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if you are familiar with “big data,” you are probably familiar with the MapReduce approach 
to implementing parallelism on computing clusters [1]. A cluster consists of many compute 
nodes, which are processors with their associated memory and disks. The compute nodes 
are connected by Ethernet or switches so they can pass data from node to node. 

Like any other programming mod-
el, MapReduce needs an algorithm-de-
sign theory. The theory is not just the 
theory of parallel algorithms—MapRe-
duce requires we coordinate parallel 
processes in a very specific way. A Map-
Reduce job consists of two functions 
written by the programmer, plus some 
magic that happens in the middle:

1. The Map function turns each 
input element into zero or more key-
value pairs. A “key” in this sense is not 
unique, and it is in fact important that 
many pairs with a given key are gener-
ated as the Map function is applied to 
all the input elements.

2. The system sorts the key-value 
pairs by key, and for each key creates 
a pair consisting of the key itself and 
a list of all the values associated with 
that key.

3. The Reduce function is applied, 
for each key, to its associated list of val-
ues. The result of that application is a 
pair consisting of the key and whatev-
er is produced by the Reduce function 
applied to the list of values. The output 
of the entire MapReduce job is what 

results from the application of the Re-
duce function to each key and its list.

When we execute a MapReduce 
job on a system like Hadoop [2], some 
number of Map tasks and some num-
ber of Reduce tasks are created. Each 
Map task is responsible for applying 
the Map function to some subset of the 
input elements, and each Reduce task 
is responsible for applying the Reduce 
function to some number of keys and 
their associated lists of values. The ar-
rangement of tasks and the key-value 
pairs that communicate between them 
is suggested in Figure. 1. Since the 
Map tasks can be executed in parallel 
and the Reduce tasks can be executed 
in parallel, we can obtain an almost 
unlimited degree of parallelism—pro-
vided there are many compute nodes 
for executing the tasks, there are many 
keys, and no one key has an unusually 
long list of values

A very important feature of the Map-
Reduce form of parallelism is that 
tasks have the blocking property [3]; 
that is, no Map or Reduce task delivers 
any output until it has finished all its 

work. As a result, if a hardware or soft-
ware failure occurs in the middle of a 
MapReduce job, the system has only to 
restart the Map or Reduce tasks that 
were located at the failed compute node. 
The blocking property of tasks is essen-
tial to avoid restart of a job whenever 
there is a failure of any kind. Since Map- 
Reduce is often used for jobs that  
require hours on thousands of compute 
nodes, the probability of at least one 
failure is high, and without the blocking 
property large jobs would never finish.

There is much more to the technol-
ogy of MapReduce. You may wish to 
consult, a free online text that covers 
MapReduce and a number of its appli-
cations [4].

eFFicienT mApredUce  
AlgoriThms
A given problem often can be solved 
by many different MapReduce algo-
rithms. We shall start with a real ex-
ample of what can go wrong and then 
examine a model that lets us talk 
about the important tradeoff between 
the communication (from Map to Re-
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duce tasks) and computation (at the 
Reduce tasks).

Reducers. It is convenient to have a 
term to refer to the application of the 
Reduce function to a single key and its 
list. We call this application a reduc-
er. The input size for a reducer is the 
length of the list. Notice that reduc-
ers are not exactly the same as Reduce 
tasks. Typically a Reduce task is given 
many keys and their lists, and thus ex-
ecutes the work of many “reducers.” 
However, there could be one Reduce 
task per reducer, and in fact, there 
could even be one compute node per 
reducer if we wanted to squeeze the ab-
solute maximum degree of parallelism 
out of an algorithm.

Analogously, we can think of a map-
per as the application of the Map func-
tion to a single input element. Nor-
mally, mappers are grouped into Map 
tasks, and each Map task is responsi-
ble for many mappers. It is more com-
mon for us to be able to gain efficiency 
by redesigning the nature of the reduc-
ers than by redesigning the mappers, 
so we shall be concentrating on the re-
ducers in this article.

Communication and computation 
costs. There are three principal sources 
of cost when you run a MapReduce job:

1. There is a map cost of executing 
the mappers. Normally, the input is 
a file distributed over many compute 
nodes, and each Map task executes at 
the same compute node that holds the 
input elements to which it is applied. 
This cost is essentially fixed, and con-
sists of the computation cost of execut-
ing each mapper.

2. Each key-value pair must be 
transmitted to the location of the Re-
duce task that will execute the reducer 
for that key. While by coincidence this 
Reduce task may be located at the 
same compute node as the Map task 
that generated that key-value pair, we 
shall assume for convenience each 
key-value pair is shipped across the 
network that connects the compute 
nodes. The communication cost, or 
cost of moving the data from Map 
tasks to Reduce tasks, is thus propor-
tional to the total number of key-value 
pairs generated by the mappers.

3. Each reducer must execute at the 
compute node to which its key is as-
signed. The computation cost for an al-

gorithm is the sum of the time needed 
to execute each reducer. 

This distinction between commu-
nication cost and computation cost ap-
pears to ignore the computation need-
ed to execute the mappers. However, 
commonly, this cost is proportional to 
the number of key-value pairs gener-
ated, and thus can be included in the 
communication cost. We shall there-
fore not discuss the cost of executing 
the mappers further.

It may not be obvious, but com-
munication cost often dominates the 
computation cost. Typically, compute 
nodes are connected by gigabit Ether-
net. That seems fast if you are down-
loading a song, but when you have to 
move a terabyte, it will take at least 
three hours across a gigabit Ethernet 
connection.

Skew and wall-clock time. We focus 
on communication and computation 
cost because in a public cloud, like 
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figure 1: the structure of a mapreduce job.
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and low wall-clock time.
The study of optimal MapReduce 

algorithms can thus be viewed as the 
study of the function that gives the least 
possible replication rate for a given 
reducer input size. We need to do two 
things: Prove lower bounds on the rep-
lication rate as a function of input size; 
and discover algorithms whose replica-
tion rate matches the lower bound.

An exAmple oF The TrAdeoFF
To see how the grand compromise 
works in practice, I am going to tell a 
story about a real project. At Stanford, I 
coached several teams in the data-min-
ing project course. One of the teams was 
looking at medical records for about a 
million patients, and was trying to dis-
cover unknown drug interactions. They 
were indeed successful not only in veri-
fying known interactions, but in discov-
ering several very suspicious, heretofore 
unknown, combinations of drugs that 
have significant side effects.

To find pairs of drugs that had par-
ticular side effects, they created a re-
cord for each of the 6,500 drugs in the 
study. That record contained informa-
tion about the medical history of pa-
tients who had taken the drug; these 
records averaged about a megabyte 
in length. The records for each pair of 
drugs needed to be compared in order 
to determine whether a particular side 
effect was more common among pa-
tients using both drugs than those us-
ing only one or neither. 

Their initial plan was to use MapRe-
duce with one reducer for each pair of 
drugs. That is, keys would be ordered 
lists of two drugs [i, j] with i < j, and 
the associated values would be the re-
cords for the two drugs. The Map func-
tion would take a drug i with record R 
and turn it into many key-value pairs. 
Each of these had a value (i, R), mean-
ing that R was the record for drug i. But 
the keys were all the lists consisting of 
i and any other drug j. For each of the 
6,500 drugs they therefore created 
6,499 key-value pairs—each about a 
megabyte in size—for a total commu-
nication cost of about 20 terabytes. It 
was no surprise that they were unable 
to do this MapReduce job, even given 
the generous allocation of free EC2 
service that Amazon had provided for 
the class to use.

So they needed to make a compro-
mise between their desire to run as 
many reducers as possible in parallel 
and their need to keep the communi-
cation within bounds. They grouped 
the drugs into 65 groups, numbered 
1 to 65, of 100 drugs each. Instead of 
keys being sets of two drugs, they used 
keys sets of two group numbers. The 
mapper for drug i and record R created 
64 key-value pairs. In each, the value 
was (i, R), as before. The keys were all 
pairs of two groups, one of which is the 
group of drug i and the other of which 
is any other group.

A reducer in the new scheme re-
ceived a key that is a set of two groups, 
and a list of 200 elements (i, R), where i 
is a drug in one of the two groups and 
R is the patient record for that drug. 
The reducer compared each element 
(i1, R1) and (i2, R2) on its list, provided i1 
and i2 were drugs in different groups. 
A small trick that I won’t go into was 
necessary to make sure that drugs in 
the same group were also compared by 
exactly one of the reducers.

As a result, every pair of drugs had 
their records compared exactly once, 
just as in the original scheme, so the 
computation cost was essentially the 
same as before. The input size to a re-
ducer grew by a factor of 100, so the 
minimum wall-clock time was much 
greater under the new scheme. How-
ever, the replication rate shrunk by a 
factor of over 100, so the communica-
tion was around 200 gigabytes instead 
of 20 terabytes. Using the new scheme, 
the various costs balanced well, and 
the job was able to complete easily.

some concreTe TrAdeoFFs
Now, we are going to see some facts 
about particular problems and the 
way reducer input size and replication 
rate are related for these problems. We 
shall look at the problem of finding bit 
strings at Hamming distance 1, and 
then at the problem of finding trian-
gles in a graph. However, we begin by 
looking at the tradeoff implied by the 
previous discussion.

Tradeoff for the medical example. 
We can generalize the two different 
strategies we considered as follows. 
Suppose there are d drugs, and we 
want to group them into g groups. The 
record for each drug is then replicated 

Amazon’s EC2, that is what you pay for 
[5]. You pay by the gigabyte for moving 
data across the network, and you rent 
compute nodes by the hour. However, 
in addition to wanting to minimize 
what we pay, we also want our job to 
finish soon. Thus, the total elapsed 
time before finishing the MapReduce 
job is also important.

As long as no mapper or reducer has 
too large an input size, we can divide 
them among as many compute nodes as 
we have access to, and thus have a wall-
clock finishing time that is roughly the 
total time of the computation and com-
munication, divided by the number of 
compute nodes. However, if we are not 
careful, or the data has a bad form, then 
we are limited in how fast we can finish 
by the phenomenon of skew. 

The most common form of skew 
is when the data causes one key K to 
be produced a significant fraction 
of the time. If, say, half the key-value 
pairs generated by the mappers have 
key K, then the reducer for key K has 
half of all the data communicated. 
The computation time of the reducer 
for K will be at least half of the total 
computation time; it could be more if 
the running time of the Reduce func-
tion grows faster than linearly in the 
size of the list. In such a situation, the 
wall-clock time for finishing cannot 
be less than half the total computa-
tion cost, no matter how many com-
pute nodes we use. From this point 
onward, we shall assume that skew is 
not a problem, although there is much 
evidence that skew does affect the 
wall-clock time significantly in many 
cases; see Kwon et al. for example [6].

The grand compromise. For many 
problems, there is a tradeoff between 
the input size for the reducers and 
the replication rate, or number of key- 
value pairs generated per input ele-
ment. The smaller the input size, the 
more parallelism we can have, which 
leads to a lower wall-clock time. But for 
problems that are not “embarrassingly 
parallel,” lowering the input size for 
the reducers means increasing the rep-
lication rate and therefore increasing 
the communication. The more com-
munication, the slower the job runs 
and the more it costs. Thus, we must 
find just the right input size to compro-
mise between our desire for low cost 
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g – 1 times, which we’ll approximate as 
g times to simplify the formulas. The 
input size for each reducer is 2d/g re-
cords. Conventionally, we use q for the 
maximum allowable input size for a re-
ducer and r for the replication rate. In 
this case, we have r = g and q = 2d/g, so r 
as a function of q is

r = 2d/q

That is, the replication rate is propor-
tional to the number of drugs and in-
versely proportional to the reducer in-
put size.

As long as g divides d evenly, we can 
choose any g we like and have an algo-
rithm that solves the problem. We dis-
cussed only two cases: d = g = 6,500 (the 
original attempt) and d = 6,500, g = 65, 
which worked. However, if the commu-
nication were still too costly at g = 65, 
we could have lowered it further to de-
crease the replication rate yet again. At 
some point, the communication cost 
would cease to be the dominant cost, 
and we could extract what parallelism 
remains to keep the wall-clock time as 
low as possible.

Strings at Hamming distance 1. We 
are now going to take up a problem 
that was analyzed in a recent paper 
on understanding the limits of map- 
reduce computation [7]. Two bit strings 
of the same length b are at Hamming 
distance d if they differ in exactly d 
corresponding bits. For example, 0011 
and 1011 are at Hamming distance 1 
because they differ only in the first bit.

For d = 1 there is an interesting low-
er bound on replication rate as a func-
tion of q, the maximum number of 
strings that can be sent to any reduc-
er. For an algorithm to find all pairs 
of strings at Hamming distance 1 in 
some input set of bit strings of length 
b, every pair of bit strings at distance 
1 must be covered by some reducer; in 
the sense that if they exist in the in-
put set, then both strings will be sent 
to that reducer (perhaps among other 
reducers). The number of possible 
inputs is 2b, and the number of pos-
sible outputs—pairs at distance 1— is 
(b ⁄ 2)2b. To see why the latter count is 
correct, notice that each of the 2b bit 
strings of length b is at distance 1 from 
b other strings; those are the strings 
constructed by flipping exactly one 

of the b bits. So we would expect b2b 
pairs, but that counts each pair twice, 
once from the point of view of each of 
the two strings. Thus the correct count 
of possible outputs is (b ⁄ 2)2b.

There is a theorem that says among 
any collection of q bit strings, there are 
at most (q/2)log2 q pairs at distance 1 
[7]. We’re not going to prove it here, but 
we’ll use it to get an exact lower bound 
on the replication rate r as a function 
of q. First, suppose we use p reducers, 
and the ith reducer has qi≤q bit strings 
that it will receive if they are present in 
the input. Since all the (b ⁄ 2)2b pairs of 
strings at distance 1 must be covered 
by some reducer, we know that

i = 1

p

Σ
That is, the sum of the maximum num-
ber of outputs that each reducer can 
cover must be at least the number of 
outputs. 

We are going to replace log2 qi by 
log2 q in the above inequality. Since q 
is an upper bound on qi, the inequality 
must continue to hold; that is

i = 1

p

Σ
Notice we chose not to replace the 

factor qi by q.
The replication rate r is the sum of 

the number of inputs qi to each reducer 

divided by the total number of pos-
sible inputs, 2b, that is, ∑(i=1)

p qi/2b. We 
can manipulate the inequality above 
so that exactly ∑ (i=1)

p qi/2b appears on the 
left, and everything else is on the right. 
That gives us

i = 1

p

Σqi/2b   b/log2 qr =

This inequality says for the problem of 
finding strings at Hamming distance 
1, the replication rate is proportional to 
b, the string length, and inversely pro-
portional to the logarithm of the maxi-
mum number of inputs that can be as-
signed to one reducer. Figure 2 shows 
the form of the lower bound on r and 
also shows points where we have algo-
rithms that match the lower bound.

The algorithms at the endpoints 
are easy to see. If log2 q = b, then q = 2b, 
which means that one reducer can get 
all the possible inputs. In that case, 
there is no need for any replication; 
that is, if log2 q = b, then r = 1 suffices.

At the other extreme, if log2 q = 1, 
that is, q = 2, then we need one reduc-
er for each possible pair of strings at 
distance 1. Each string s must be sent 
to the b different reducers that corre-
spond to pairs {s, t} where t is one of the 
b strings at Hamming distance 1 from 
s. In terms of key-value pairs, the keys 
are pairs of strings at distance 1. The 
Map function generates from an input 
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figure 2: known algorithms matching the lower bound on replication rate.

r

1

1 b

log2 q

2

3

4

5

6

b

.
.
.

b
6
b
5
b
4

b
3

b
2



feature

X R D S  •  f a l l 2 0 1 2  •  V o l . 1 9 •  N o . 1

published last year [9]. On a graph with 
m edges, it uses total computation time 
O(m(3/2)), which is the best possible ac-
cording to Alon [10]. This MapReduce 
algorithm makes use of a serial algo-
rithm for finding all triangles in time 
O(m3/2), due to Schank’s Ph.D. work [11], 
and the conversion of that algorithm 
to a MapReduce algorithm using the 
same total computation is from Suri 
and Vassilvitskii [12].

Suppose the m edges of a graph on 
n nodes are chosen so that each pos-
sible edge is equally likely to be chosen. 
If we run the algorithm using enough 
reducers so that the expected number 
of edges at any reducer is q, then the 
replication rate is O(√m/q). That is, each 
edge will be sent as the value of a key-
value pair to that number of different 
reducers. We shall not give the argu-
ment here, but it is shown that Ω(√m/q) 
is also a lower bound on the replication 
rate [7]; i.e., the algorithm mentioned 
gives, to within a constant factor, the 
lowest possible replication rate.

sUmmAry
We have tried to motivate the need to 
study MapReduce algorithms from the 
point of view of how they trade paral-
lelism for communication cost. We 
represent the degree of parallelism by 
the upper limit on the number of in-
puts that one reducer may receive; the 
smaller this limit, the more potential 
parallelism. We represent commu-
nication cost by the replication rate, 
that is, the number of key-value pairs 
produced for each input. Depending 
on your computational resources and 
your network, you may prefer one of 
many different points along the curve 
that represents this tradeoff. As a re-
sult, it is interesting to discover lower 
bounds on the replication rate as a 
function of the reducer input size.

For two problems, finding strings 
at Hamming distance 1 and finding 
triangles in a graph, we gave lower 
bounds on replication rate r as a func-
tion of input size q that are tight. That 
is, there are algorithms for a wide vari-
ety of q values whose replication rate is, 
to within a constant factor, that given 
by the lower bound. 

However, there are problems in 
a variety of domains for which opti-
mal MapReduce algorithms have not 

string s the b key-value pairs with value 
s and key {s, t}, where t is one of the bit 
strings at distance 1 from s. Then the 
reducer for key {s, t} looks at the list 
of values associated with this key, and 
if both s and t are present outputs that 
pair. Otherwise, it outputs nothing. 
(In fact, unless at least one of s and t is 
present on the input, this reducer will 
not even exist.)

The other points shown in Figure 
1 represent variants of the “splitting” 
algorithm [8]. For any integer k ≥ 2 that 
divides b, we can split the positions of 
b-bit strings into k equal parts. Let a 
reducer correspond to one of these k 
segments and a particular bit string of 
length 2(k-1)b/k that can appear in all but 
that segment. A bit string s is sent to 
k different reducers. Start by deleting 
the first of the k segments from s and 
send s to the reducer corresponding to 
segment number 1 and the bits of s in 
all but segment 1. Then, starting from 
s again, drop the second segment and 
send s to the reducer corresponding 
to segment 2 and the bits of s that re-
main. Continue in this way for each of 
the k segments. For example, if b = 6, 
k = 3, and s = 011100, then send s to the 
three reducers:

1. Segment = 1 and string = 1100.
2. Segment = 2 and string = 0100.
3. Segment = 3 and string = 0111.
The replication rate is clearly r = k, 

and the number of bit strings that can 
be assigned to any reducer is the num-
ber of possible strings in any one seg-
ment, that is, q = 2b/k. If we take loga-
rithms, we get log2 q = b/k. Since r = k, 
we find r = b/log2 q is an upper bound as 
well as a lower bound.

Triangle Finding. Another prob-
lem for which we can obtain closely 
matching upper and lower bounds on 
the replication rate as a function of 
the maximum input size for a reducer 
is finding the number of triangles in a 
large graph, such as the graph of a so-
cial network. We shall not go into the 
applications of triangle-finding, but 
intuitively, we expect that closely knit 
communities of friends would have 
many triangles. That is, whenever A is 
friends with both B and C, we would 
expect it is likely that B and C are also 
friends with each other. The most ef-
ficient MapReduce algorithm for find-
ing triangles is from a technical report 

been studied. Analyzing these prob-
lems requires deriving new lower 
bounds, designing algorithms that 
attain them, and choosing parame-
ters to balance the tradeoff between 
communication and computation 
costs on modern computer architec-
tures. By understanding such trad-
eoffs, we can design MapReduce algo-
rithms that are efficient both in terms 
of wall-clock time and in terms of data 
movement. 
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