run
a name server and a set of daemons on a user workstation
to simulate a cluster and thus run an entire job locally while
debugging.

A simple task scheduler is used to queue batch jobs. We
use a distributed storage system, not described here, that
shares with the Google File System [21] the property that
large files can be broken into small pieces that are replicated
and distributed across the local disks of the cluster comput-
ers. Dryad also supports the use of NTFS for accessing files
directly on local computers, which can be convenient for
small clusters with low management overhead.

2.1 An example SQL query
In this section, we describe a concrete example of a Dryad

application that will be further developed throughout the re-
mainder of the paper. The task we have chosen is representa-
tive of a new class of eScience applications, where scientific
investigation is performed by processing large amounts of
data available in digital form [24]. The database that we
use is derived from the Sloan Digital Sky Survey (SDSS),
available online at http://skyserver.sdss.org.

We chose the most time consuming query (Q18) from a
published study based on this database [23]. The task is to
identify a “gravitational lens” effect: it finds all the objects
in the database that have neighboring objects within 30 arc
seconds such that at least one of the neighbors has a color
similar to the primary object’s color. The query can be
expressed in SQL as:

select distinct p.objID
from photoObjAll p
join neighbors n — call this join “X”
on p.objID = n.objID
and n.objID < n.neighborObjID
and p.mode = 1

join photoObjAll l — call this join “Y”
on l.objid = n.neighborObjID
and l.mode = 1
and abs((p.u-p.g)-(l.u-l.g))<0.05
and abs((p.g-p.r)-(l.g-l.r))<0.05
and abs((p.r-p.i)-(l.r-l.i))<0.05
and abs((p.i-p.z)-(l.i-l.z))<0.05

There are two tables involved. The first, photoObjAll
has 354,254,163 records, one for each identified astronomical
object, keyed by a unique identifier objID. These records
also include the object’s color, as a magnitude (logarithmic
brightness) in five bands: u , g, r, i and z. The second table,
neighbors has 2,803,165,372 records, one for each object
located within 30 arc seconds of another object. The mode
predicates in the query select only “primary” objects. The
< predicate eliminates duplication caused by the neighbors
relationship being symmetric. The output of joins “X” and
“Y” are 932,820,679 and 83,798 records respectively, and the
final hash emits 83,050 records.

The query uses only a few columns from the tables (the
complete photoObjAll table contains 2 KBytes per record).
When executed by SQLServer the query uses an index on
photoObjAll keyed by objID with additional columns for
mode, u , g, r, i and z, and an index on neighbors keyed by
objID with an additional neighborObjID column. SQL-
Server reads just these indexes, leaving the remainder of the
tables’ data resting quietly on disk. (In our experimental
setup we in fact omitted unused columns from the table, to
avoid transporting the entire multi-terabyte database across

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

The Dryad system organization. The job manager (JM) consults the name server (NS) to discover the list of
available computers. It maintains the job graph and schedules running vertices (V) as computers become available
using the daemon (D) as a proxy. Vertices exchange data through files, TCP pipes, or shared-memory channels. The
shaded bar indicates the vertices in the job that are currently running.

Dryad: Architecture

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Dryad: Cool Tricks

Channel: abstraction for vertex-to-vertex communication
File

TCP pipe
Shared memory

Runtime graph refinement
Size of input is not known until runtime

Automatically rewrite graph based on invariant properties

the country.) For the equivalent Dryad computation we ex-
tracted these indexes into two binary files, “ugriz.bin” and
“neighbors.bin,” each sorted in the same order as the in-
dexes. The “ugriz.bin” file has 36-byte records, totaling
11.8 GBytes; “neighbors.bin” has 16-byte records, total-
ing 41.8 GBytes. The output of join “X” totals 31.3 GBytes,
the output of join “Y” is 655 KBytes and the final output is
649 KBytes.

D D

MM 4n

SS 4n

YY

U U

U N U N

H

n

n

X Xn

Figure 2: The communica-
tion graph for an SQL query.
Details are in Section 2.1.

We mapped the query to
the Dryad computation shown
in Figure 2. Both data files
are partitioned into n approx-
imately equal parts (that we
call U1 through Un and N1

through Nn) by objID ranges,
and we use custom C++ item
objects for each data record
in the graph. The vertices
Xi (for 1 ≤ i ≤ n) imple-
ment join “X” by taking their
partitioned Ui and Ni inputs
and merging them (keyed on
objID and filtered by the
< expression and p.mode=1)
to produce records containing
objID, neighborObjID, and
the color columns correspond-
ing to objID. The D vertices
distribute their output records
to the M vertices, partition-
ing by neighborObjID using
a range partitioning function
four times finer than that used
for the input files. The number
four was chosen so that four
pipelines will execute in paral-
lel on each computer, because
our computers have four pro-
cessors each. The M vertices perform a non-deterministic
merge of their inputs and the S vertices sort on neigh-
borObjID using an in-memory Quicksort. The output
records from S4i−3 . . . S4i (for i = 1 through n) are fed into
Yi where they are merged with another read of Ui to im-
plement join “Y”. This join is keyed on objID (from U) =
neighborObjID (from S), and is filtered by the remainder
of the predicate, thus matching the colors. The outputs of
the Y vertices are merged into a hash table at the H vertex
to implement the distinct keyword in the query. Finally, an
enumeration of this hash table delivers the result. Later in
the paper we include more details about the implementation
of this Dryad program.

3. DESCRIBING A DRYAD GRAPH
We have designed a simple language that makes it easy

to specify commonly-occurring communication idioms. It is
currently “embedded” for convenience in C++ as a library
using a mixture of method calls and operator overloading.

Graphs are constructed by combining simpler subgraphs
using a small set of operations shown in Figure 3. All of the
operations preserve the property that the resulting graph is
acyclic. The basic object in the language is a graph:

G = ⟨VG, EG, IG, OG⟩.

G contains a sequence of vertices VG, a set of directed edges
EG, and two sets IG ⊆ VG and OG ⊆ VG that “tag” some
of the vertices as being inputs and outputs respectively. No
graph can contain a directed edge entering an input vertex
in IG, nor one leaving an output vertex in OG, and these tags
are used below in composition operations. The input and
output edges of a vertex are ordered so an edge connects
specific “ports” on a pair of vertices, and a given pair of
vertices may be connected by multiple edges.

3.1 Creating new vertices
The Dryad libraries define a C++ base class from which

all vertex programs inherit. Each such program has a tex-
tual name (which is unique within an application) and a
static “factory” that knows how to construct it. A graph
vertex is created by calling the appropriate static program
factory. Any required vertex-specific parameters can be set
at this point by calling methods on the program object.
These parameters are then marshaled along with the unique
vertex name to form a simple closure that can be sent to a
remote process for execution.

A singleton graph is generated from a vertex v as G =
⟨(v),∅, {v} , {v} ⟩. A graph can be cloned into a new graph
containing k copies of its structure using the ^ operator
where C = G^k is defined as:

C = ⟨V 1
G ⊕ · · ·⊕ V k

G , E1
G ∪ · · · ∪ Ek

G,

I1
G ∪ · · · ∪ Ik

G, O1
G ∪ · · · ∪ Ok

G⟩.

Here Gn = ⟨V n
G , En

G, In
G, On

G⟩ is a “clone” of G containing
copies of all of G’s vertices and edges, ⊕ denotes sequence
concatenation, and each cloned vertex inherits the type and
parameters of its corresponding vertex in G.

3.2 Adding graph edges
New edges are created by applying a composition opera-

tion to two existing graphs. There is a family of composi-
tions all sharing the same basic structure: C = A ◦ B creates
a new graph:

C = ⟨VA ⊕ VB, EA ∪ EB ∪ Enew, IA, OB⟩

where C contains the union of all the vertices and edges in
A and B, with A’s inputs and B’s outputs. In addition,
directed edges Enew are introduced between vertices in OA

and IB. VA and VB are enforced to be disjoint at run time,
and since A and B are both acyclic, C is also.

Compositions differ in the set of edges Enew that they add
into the graph. We define two standard compositions:

• A >= B forms a pointwise composition as shown in Fig-
ure 3(c). If |OA| ≥ |IB | then a single outgoing edge
is created from each of A’s outputs. The edges are
assigned in round-robin to B’s inputs. Some of the
vertices in IB may end up with more than one incom-
ing edge. If |IB| > |OA|, a single incoming edge is
created to each of B’s inputs, assigned in round-robin
from A’s outputs.

• A >> B forms the complete bipartite graph between
OA and IB and is shown in Figure 3(d).

We allow the user to extend the language by implementing
new composition operations.

GraphBuilder XSet = moduleX^N;
GraphBuilder DSet = moduleD^N;
GraphBuilder MSet = moduleM^(N*4);
GraphBuilder SSet = moduleS^(N*4);
GraphBuilder YSet = moduleY^N;
GraphBuilder HSet = moduleH^1;

GraphBuilder XInputs = (ugriz1 >= XSet) || (neighbor >= XSet);
GraphBuilder YInputs = ugriz2 >= YSet;

GraphBuilder XToY = XSet >= DSet >> MSet >= SSet;
for (i = 0; i < N*4; ++i)
{

XToY = XToY || (SSet.GetVertex(i) >= YSet.GetVertex(i/4));
}

GraphBuilder YToH = YSet >= HSet;
GraphBuilder HOutputs = HSet >= output;

GraphBuilder final = XInputs || YInputs || XToY || YToH || HOutputs;

Figure 4: An example graph builder program. The communication graph generated by this program is shown in Figure 2.

Channel protocol Discussion
File (the default) Preserved after vertex execution

until the job completes.
TCP pipe Requires no disk accesses, but

both end-point vertices must be
scheduled to run at the same
time.

Shared-memory
FIFO

Extremely low communication
cost, but end-point vertices must
run within the same process.

Table 1: Channel types.

encapsulated acyclic subgraphs. However, allowing the de-
veloper to use pipes and “visible” FIFOs can cause dead-
locks. Any connected component of vertices communicating
using pipes or FIFOs must all be scheduled in processes that
are concurrently executing, but this becomes impossible if
the system runs out of available computers in the cluster.

This breaks the abstraction that the user need not know
the physical resources of the system when writing the appli-
cation. We believe that it is a worthwhile trade-off, since, as
reported in our experiments in Section 6, the resulting per-
formance gains can be substantial. Note also that the sys-
tem could always avoid deadlock by “downgrading” a pipe
channel to a temporary file, at the expense of introducing
an unexpected performance cliff.

3.5 Job inputs and outputs
Large input files are typically partitioned and distributed

across the computers of the cluster. It is therefore natural to
group a logical input into a graph G = ⟨VP , ∅ , ∅ , VP ⟩ where
VP is a sequence of “virtual” vertices corresponding to the
partitions of the input. Similarly on job completion a set
of output partitions can be logically concatenated to form a
single named distributed file. An application will generally
interrogate its input graphs to read the number of partitions
at run time and automatically generate the appropriately
replicated graph.

3.6 Job Stages
When the graph is constructed every vertex is placed in

a “stage” to simplify job management. The stage topology
can be seen as a “skeleton” or summary of the overall job,

and the stage topology of our example Skyserver query ap-
plication is shown in Figure 5. Each distinct type of vertex
is grouped into a separate stage. Most stages are connected
using the >= operator, while D is connected to M using the
>> operator. The skeleton is used as a guide for generating
summaries when monitoring a job, and can also be exploited
by the automatic optimizations described in Section 5.2.

4. WRITING A VERTEX PROGRAM

D

M

S

Y

U

U N

H

X

Figure 5: The stages
of the Dryad compu-
tation from Figure 2.
Section 3.6 has details.

The primary APIs for writing a
Dryad vertex program are exposed
through C++ base classes and ob-
jects. It was a design requirement
for Dryad vertices to be able to incor-
porate legacy source and libraries, so
we deliberately avoided adopting any
Dryad-specific language or sandbox-
ing restrictions. Most of the existing
code that we anticipate integrating
into vertices is written in C++, but
it is straightforward to implement
API wrappers so that developers can
write vertices in other languages, for
example C#. There is also significant
value for some domains in being able
to run unmodified legacy executables
in vertices, and so we support this as
explained in Section 4.2 below.

4.1 Vertex execution
Dryad includes a runtime library

that is responsible for setting up and
executing vertices as part of a dis-
tributed computation. As outlined in
Section 3.1 the runtime receives a clo-
sure from the job manager describing
the vertex to be run, and URIs de-
scribing the input and output chan-
nels to connect to it. There is cur-
rently no type-checking for channels
and the vertex must be able to deter-
mine, either statically or from the invocation parameters,
the types of the items that it is expected to read and write

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Dryad: Sample Program

Sound familiar?

Source: Yu et al. (2008) DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language. OSDI.

DryadLINQ

LINQ = Language INtegrated Query
.NET constructs for combining imperative and declarative programming

Developers write in DryadLINQ
Program compiled into computations that run on Dryad

Design a higher-level language

Write a compiler

What’s the solution?

PartitionedTable<LineRecord> inputTable =
PartitionedTable.Get<LineRecord>(uri);

IQueryable<string> words = inputTable.SelectMany(x => x.line.Split(' '));
IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x);
IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count()));
IQueryable<Pair> ordered = counts.OrderByDescending(x => x.Count);
IQueryable<Pair> top = ordered.Take(k);

a = load ’file.txt' as (text: chararray);
b = foreach a generate flatten(TOKENIZE(text)) as term;
c = group b by term;
d = foreach c generate group as term, COUNT(b) as count;

store d into 'cnt';

Compare:

Compare and contrast…

DryadLINQ: Word Count

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

What happened to Dryad?

At run time each channel is used to transport a finite se-
quence of structured items. This channel abstraction has
several concrete implementations that use shared memory,
TCP pipes, or files temporarily persisted in a file system.
As far as the program in each vertex is concerned, channels
produce and consume heap objects that inherit from a base
type. This means that a vertex program reads and writes its
data in the same way regardless of whether a channel seri-
alizes its data to buffers on a disk or TCP stream, or passes
object pointers directly via shared memory. The Dryad sys-
tem does not include any native data model for serializa-
tion and the concrete type of an item is left entirely up to
applications, which can supply their own serialization and
deserialization routines. This decision allows us to support
applications that operate directly on existing data includ-
ing exported SQL tables and textual log files. In practice
most applications use one of a small set of library item types
that we supply such as newline-terminated text strings and
tuples of base types.

A schematic of the Dryad system organization is shown
in Figure 1. A Dryad job is coordinated by a process called
the “job manager” (denoted JM in the figure) that runs
either within the cluster or on a user’s workstation with
network access to the cluster. The job manager contains
the application-specific code to construct the job’s commu-
nication graph along with library code to schedule the work
across the available resources. All data is sent directly be-
tween vertices and thus the job manager is only responsible
for control decisions and is not a bottleneck for any data
transfers.

Files, FIFO, Network
Job schedule Data plane

Control plane

D D DNS

V V V

JM

Figure 1: The Dryad system organization. The job manager (JM)
consults the name server (NS) to discover the list of available com-
puters. It maintains the job graph and schedules running vertices (V)
as computers become available using the daemon (D) as a proxy.
Vertices exchange data through files, TCP pipes, or shared-memory
channels. The shaded bar indicates the vertices in the job that are
currently running.

The cluster has a name server (NS) that can be used to
enumerate all the available computers. The name server
also exposes the position of each computer within the net-
work topology so that scheduling decisions can take account
of locality. There is a simple daemon (D) running on each
computer in the cluster that is responsible for creating pro-
cesses on behalf of the job manager. The first time a vertex
(V) is executed on a computer its binary is sent from the job
manager to the daemon and subsequently it is executed from
a cache. The daemon acts as a proxy so that the job man-
ager can communicate with the remote vertices and monitor
the state of the computation and how much data has been

read and written on its channels. It is straightforward to run
a name server and a set of daemons on a user workstation
to simulate a cluster and thus run an entire job locally while
debugging.

A simple task scheduler is used to queue batch jobs. We
use a distributed storage system, not described here, that
shares with the Google File System [21] the property that
large files can be broken into small pieces that are replicated
and distributed across the local disks of the cluster comput-
ers. Dryad also supports the use of NTFS for accessing files
directly on local computers, which can be convenient for
small clusters with low management overhead.

2.1 An example SQL query
In this section, we describe a concrete example of a Dryad

application that will be further developed throughout the re-
mainder of the paper. The task we have chosen is representa-
tive of a new class of eScience applications, where scientific
investigation is performed by processing large amounts of
data available in digital form [24]. The database that we
use is derived from the Sloan Digital Sky Survey (SDSS),
available online at http://skyserver.sdss.org.

We chose the most time consuming query (Q18) from a
published study based on this database [23]. The task is to
identify a “gravitational lens” effect: it finds all the objects
in the database that have neighboring objects within 30 arc
seconds such that at least one of the neighbors has a color
similar to the primary object’s color. The query can be
expressed in SQL as:

select distinct p.objID
from photoObjAll p
join neighbors n — call this join “X”
on p.objID = n.objID
and n.objID < n.neighborObjID
and p.mode = 1

join photoObjAll l — call this join “Y”
on l.objid = n.neighborObjID
and l.mode = 1
and abs((p.u-p.g)-(l.u-l.g))<0.05
and abs((p.g-p.r)-(l.g-l.r))<0.05
and abs((p.r-p.i)-(l.r-l.i))<0.05
and abs((p.i-p.z)-(l.i-l.z))<0.05

There are two tables involved. The first, photoObjAll
has 354,254,163 records, one for each identified astronomical
object, keyed by a unique identifier objID. These records
also include the object’s color, as a magnitude (logarithmic
brightness) in five bands: u , g, r, i and z. The second table,
neighbors has 2,803,165,372 records, one for each object
located within 30 arc seconds of another object. The mode
predicates in the query select only “primary” objects. The
< predicate eliminates duplication caused by the neighbors
relationship being symmetric. The output of joins “X” and
“Y” are 932,820,679 and 83,798 records respectively, and the
final hash emits 83,050 records.

The query uses only a few columns from the tables (the
complete photoObjAll table contains 2 KBytes per record).
When executed by SQLServer the query uses an index on
photoObjAll keyed by objID with additional columns for
mode, u , g, r, i and z, and an index on neighbors keyed by
objID with an additional neighborObjID column. SQL-
Server reads just these indexes, leaving the remainder of the
tables’ data resting quietly on disk. (In our experimental
setup we in fact omitted unused columns from the table, to
avoid transporting the entire multi-terabyte database across

The Dryad system organization. The job manager (JM) consults the name server (NS) to discover the list of
available computers. It maintains the job graph and schedules running vertices (V) as computers become available
using the daemon (D) as a proxy. Vertices exchange data through files, TCP pipes, or shared-memory channels. The
shaded bar indicates the vertices in the job that are currently running.

We have a collection of records,
want to apply a bunch of operations

to compute some result

What are the dataflow operators?

Data-Parallel Dataflow Languages

Spark
Answer to “What’s beyond MapReduce?”

Brief history:
Developed at UC Berkeley AMPLab in 2009

Open-sourced in 2010
Became top-level Apache project in February 2014

Commercial support provided by DataBricks

Google Trends

Source: Datanami (2014): http://www.datanami.com/2014/11/21/spark-just-passed-hadoop-popularity-web-heres/

November 2014

Spark vs. Hadoop

What’s an RDD?
Resilient Distributed Dataset (RDD)

Much more next session…

map
f: (K1, V1)

⇒ List[(K2, V2)]

List[(K1,V1)]

List[K3,V3])

reduce
g: (K2, Iterable[V2])

⇒ List[(K3, V3)]

MapReduce

RDD[T]

RDD[T]

filter
f: (T) ⇒
Boolean

map
f: (T)
⇒ U

RDD[T]

RDD[U]

flatMap
f: (T) ⇒

TraversableOnce[U]

RDD[T]

RDD[U]

mapPartitions
f: (Iterator[T])
⇒ Iterator[U]

RDD[T]

RDD[U]

(Not meant to be exhaustive)

Map-like Operations

RDD[(K, V)]

RDD[(K, Iterable[V])]

groupByKey reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

RDD[(K, V)]

aggregateByKey
seqOp: (U, V) ⇒ U,
combOp: (U, U) ⇒ U

RDD[(K, U)]

(Not meant to be exhaustive)

Reduce-like Operations

RDD[(K, V)]

RDD[(K, V)]

sort

(Not meant to be exhaustive)

RDD[(K, V)]

RDD[(K, V)]

repartitionAnd
SortWithinPartitions

Sort Operations

join

RDD[(K, V)]

RDD[(K, (V, W))]

RDD[(K, W)] RDD[(K, V)]

RDD[(K, (Iterable[V], Iterable[W]))]

cogroup

RDD[(K, W)]

(Not meant to be exhaustive)

Join-like Operations

leftOuterJoin

RDD[(K, V)]

RDD[(K, (V, Option[W]))]

RDD[(K, W)] RDD[(K, V)]

RDD[(K, (Option[V], Option[W]))]

fullOuterJoin

RDD[(K, W)]

(Not meant to be exhaustive)

Join-like Operations

RDD[T]

RDD[T]

union

RDD[T]

RDD[T]

RDD[T]

intersection

RDD[T]

(Not meant to be exhaustive)

Set-ish Operations

RDD[(T, U)]

RDD[T]

cartesian

RDD[U]RDD[T]

RDD[T]

distinct

(Not meant to be exhaustive)

Set-ish Operations

flatMap
f: (T) ⇒
TO[(K,V)]

RDD[T]

reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

Not quite…

map
f: (T) ⇒
(K,V)

RDD[T]

reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

MapReduce in Spark?

groupByKey

flatMap
f: (T) ⇒
TO[(K,V)]

RDD[T]

map
f: ((K, Iter[V]))

⇒ (R,S)

RDD[(R, S)]

mapPartitions
f: (Iter[T])
⇒ Iter[(K,V)]

RDD[T]

groupByKey

map
f: ((K, Iter[V]))

⇒ (R,S)

RDD[(R, S)]

Still not quite…

Nope, this isn’t “odd”

MapReduce in Spark?

val textFile = sc.textFile(args.input())

textFile
.flatMap(line => tokenize(line))
.map(word => (word, 1))
.reduceByKey(_ + _)
.saveAsTextFile(args.output())

(x, y) => x + y

Spark Word Count

a._1Aside: Scala tuple access notation, e.g.,

val textFile = sc.textFile(args.input())

textFile
.map(object mapper {
def map(key: Long, value: Text) =
tokenize(value).foreach(word => write(word, 1))

})
.reduce(object reducer {
def reduce(key: Text, values: Iterable[Int]) = {
var sum = 0
for (value <- values) sum += value
write(key, sum)

})
.saveAsTextFile(args.output())

Don’t focus on Java verbosity!

Next Time…

What’s an RDD?

How does Spark actually work?

Algorithm design: redux

Meanwhile, at 1600 Amphitheatre Parkway…

Sawzall – circa 2003
Lumberjack – circa ??

Flume(Java) – circa 2009
Cloud Dataflow (Flume + MillWheel) – circa 2014

Flume(Java)

Core data types
PCollection<T> - a (possibly huge) immutable bag of elements of type T

PTable<K, V> - a (possibly huge) immutable bag of key-value pairs

Hmm… sounds suspiciously familiar…

Flume(Java)
Primitive operations

parallelDo
f: (T) ⇒ S

PCollection<T>

PCollection<S>

PCollection<String> words =
lines.parallelDo(new DoFn<String,String>() {

void process(String line, EmitFn<String> emitFn) {
for (String word : splitIntoWords(line)) {

emitFn.emit(word);
}

}
}, collectionOf(strings()));

Hmm… looks suspiciously familiar…

Flume(Java)

groupByKey

PTable<K, V>

PTable<K,
Collection<V>>

PTable<URL,DocInfo> backlinks =
docInfos.parallelDo(new DoFn<DocInfo, Pair<URL,DocInfo>>() {

void process(DocInfo docInfo, EmitFn<Pair<URL,DocInfo>> emitFn) {
for (URL targetUrl : docInfo.getLinks()) {

emitFn.emit(Pair.of(targetUrl, docInfo));
}

}
}, tableOf(recordsOf(URL.class), recordsOf(DocInfo.class)));

PTable<URL,Collection<DocInfo>> referringDocInfos =
backlinks.groupByKey();

Primitive operations

Hmm… looks suspiciously familiar…

Flume(Java)

combineValues
f: (V, V)

⇒ V

PTable<K,
Collection<V>>

PTable<K, V>

PTable<String,Integer> wordsWithOnes =
words.parallelDo(

new DoFn<String, Pair<String,Integer>>() {
void process(String word, EmitFn<Pair<String,Integer>> emitFn) {

emitFn.emit(Pair.of(word, 1));
}

}, tableOf(strings(), ints()));

PTable<String,Collection<Integer>> groupedWordsWithOnes =
wordsWithOnes.groupByKey();

PTable<String,Integer> wordCounts =
groupedWordsWithOnes.combineValues(

new DoFn<Pair<String,Collection<Integer>>, Pair<String,Integer>>() {
void process(Pair<String,Collection<Integer>> pair,

EmitFn<Pair<String,Integer>> emitFn) {
int sum = 0;
for (Integer val: pair.getValue()) {

sum += val;
}
emitFn.emit(Pair.of(pair.getKey(), sum));

}
}, tableOf(strings(), ints()));

Primitive operations

Hmm… looks suspiciously familiar…

We have a collection of records,
want to apply a bunch of operations

to compute some result

Assumption: static collection of records

Data-Parallel Dataflow Languages

What if this assumption is violated?

Pig, Dryad(LINQ), Flume(Java), Spark
are all variations on a theme!

Source: Wikipedia (The Scream)

Remember: Assignment 1 due 2:30pm Tuesday, September 25 –
You must tell us if you wish to take the late penalty.

