Week 9: Data Mining (4/4)
March 9, 2017

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2017w/
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details
Structure of the Course

- Analyzing Text
- Analyzing Graphs
- Analyzing Relational Data
- Data Mining

“Core” framework features and algorithm design
Theme: Similarity

How similar are two items? How “close” are two items?
Equivalent formulations: large distance = low similarity

Lots of applications!

Problem: find similar items
Offline variant: extract all similar pairs of objects from a large collection
Online variant: is this object similar to something I’ve seen before?

Problem: arrange similar items into clusters
Offline variant: entire static collection available at once
Online variant: objects incrementally available

Last time!

Today!
Clustering Criteria

How to form clusters?
High similarity (low distance) between items in the same cluster
Low similarity (high distance) between items in different clusters

Cluster labeling is a separate (difficult) problem!
Supervised Machine Learning

training data

training

testing/deployment

Machine Learning Algorithm
Unsupervised Machine Learning

If supervised learning is function induction…
what’s unsupervised learning?

Learning something about the inherent structure of the data

What’s it good for?
Applications of Clustering

Clustering images to summarize search results
Clustering customers to infer viewing habits
Clustering biological sequences to understand evolution
Clustering sensor logs for outlier detection
Evaluation
How do we know how well we’re doing?

Classification
Nearest neighbor search
Clustering

Inherent challenges of unsupervised techniques!
Clustering

Specify distance metric
Jaccard, Euclidean, cosine, etc.

Compute representation
Shingling, tf.idf, etc.

Apply clustering algorithm
Distance Metrics
Distance Metrics

1. **Non-negativity:**
 \[d(x, y) \geq 0 \]

2. **Identity:**
 \[d(x, y) = 0 \iff x = y \]

3. **Symmetry:**
 \[d(x, y) = d(y, x) \]

4. **Triangle Inequality**
 \[d(x, y) \leq d(x, z) + d(z, y) \]
Distance: Jaccard

Given two sets A, B

Jaccard similarity:

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$d(A, B) = 1 - J(A, B)$$
Distance: Norms

Given
\[x = [x_1, x_2, \ldots x_n] \]
\[y = [y_1, y_2, \ldots y_n] \]

Euclidean distance (\(L_2\)-norm)
\[d(x, y) = \sqrt{\sum_{i=0}^{n} (x_i - y_i)^2} \]

Manhattan distance (\(L_1\)-norm)
\[d(x, y) = \sum_{i=0}^{n} |x_i - y_i| \]

\(L_r\)-norm
\[d(x, y) = \left(\sum_{i=0}^{n} |x_i - y_i|^r \right)^{1/r} \]
Distance: Cosine

Given
\[
x = [x_1, x_2, \ldots x_n] \\
y = [y_1, y_2, \ldots y_n]
\]

Idea: measure distance between the vectors

\[
\cos \theta = \frac{x \cdot y}{|x||y|}
\]

Thus:

\[
sim(x, y) = \frac{\sum_{i=0}^{n} x_i y_i}{\sqrt{\sum_{i=0}^{n} x_i^2} \sqrt{\sum_{i=0}^{n} y_i^2}}
\]

\[
d(x, y) = 1 - \sim(x, y)
\]

Advantages over others?
Representations
(Text)

Unigrams (i.e., words)

Shingles = n-grams
- At the word level
- At the character level

Feature weights
- boolean
- tf.idf
- BM25
- ...
Representations
(Beyond Text)

For recommender systems:
- Items as features for users
- Users as features for items

For graphs:
- Adjacency lists as features for vertices

For log data:
- Behaviors (clicks) as features
Clustering Algorithms

Hierarchical
K-Means
Gaussian Mixture Models
Hierarchical Agglomerative Clustering

Start with each document in its own cluster

Until there is only one cluster:
Find the two clusters c_i and c_j, that are most similar
Replace c_i and c_j with a single cluster $c_i \cup c_j$

The history of merges forms the hierarchy
HAC in Action
Cluster Merging

Which two clusters do we merge?

What’s the similarity between two clusters?

- **Single Link**: similarity of two most similar members
- **Complete Link**: similarity of two least similar members
- **Group Average**: average similarity between members
Link Functions

Single link:
Uses maximum similarity of pairs:
\[
\text{sim}(c_i, c_j) = \max_{x \in c_i, y \in c_j} \text{sim}(x, y)
\]
Can result in “straggly” (long and thin) clusters due to chaining effect

Complete link:
Use minimum similarity of pairs:
\[
\text{sim}(c_i, c_j) = \min_{x \in c_i, y \in c_j} \text{sim}(x, y)
\]
Makes more “tight” spherical clusters
MapReduce Implementation

What’s the inherent challenge?
Practicality as in-memory final step
K-Means Algorithm

Select k random instances $\{s_1, s_2, \ldots, s_k\}$ as initial centroids

Iterate:
- Assign each instance to closest centroid
- Update centroids based on assigned instances

\[
\mu(c) = \frac{1}{|c|} \sum_{x \in c} x
\]
K-Means Clustering Example

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters

Converged!
Basic MapReduce Implementation

1: class Mapper
2: method Configure()
3: c ← LoadClusters()
4: method Map(id i, point p)
5: n ← NearestClusterID(clusters c, point p)
6: p ← ExtendPoint(point p)
7: Emit(clusterid n, point p)

1: class Reducer
2: method Reduce(clusterid n, points [p₁, p₂, ...])
3: s ← InitPointSum()
4: for all point p ∈ points do
5: s ← s + p
6: m ← ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)

(Just a clever way to keep track of denominator)
MapReduce Implementation w/ IMC

1: class Mapper
2: method Configure()
3: c <-> LoadClusters()
4: H <-> InitAssociativeArray()
5: method Map(id i, point p)
6: n <-> NearestClusterID(clusters c, point p)
7: p <-> ExtendPoint(point p)
8: H{n} <-> H{n} + p
9: method Close()
10: for all clusterid n ∈ H do
11: Emit(clusterid n, point H{n})

1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, ...])
3: s <-> InitPointSum()
4: for all point p ∈ points do
5: s <-> s + p
6: m <-> ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)

What about Spark?
Implementation Notes

Standard setup of iterative MapReduce algorithms

Driver program sets up MapReduce job
Waits for completion
Checks for convergence
Repeats if necessary

Must be able keep cluster centroids in memory
With large k, large feature spaces, potentially an issue
Memory requirements of centroids grow over time!

Variant: k-medoids

How do you select initial seeds?
How do you select k?
Clustering w/ Gaussian Mixture Models

Model data as a mixture of Gaussians
Given data, recover model parameters

What’s with models?

Source: Wikipedia (Cluster analysis)
Gaussian Distributions

Univariate Gaussian (i.e., Normal):

\[p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{1}{2\sigma^2}(x - \mu)^2 \right) \]

A random variable with such a distribution we write as:

\[x \sim \mathcal{N}(\mu, \sigma^2) \]

Multivariate Gaussian:

\[p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \right) \]

A random variable with such a distribution we write as:

\[x \sim \mathcal{N}(\mu, \Sigma) \]
Univariate Gaussian

Multivariate Gaussians

\[\mu = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \Sigma = \begin{bmatrix} 25 & 0 \\ 0 & 9 \end{bmatrix} \]

\[\mu = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \Sigma = \begin{bmatrix} 10 & 5 \\ 5 & 5 \end{bmatrix} \]

Source: Lecture notes by Chuong B. Do (IIT Delhi)
Gaussian Mixture Models

Model Parameters
Number of components: k
“Mixing” weight vector: π
For each Gaussian, mean and covariance matrix: $\mu_{1:K}$ $\Sigma_{1:K}$

The generative story?
(yes, that’s a technical term)

Problem: Given the data, recover the model parameters

Varying constraints on co-variance matrices
Spherical vs. diagonal vs. full
Tied vs. untied
Learning for Simple Univariate Case

Problem setup:
Given number of components: K
Given points: $x_{1:N}$
Learn parameters: $\pi, \mu_{1:K}, \sigma^2_{1:K}$

Model selection criterion: maximize likelihood of data

Introduce indicator variables:
$$z_{n,k} = \begin{cases}
1 & \text{if } x_n \text{ is in cluster } k \\
0 & \text{otherwise}
\end{cases}$$

Likelihood of the data:
$$p(x_{1:N}, z_{1:N,1:K} | \mu_{1:K}, \sigma^2_{1:K}, \pi)$$
EM to the Rescue!

We’re faced with this:

\[p(x_{1:N}, z_{1:N,1:K} | \mu_{1:K}, \sigma_{1:K}^2, \pi) \]

It’d be a lot easier if we knew the z’s!

Expectation Maximization

Guess the model parameters

E-step: Compute posterior distribution over latent (hidden) variables given the model parameters

M-step: Update model parameters using posterior distribution computed in the E-step

Iterate until convergence
"I think you should be more explicit here in Step Two."
EM for Univariate GMMs

Initialize: \(\pi, \mu_{1:K}, \sigma_{1:K}^2 \)

Iterate:

E-step: compute expectation of \(z \) variables

\[
E[z_{n,k}] = \frac{\mathcal{N}(x_n | \mu_k, \sigma_k^2) \cdot \pi_k}{\sum_{k'} \mathcal{N}(x_n | \mu_{k'}, \sigma_{k'}^2) \cdot \pi_{k'}}
\]

M-step: compute new model parameters

\[
\pi_k = \frac{1}{N} \sum_n z_{n,k}
\]

\[
\mu_k = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} \cdot x_n
\]

\[
\sigma_k^2 = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} \| x_n - \mu_k \|^2
\]
MapReduce Implementation

Map

\[E[z_{n,k}] = \frac{\mathcal{N}(x_n|\mu_k, \sigma_k^2) \cdot \pi_k}{\sum_{k'} \mathcal{N}(x_n|\mu_{k'}, \sigma_{k'}^2) \cdot \pi_{k'}} \]

Reduce

\[\pi_k = \frac{1}{N} \sum_n z_{n,k} \]
\[\mu_k = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} \cdot x_n \]
\[\sigma_k^2 = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} \|x_n - \mu_k\|^2 \]
K-Means vs. GMMs

<table>
<thead>
<tr>
<th></th>
<th>K-Means</th>
<th>GMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>Compute distance of points to centroids</td>
<td>E-step: compute expectation of z indicator variables</td>
</tr>
<tr>
<td>Reduce</td>
<td>Recompute new centroids</td>
<td>M-step: update values of model parameters</td>
</tr>
</tbody>
</table>
Different cluster analysis results on "mouse" data set:

Original Data k-Means Clustering EM Clustering

Source: Wikipedia (k-means clustering)
Questions?