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ABSTRACT
Graphs are analyzed in many important contexts, includ-
ing ranking search results based on the hyperlink struc-
ture of the world wide web, module detection of protein-
protein interaction networks, and privacy analysis of social
networks. Many graphs of interest are difficult to analyze
because of their large size, often spanning millions of vertices
and billions of edges. As such, researchers have increasingly
turned to distributed solutions. In particular, MapReduce
has emerged as an enabling technology for large-scale graph
processing. However, existing best practices for MapReduce
graph algorithms have significant shortcomings that limit
performance, especially with respect to partitioning, serial-
izing, and distributing the graph. In this paper, we present
three design patterns that address these issues and can be
used to accelerate a large class of graph algorithms based on
message passing, exemplified by PageRank. Experiments
show that the application of our design patterns reduces the
running time of PageRank on a web graph with 1.4 billion
edges by 69%.

1. INTRODUCTION
Large graphs are ubiquitous in today’s information-based

society. Two examples include the hyperlink structure of the
web spanning many billion of pages (commonly known as
the web graph) and social networks that connect hundreds
of millions of individuals. With perhaps the exception of
expensive large shared-memory systems, graph algorithms
at scale are beyond the capabilities of individual machines,
thus necessitating a distributed approach involving many
machines in a cluster.

Distributed computations are inherently difficult to orga-
nize, manage, and reason about. With traditional program-
ming models such as MPI, the developer must explicitly han-
dle a range of system-level details, ranging from synchroniza-
tion to data distribution to fault tolerance. Recently, Map-
Reduce [4] has emerged as an attractive alternative: its func-
tional abstraction provides an easy-to-understand model for
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designing scalable, distributed algorithms. The open-source
Hadoop1 implementation of MapReduce has provided re-
searchers a powerful tool for tackling large-data problems in
areas of machine learning [3, 16, 20], text processing [1, 5,
11], and bioinformatics [10, 18], just to name a few.

MapReduce provides an enabling technology for large-
scale graph processing. However, there appears to be a
paucity of knowledge on designing scalable graph algorithms.
Lin and Dyer’s [12] recent book begins to fill this void, and
there have been a few relevant papers as well (e.g., [7, 8]).
However, for the most part, information on MapReduce
graph algorithms is scattered throughout informal sources
on the web, including the slides and video recordings of Map-
Reduce courses sponsored by Google.

In this paper, we recapitulate current best practices in
designing large-scale graph algorithms in MapReduce and
identify significant inefficiencies in those designs. We pro-
pose a set of enhanced design patterns applicable to a large
class of graph algorithms that address many of those de-
ficiencies. Using PageRank as an illustrative example, we
show that the application of our design patterns can sub-
stantially reduce per-iteration running time (in our experi-
ments, by up to 69%).

The remainder of the paper is organized as follows: in
Section 2, we provide an overview of the MapReduce pro-
gramming model. Section 3 discusses the class of graph
algorithms that is the focus of this paper, exemplified by
PageRank. Section 4 describes standard best practices for
large-scale graph processing using MapReduce. Section 5
presents our enhanced design patterns for graph algorithms
in MapReduce, and Section 6 evaluates their performance on
a large web graph with 1.4 billion links. Finally, in Section 7
we summarize our findings and describe future directions for
improvements.

2. MAPREDUCE
MapReduce builds on the observation that many informa-

tion processing tasks have the same basic computational de-
sign: a computation is applied over a large number of records
(e.g., web pages, vertices in a graph) to generate partial re-
sults, which are then aggregated in some fashion. Taking in-
spiration from higher-order functions in functional program-
ming, MapReduce provides an abstraction for programmer-
defined “mappers” (specifying per-record computations) and
“reducers” (specifying result aggregation), that both operate
in parallel on key-value pairs as the processing primitives.

1
http://hadoop.apache.org



A B C D E Fα β γ δ ε ζ

mapper mapper mapper mapper

ba 1 2 c c3 6 a c5 2 b c7 8

combiner combiner combiner combiner

pp pp pp pp

ba 1 2 c 9 a c5 2 b c7 8

partitioner partitioner partitioner partitioner

Shuffle and Sort: aggregate values by keys

a 1 5 b 2 7 c 2 9 8

p p p p

reducer reducer reducer

X 5 Y 7 Z 9

Figure 1: Illustration of MapReduce: mappers are
applied to input records, which generate intermedi-
ate results that are aggregated by reducers. Local
aggregation is accomplished by combiners, and par-
titioners determine to which reducer intermediate
data are shuffled.

The mapper is applied to every input key-value pair to gen-
erate an arbitrary number of intermediate key-value pairs.
The reducer is then applied to all values associated with the
same intermediate key to generate an arbitrary number of
final key-value pairs as output. This two-stage processing
structure is illustrated in Figure 1.

Under the MapReduce programming model, a developer
needs only to provide implementations of the mapper and
reducer. On top of a distributed file system [6], the execution
framework (i.e., “runtime”) transparently handles all other
aspects of execution on clusters ranging from a few to a
few thousand cores. It is responsible, among other things,
for scheduling (moving code to data), handling faults, and
the large distributed sorting and shuffling problem between
the map and reduce phases whereby intermediate key-value
pairs must be grouped by key.

As an optimization, MapReduce supports the use of“com-
biners”, which are similar to reducers except that they oper-
ate directly on the output of mappers; one can think of them
as “mini-reducers”. Combiners operate in isolation on each
node in the cluster and cannot use partial results from other
nodes. Since the output of mappers (i.e., intermediate key-
value pairs) must eventually be shuffled to the appropriate
reducer over the network, combiners allow a programmer to
aggregate partial results, thus reducing network traffic. In
cases where an operation is both associative and commuta-
tive, reducers can directly serve as combiners, although in
general they are not interchangeable.

The final component of MapReduce is the “partitioner”,
which is responsible for dividing up the intermediate key
space and assigning intermediate key-value pairs to reduc-
ers. The default partitioner computes the hash value of the
key modulo the number of reducers. Although with any
reasonable hash function the partitioner will divide up the
intermediate key space roughly evenly, this does not guar-
antee good load balance because the distribution of values

associated with the same key may be highly skewed, nor
does it provide any locality between related keys.

3. GRAPH ALGORITHMS
This paper assumes a standard definition of a directed

graph G = (V,E) consisting of vertices V and directed
edges E, with N+(vi) = {vj |(vi, vj) ∈ E} and N−(vi) =
{vj |(vj , vi) ∈ E} consisting of the set of all successors and
predecessors of vertex vi. Undirected graphs are also im-
plicitly supported by replacing each undirected edge with
two reciprocal directed edges. Both vertices and edges may
be annotated with additional metadata: as a simple exam-
ple, in a social network where vertices represent individuals,
there might be demographic information (e.g., age, gender,
location) attached to the vertices and type information at-
tached to the edges (e.g., indicating type of relationship such
as “friend” or “spouse”).

We focus on a large class of iterative graph algorithms on
sparse, directed graphs, where, at each iteration:

1. computations occur at every vertex as a function of the
vertex’s internal state and its local graph structure;
and

2. partial results in the form of arbitrary messages are
“passed” via directed edges to each vertex’s neighbors;
and, finally

3. computations occur at every vertex based on incoming
partial results, potentially altering the vertex’s internal
state.

Typically, such algorithms iterate some number of times,
using graph state from the previous iteration as input to the
next iteration, until some stopping criterion is met.

A prototypical example of the above class of graph al-
gorithms is PageRank [2, 15], a well-known algorithm for
computing the importance of vertices in a graph based on
its topology. For each vertex vi in the graph, PageRank
computes the value Pr(vi) representing the likelihood that
a random walk of the graph will arrive at vertex vi. The like-
lihood value of a node is primarily derived from the topology
of the graph, but the computation also includes a damping
factor d, which allows for periodic random jumps to any
other node in the graph. PageRank can be computed alge-
braically for small graphs, but is generally computed itera-
tively over multiple timesteps t using the power method:

Pr(vi; t) =

(
1/|V | if t = 0
1−d
|V | + d

P
vj∈N−(vi)

Pr(vj ;t−1)

|N+(vj)| if t > 0

(1)
The algorithm iterates until either a user defined maximum
number of iterations is reached, or the the values sufficiently
converge. One common convergence criterion is:

X
|Pr(vi; t)− Pr(vi; t− 1)| < ε (2)

PageRank was originally developed to rank the impor-
tance of web pages based on the hyperlink structure of the
web, but can be applied to rank vertices by their topology
within any graph. It also forms the basis for many significant
graph analysis algorithms [9].



In this paper, we primarily focus on PageRank as an exem-
plar of the class of graph algorithms we are interested in. In
particular, the power method as formulated in (1) requires
only that the local topology and the uniform damping factor
are considered at each step, making it especially well suited
to parallel computing. However, it is important to recognize
that our techniques are equally applicable to a large number
of algorithms that take the form discussed above: specific ex-
amples include parallel breadth-first search, label propaga-
tion, other topology-based vertex ranking algorithms such as
HITS [9], a number of graph-based approaches for DNA se-
quence assembly [17, 21], and the analysis of protein-protein
interaction networks [13, 14].

4. BASIC IMPLEMENTATION
The original MapReduce paper [4] described several data-

intensive applications for the programming model, including
word count, distributed grep, and inverted index construc-
tion, but unfortunately did not discuss graph algorithms.
To our knowledge, the first reasonably detailed explanation
of MapReduce graph algorithms can be traced to lecture
slides and video recordings of courses sponsored by Google
in 2007.2 The materials described implementations of paral-
lel breath-first search and PageRank: these have become the
de facto best practices for MapReduce graph processing. In
this section, we provide an overview of those methods, which
we will refer to as the basic implementation.

4.1 Message Passing
Computations in MapReduce operate on input key-value

pairs; both keys and values can be primitive types (integers,
strings, etc.) or arbitrarily complex records (e.g., tuples with
nested structure). For graph processing, it is most natural
to adopt an adjacency list representation: graphs are serial-
ized into key-value pairs using the identifier of the vertex as
the key, and the record comprising the vertex’s structure as
the value. Typically, the value would include the adjacency
list N+(vi) (possibly with metadata attached to the edges),
metadata attached to the vertex, as well as the vertex’s in-
ternal state (e.g., its current PageRank value). By virtue of
the underlying distributed file system, the key-value pairs
comprising the graph will be divided into blocks and spread
across the local disks of nodes in the cluster. Vertices are as-
signed arbitrarily to different blocks using the default Hash-
Partitioner, but the physical layout of the graph structure
on disk can be controlled by using a custom partitioner or
labeling scheme. We return to this point in Section 5.3.

MapReduce is well suited to the class of graph algorithms
discussed in Section 3: the shuffle and sort phase can be
exploited to propagate information between vertices using
a form of distributed message passing. The canonical ap-
proach is to map over the key-value pairs comprising the
graph, corresponding to Step (1) where computations oc-
cur at every vertex using the local graph structure, vertex
metadata, and additional vertex state contained in the se-
rialized graph vertices. The results of the computation are
arbitrary messages to be passed to each vertex’s neighbors.
This is accomplished by having mappers emit intermediate
key-value pairs where the key is the destination vertex id
and the value is the message. This corresponds to Step (2),
using the shuffle and sort phase of MapReduce to perform

2
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1: class Mapper
2: method Map(id n, vertex N)
3: p← N.PageRank/|N.AdjacencyList|
4: Emit(id n, vertex N)
5: for all nodeid m ∈ N.AdjacencyList do
6: Emit(id m, value p)

1: class Reducer
2: method Reduce(id m, [p1, p2, . . .])
3: M ← ∅
4: for all p ∈ [p1, p2, . . .] do
5: if IsVertex(p) then
6: M ← p
7: else
8: s← s+ p

9: M.PageRank← s
10: Emit(id m, vertex M)

Figure 2: Pseudo-code for simplified PageRank in
MapReduce. In the map phase we evenly divide up
each vertex’s PageRank mass and pass each piece
along outgoing edges to neighbors. In the reduce
phase PageRank contributions are summed up at
each destination vertex. Each MapReduce job cor-
responds to one iteration of the algorithm.

the routing of the messages. In the reducer, all messages
that have the same key (i.e., same destination vertex id) ar-
rive together, and another computation is performed, which
corresponds to Step (3).

There is one critical detail necessary for the above ap-
proach to work: the mapper must also emit the vertex struc-
ture (i.e., the input value) with the vertex id as the key. This
passes the vertex structure to the reduce phase, where it is
reunited with messages destined for that vertex—so that the
reducer can update the vertex’s internal state and write out
the revised graph to disk. Without this step, there would
be no way to perform multiple iterations, since we would
have lost the graph structure. Thus, there are two distinct
data flows in the basic implementation of graph algorithms
in MapReduce: one corresponding to the flow of messages
from source to destination vertices along graph edges, and
the other corresponding to the shuffling of the graph struc-
ture itself.

As a concrete example, pseudo-code for a MapReduce im-
plementation of PageRank is provided in Figure 2. This is a
simplified implementation that does not handle the damping
factor and dangling nodes (i.e., nodes without neighbors),
but suffices to illustrate the key points. For interested read-
ers, Lin and Dyer [12] provide the full implementation. In
line (4) of the mapper we pass along the graph structure. In
lines (5) and (6) of the mapper we distribute an equal share
of the vertex’s current PageRank value to its neighbors; mes-
sages are floating point values, representing PageRank mass
contributions.

The reducer receives a number of values associated with
the same key. It must differentiate the messages (PageRank
mass contributions) from the vertex structure, which is ac-
complished in line (5) of the reducer pseudo-code.3 Page-
Rank contributions from incoming edges to a vertex are

3In practice, we create a complex value that contains an
indicator variable, specifying its status either as a message
or the vertex structure.



1: class Combiner
2: method Combine(id m, [p1, p2, . . .])
3: M ← ∅
4: for all p ∈ [p1, p2, . . .] do
5: if IsVertex(p) then
6: Emit(id m, vertex p)
7: else
8: s← s+ p

9: Emit(nid m, value p)

Figure 3: Combiner pseudo-code for PageRank in
MapReduce. The combiner aggregates partial Page-
Rank contributions by destination vertex and passes
the graph structure along.

summed, and in line (9) of the reducer pseudo-code, the
vertex’s PageRank is updated. Finally, the updated graph
is serialized and written to the distributed file system. This
completes one iteration of PageRank. The output is then
ready to serve as input to another MapReduce job represent-
ing the next iteration. Typically, a driver program examines
results between iterations to check for convergence.

4.2 Local Aggregation
Although it is not always the case, mapper and reducer

computations for the class of graph algorithms we are in-
terested in are often very simple. In PageRank, for ex-
ample, the mappers perform a simple division to “divy up”
the PageRank mass, and the reducers sum incoming Page-
Rank contributions. Therefore, the algorithm running time
is dominated by shuffling large amounts of data across the
network between the map and reduce stages of processing:
both messages passed along graph edges and the graph struc-
ture itself. Because of this, any reductions in the amount
of data shuffled across the network increases the speed of a
MapReduce algorithm.

Combiners in MapReduce are responsible for performing
local aggregation (i.e., a partial reduce on map output),
which reduces the amount of data that must be shuffled
across the network. Clearly, they are only effective if there
are multiple key-value pairs with the same key computed
on the same machine that can be aggregated. In practice,
combiners often yield dramatic reductions in algorithm run-
ning time due to decreased network traffic. The combiner
for PageRank is shown in Figure 3. If it encounters messages
destined for the same vertex, it sums up those partial Page-
Rank values and emits the aggregate, while the graph struc-
ture is simply “passed along” to the reducer. For PageRank,
combiners are especially effective for reducing the number of
messages passed to vertices with high in-degrees. This has
the additional effect of reducing the skew in the running time
of reducers. PageRank is typically run on graphs whose ver-
tex in-degrees follow power law distributions (e.g., the web
graph): since reducer computations are proportional to the
vertex’s in-degree (i.e., number of incoming messages), some
vertices take much longer to process than others. Combiners
significantly cut down on the number of messages destined
for vertices with high in-degrees.

5. ALGORITHM OPTIMIZATIONS
The previous section recapitulates existing best practices

for designing large-scale graph algorithms in MapReduce.

1: class Mapper
2: method Initialize
3: H ← new AssociativeArray
4: method Map(id n, vertex N)
5: p← N.PageRank/|N.AdjacencyList|
6: Emit(id n, vertex N)
7: for all id m ∈ N.AdjacencyList do
8: H{m} ← H{m}+ p

9: method Close
10: for all id n ∈ H do
11: Emit(id n, value H{n})

Figure 4: Mapper pseudo-code for PageRank in
MapReduce that implements the in-mapper combin-
ing design pattern.

Building on this, we present three enhanced design patterns
that address significant inefficiencies in the basic implemen-
tation: (1) costs associated with materializing intermediate
key-value pairs when using combiners, (2) costs associated
with shuffling the graph structure from the mappers to the
reducers, and (3) costs associated with topology-oblivious
hash partitioning of vertices.

5.1 In-Mapper Combining
Although combiners provide a mechanism for local aggre-

gation in MapReduce, there are two major disadvantages
with using them. First, combiner semantics is underspeci-
fied in MapReduce. For example, Hadoop makes no guaran-
tees on how many times the combiner is applied, or that it is
even applied at all. The combiner is provided as a semantics-
preserving optimization to the execution framework, which
has the option of using, perhaps multiple times, or not at
all. Such indeterminism may be unacceptable.

Second, combiners reduce the amount of intermediate data
shuffled across the network, but don’t actually reduce the
number of key-value pairs that are emitted by the mappers
in the first place. With Hadoop combiners, intermediate
key-value pairs are materialized in an in-memory buffer and
then“spilled” to local disk. Only in subsequent merge passes
of on-disk key-value pairs are combiners executed. This pro-
cess involves unnecessary object creation and destruction,
and furthermore, object serialization and deserialization.

To address these downsides, Lin and Dyer proposed the
“in-mapper combining” design pattern [12], which exploits
the fact that mappers can preserve state across the pro-
cessing of multiple input key-value pairs and defer emission
of intermediate data until all input records have been pro-
cessed. Understanding this pattern requires a few additional
details on the life cycle of mappers in Hadoop. A mapper
object is created (by the execution framework) to process a
block of input, and the object’s Map method is repeatedly
called to process input key-value pairs. Hadoop also pro-
vides two API hooks, which we refer to as Initialize and
Close, that allow user-specified code to execute before any
key-value pairs are processed and after all key-value pairs
are processed, respectively.

Figure 4 illustrates the in-mapper combining pattern ap-
plied to the PageRank algorithm. Prior to processing input,
the mapper initializes an associative array (i.e., map) for
accumulating partial PageRank scores, with the destination
vertex id as the key. When mapping over graph vertices, this
associative array is updated with partial PageRank contri-



butions. Intermediate key-value pairs are not emitted until
all inputs have been processed. This design pattern is so
called because, in effect, we are moving the functionality of
the combiner inside the mapper itself. We eliminate multiple
messages with the same destination vertex that would have
been otherwise emitted by the mapper, and instead only
emit a single message that contains an aggregated value.

5.2 Schimmy
In the basic graph algorithm implementation described in

Section 4, there are two separate dataflows from mappers
to reducers: (1) messages passed from source to destination
vertices and (2) the graph structure itself. By emitting each
vertex’s structure in the mapper, the appropriate reducer re-
ceives messages destined for that vertex along with its struc-
ture. This allows the reducer to perform a computation and
to update the graph structure, which is written to disk for
the next iteration.

Shuffling the graph structure between the map and re-
duce phases is highly inefficient, especially since the algo-
rithms we are interested in are iterative and require multi-
ple MapReduce jobs. Because the graph structure includes
metadata and other state information, it is frequently much
larger than the messages that are passed along graph edges.
As we previously discussed, network traffic dominates the
execution time, so reductions in the amount of intermedi-
ate data are highly desirable. Furthermore, in many algo-
rithms the topology of the graph and associated metadata do
not change (only each vertex’s state does), making repeated
shuffling of the graph structure even more wasteful. To ad-
dress this significant shortcoming of the basic implementa-
tion, we introduce a novel design pattern called “schimmy”
that addresses this inefficiency. As far as we know, this is the
first elucidation of this general approach to graph processing
for MapReduce that we are aware of.

The intuition behind the schimmy design pattern is the
parallel merge join, which is a well known join technique in
the database community [19]. Let’s say we wish to join two
relations, S and T , and the tuples in both relations were
sorted by the join key. If this were the case, we can perform
a join by scanning through both relations simultaneously.
This process can be parallelized by partitioning and sorting
both relations in the same way. For example, suppose S
and T were both divided into ten files, partitioned in the
same manner by the join key. Further suppose that in each
file, the tuples were sorted by the join key. In this case, we
simply need to merge join the first file of S with the first file
of T , the second file with S with the second file of T , etc.;
these merge joins could happen in parallel.

This method can be applied in graph processing as follows:
suppose the input key-value pairs representing the graph
structure were partitioned into n files (i.e., parts), such that
G = G1 ∪ G2 ∪ . . . ∪ Gn, and within each file, vertices are
sorted by vertex id. Now let us use the same partition func-
tion as the partitioner in our MapReduce graph algorithm,
and set the number of reducers equal to the number of input
files (i.e., parts). This guarantees that the intermediate keys
(vertex ids) processed by reducer R1 are exactly the same
as the vertex ids in G1; the same for R2 and G2, R3 and
G3, and so on up to Rn and Gn. Furthermore, since the
MapReduce execution framework guarantees that interme-
diate keys are processed in sorted order, the corresponding
Rn and Gn parts are sorted in exactly the same manner.

1: class Reducer
2: method Initialize
3: P.OpenGraphPartition()

4: method Reduce(id m, [p1, p2, . . .])
5: repeat
6: (id n, vertex N)← P.Read()
7: if n 6= m then
8: Emit(id n, vertex N)

9: until n = m
10: for all p ∈ values [p1, p2, . . .] do
11: s← s+ p

12: N.PageRank← s
13: Emit(id n, vertex N)

Figure 5: Reducer pseudo-code for PageRank in
MapReduce using the schimmy design pattern to
avoid shuffling the graph structure.

The intermediate keys in Rn represent messages passed to
each vertex, and the Gn key-value pairs comprise the graph
structure. Therefore, a parallel merge join between R and
G suffices to unite the result of computations based on mes-
sages passed to a vertex and the vertex’s structure, thus
enabling the algorithm to update the vertex’s internal state.
We have eliminated the need to shuffle G across the network.

With the MapReduce implementation of PageRank us-
ing the schimmy design pattern, we no longer need to emit
the graph structure in the map phase of processing. The
mapper remains the same as the pseudo-code in Figure 2,
with the exception that line (4) is removed (or, alternatively,
one could take advantage of in-mapper combining as shown
in Figure 4). The corresponding reducer is shown in Fig-
ure 5. In the initialization API hook, the reducer opens
the file containing the graph partition corresponding to the
intermediate keys that are to be processed by the reducer.
As the reducer is processing messages passed to each ver-
tex in the Reduce method, it advances the file stream in
the graph structure until the corresponding vertex’s struc-
ture is found. Once the reduce computation is complete (a
simple sum), the vertex’s state is updated with the revised
PageRank value and written back to disk. The partitioner
ensures consistent partitioning of the graph structure from
iteration to iteration.

When the reducer processes intermediate key-value pairs,
those data are read from the local disks of the cluster nodes
running the reducers. Files containing the graph structure,
on the other hand, reside on the underlying distributed file
system (HDFS for Hadoop). Since the MapReduce execu-
tion framework arbitrarily assigns reducers to cluster nodes,
accessing vertex data structures will almost always involve
remote reads (i.e., data streamed off the local disk of another
cluster node). This is a potential bottleneck, but experimen-
tal results show that these remote reads are not a significant
limitation.

5.3 Range Partitioning
As previously mentioned, the distributed filesystem un-

derlying MapReduce splits large graphs into multiple blocks
stored on different machines in the cluster. This allows dif-
ferent mappers to execute in parallel on separate, locally-
stored portions of the graph. By default, the partitioning of
the graph uses an arbitrary hash function of the vertex id,



effectively assigning a particular vertex to a particular block
with uniform probability. The hash function is effective for
ensuring the different blocks have approximately the same
number of vertices, and consequently should require approx-
imately the same amount of time to process. However, the
default HashPartitioner has no consideration for the topol-
ogy of the graph, so the probability that a vertex and its
neighbors are in the same block is purely a function of the
size of each block, even if the graph has very regular struc-
ture or multiple independent connected components.

For graph processing it is highly advantageous for adja-
cent vertices to be stored in the same block, so that any
messages passing between them can be processed in memory
or at least without any network traffic. The general problem
of partitioning a graph into multiple blocks of roughly equal
size such that the intra-block links are maximized and the
inter-block links are minimized is computationally quite dif-
ficult, but real world graphs often have properties that can
be used to effectively approximate this partitioning.

In particular, web pages within a given domain are much
more densely hyperlinked than pages across domains. Thus,
if pages from the same domain are assigned to the same
block, we can achieve a reasonably good partitioning of the
web graph. This insight can be utilized in MapReduce by
implementing a custom partitioner that hashes the domain
name of each URL. However, this would require storing the
URL of vertices, which is not desirable since an integer ver-
tex id is far more compact. Nevertheless, we can still lever-
age this insight if web pages from the same domain are as-
signed to consecutive vertex ids, and we partition the graph
into integer ranges. For example, when splitting a graph
with |V | vertices into 100 blocks, block 1 contains vertex ids
[1, |V |/100), block 2 contains vertex ids [|V |/100, 2|V |/100),
and so forth, using a simple function of the vertex id. In
this way, a simple RangePartitioner effectively partitions the
graph by domain. With sufficiently large block sizes, we can
ensure that only a very small number of domains are split
across more than one block.

6. RESULTS
We performed experiments on the ClueWeb09 collection,

a best-first web crawl by Carnegie Mellon University in early
2009. The collection contains approximately one billion web
pages in ten languages totaling around 25 terabytes. Of
those, about 500 million pages are in English, divided into
ten roughly equal-sized segments. Our experiments used
only the first English segment, which consists of 50.2 mil-
lion documents, totaling 1.53 TB uncompressed (247 GB
compressed). The web graph extracted from this docu-
ment collection contains 1.4 billion links; the link structure
is stored as a 7.0 GB concise binary representation, using
integer value vertex ids assigned consecutively by domain.
The in-degree distribution of the collection follows a famil-
iar power law, with most pages having a small number of
predecessors, but a few highly connected pages with several
million (see Figure 6).

We analyzed this web graph using a Hadoop cluster lo-
cated at the University of Maryland with 10 worker nodes
each containing 2 hyperthreaded 3.2 GHz Intel Xeon CPUs,
4GB of RAM, and 367 GB of local disk allocated to HDFS.
In total, the cluster contains 20 physical cores (40 virtual
cores). Each node was running Hadoop version 0.20.0 on
Red Hat Enterprise Linux Server release 5.3 and connected

●

●

●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●
●
●
●●●●●●●●●●●
●
●●●●●
●●●●●●●●
●
●●●●●●●●●●●●
●
●●●●
●
●●●●
●
●●●●
●●●●
●
●
●
●●●●●●●●●●●
●
●
●●●●●●●●
●●●●●●●
●●●
●●
●●●
●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●
●●●
●
●●●●●●●
●
●●●●
●
●●●●●●●●●●
●
●
●
●
●●●●
●●●●
●
●
●●●
●●
●
●●●●
●●●●●●●
●
●
●●●●●●●●
●●●●
●●
●
●●●●●●●●
●●●
●
●●●●●●●
●●
●
●●●●
●●●
●

●
●●●
●
●●●●●●
●●
●●

●
●
●●●●

●
●●●
●
●●●

●
●
●
●●●●
●●
●●●
●
●●●
●
●●●●●
●●●●
●
●●
●
●●●
●
●●●
●●

●●●

●●
●
●

●
●●●

●
●
●●

●

●●●
●
●●●●
●
●
●
●●●●
●●
●●●●
●●●●●
●
●
●●

●●●●●●
●●●
●
●
●
●●
●●
●
●

●●
●●
●
●●●
●

●

●

●●
●●●
●
●●●●●●
●●●
●
●
●●●●
●●
●●●
●●●●●●●

●●●
●

●●●●●●
●
●
●●●
●●
●
●

●●

●
●

●●●
●
●
●●●
●●
●
●●●●
●

●

●
●●●●●●●●
●●

●●
●
●
●
●●●●
●

●
●●
●
●●●
●●
●

●

●●
●
●

●

●
●●●
●●
●

●
●●●

●
●●●●●
●●●●
●
●●●●●●
●●
●

●●

●
●
●
●
●●●●
●

●●
●
●●
●
●

●
●●
●
●

●

●
●●●●●●●
●
●

●●●●
●

●●
●
●
●
●●●
●
●●●
●●●
●●●●
●●●
●
●●●
●
●●

●
●
●

●●●
●
●
●
●

●

●
●●

●
●

●●●

●●

●
●
●
●
●●

●

●
●●
●
●
●
●
●●
●
●
●
●
●●
●●●●
●
●●●
●
●●

●●
●●
●

●

●●
●●
●
●
●
●
●
●●
●
●

●●

●

●●●●
●●

●

●
●
●●
●●●●
●●●
●

●●●
●●
●●

●●●
●
●
●●

●●●
●●●●
●
●●
●
●●

●
●
●●●●

●

●
●
●
●
●

●
●●
●
●

●●
●●●●
●

●
●
●●
●●●

●
●
●●
●●
●●●
●

●●●●
●
●●

●
●●
●
●●●●
●●
●●
●
●
●

●
●●●●
●●
●●●

●
●
●●
●
●
●●
●●
●●●●●●●●●

●

●
●
●●●●●
●
●
●
●●
●
●
●●●
●
●●●●
●

●

●

●
●

●●
●●
●●●●●●●●

●
●●●●●
●●
●
●●●
●
●●●●●
●
●●●●●●
●
●●
●
●●●

●

●
●

●

●●
●●
●
●●
●
●
●

●
●●
●
●
●

●

●●
●
●

●

●

●●●●
●●
●
●

●●

●

●
●
●
●

●

●
●
●
●

●

●

●●

●
●

●●
●●
●
●
●

●

●●●
●

●

●

●
●●●
●●

●●

●
●
●●
●●
●
●
●

●
●●
●
●●●
●●

●●

●
●

●●
●

●

●
●
●●●
●

●
●
●●

●

●●●
●
●
●●●
●
●
●

●

●

●
●

●●
●●
●●
●●
●
●●

●

●●●●●●●●
●●●

●
●●●
●●
●
●●
●
●

●

●●●

●●
●
●

●

●

●

●

●

●
●

●
●●●●
●
●●
●●

●
●●●●
●
●●

●●
●●●●

●

●
●

●●
●●●

●
●
●●
●●●
●●
●
●●●

●
●

●●●

●
●
●
●●
●●

●●●
●

●

●
●
●
●

●
●
●
●●●●
●●●●●●●●

●
●

●

●

●●
●
●
●
●●
●

●

●
●●
●

●
●●
●
●●
●●
●
●

●

●●

●
●●●

●

●

●

●
●●
●
●
●●●●●

●●

●
●
●
●
●
●
●

●

●●

●
●●
●

●
●
●●

●●
●
●
●

●
●

●●
●
●●

●

●

●

●

●
●

●
●
●●●

●
●●●
●●●

●●

●●●
●
●
●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●
●●

●●

●
●
●

●
●
●●
●
●

●
●

●●
●●●
●●●
●●
●●●

●
●

●

●
●

●

●
●
●
●
●

●

●

●

●
●●●●

●

●●

●●●

●●

●●

●
●●

●
●
●
●●

●●

●

●

●●●
●
●

●

●
●
●
●

●●

●

●

●

●

●●
●
●●
●

●

●

●
●

●

●
●
●
●●●
●

●

●

●

●

●●●●●

●●
●
●

●

●

●
●
●●●
●
●
●●
●

●

●

●

●
●

●●
●
●

●
●●

●●
●
●
●

●●●

●●
●●
●
●
●
●
●
●

●

●

●●

●

●●●●
●

●

●

●
●●●
●●●
●
●

●
●
●
●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●

●
●
●●

●●
●
●●

●●
●
●

●
●

●

●

●●
●
●

●
●●●●

●●

●

●●

●
●
●
●

●
●●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●
●●
●

●
●●

●●●●

●
●

●
●

●

●
●
●●●
●●
●

●●
●●

●

●
●

●
●

●
●
●
●●

●

●
●

●

●
●●

●

●●

●

●●
●
●

●

●●
●

●

●
●
●

●
●

●●
●

●

●
●
●

●
●
●

●

●●●

●
●●
●●●
●
●
●●●
●
●●
●
●
●
●●
●
●
●

●

●●●

●
●
●●

●●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●
●

●●

●

●

●
●

●

●

●
●●

●

●●

●●

●

●●
●

●

●

●

●
●
●
●

●

●●

●

●
●
●

●
●
●●

●●
●

●

●

●

●●
●
●
●
●

●

●
●

●
●

●

●●●

●●
●

●

●

●●

●
●

●
●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●●
●
●

●

●
●
●

●
●

●

●

●
●
●
●

●

●

●
●
●
●
●
●●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●●
●

●
●
●●

●
●

●

●

●

●

●

●
●●
●
●
●●

●
●●

●
●●
●●

●

●

●

●

●●●●

●●

●

●

●
●●

●
●
●
●

●

●●

●

●

●●
●
●●

●

●●

●

●●●●●●

●

●

●

●●

●

●
●
●

●
●
●●
●●●

●●

●

●●
●●●●

●

●●●

●

●
●●
●

●

●●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●
●●
●
●●
●●

●

●
●
●
●●
●

●●

●

●
●

●
●●

●
●

●
●

●●

●
●
●

●
●

●

●

●
●●
●
●●

●
●

●

●●
●
●

●

●

●
●●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●●●
●

●●
●
●●●
●●
●●●●
●

●
●
●
●

●●
●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●
●●

●

●●
●
●

●
●●
●
●

●●

●●●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●
●
●●

●

●
●

●

●

●

●●
●

●●

●●
●●

●

●

●

●●

●

●
●
●
●
●
●●
●

●
●
●

●

●●

●

●
●●

●

●
●

●

●

●

●
●●
●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●
●●

●

●

●
●
●

●
●

●

●

●●

●
●

●
●

●
●
●●
●
●●

●

●●

●

●

●

●
●
●●
●
●

●

●
●

●

●

●

●

●●

●●

●

●
●

●
●

●

●

●
●

●

●
●
●

●

●●●
●●●
●
●●

●

●●
●

●●●

●●
●

●

●
●
●
●

●

●

●
●
●●●●

●

●
●

●
●●

●●

●

●
●

●

●

●●

●

●
●

●

●●●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●
●

●
●

●

●●●
●
●

●

●

●

●

●●

●

●
●●

●●
●

●
●

●

●

●
●
●

●
●
●
●

●●

●
●

●●
●
●

●

●●

●

●

●

●
●

●
●●

●

●
●
●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●
●
●●

●●

●

●
●●●●

●

●

●

●
●●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●
●

●
●●●

●

●●
●
●●●●

●
●
●

●

●
●
●
●

●

●
●

●

●

●

●●●●
●●

●

●
●●●
●●

●
●
●

●

●
●

●
●●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●●●

●●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●
●●

●
●

●●
●

●

●

●

●

●

●
●

●●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●
●●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●
●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●●

●
●
●
●

●
●

●

●

●

●●

●

●●
●

●●

●

●
●
●

●

●●
●

●
●

●

●
●
●
●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●●
●
●
●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●
●●

●

●●

●

●

●

●

●

●
●

●●

●

●●●
●

●

●●
●

●

●

●

●

●

●
●
●

●
●
●

●●
●
●
●

●●
●
●

●

●

●

●

●

●
●

●

●●
●
●

●●●
●

●

●●

●

●

●

●
●●

●

●

●●

●
●

●

●

●●

●

●
●

●

●
●●

●
●
●●
●
●●
●
●
●

●
●
●●
●
●●
●●●●

●●

●

●●●

●

●

●

●
●
●●
●
●

●

●●
●●●

●

●

●
●●●●
●

●●●

●

●
●

●

●●

●●●
●●

●

●●●

●

●
●
●
●

●

●●●●

●

●●

●

●●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●
●

●

●●
●●

●

●

●

●
●

●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●
●●
●

●
●
●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●●
●

●

●

●
●

●
●

●●

●

●

●●
●

●

●●

●

●

●

●
●
●●

●

●

●

●
●

●
●

●

●●
●●

●

●

●

●
●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●
●

●

●

●
●

●

●
●
●
●
●
●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●●●
●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●
●

●●

●
●●

●

●

●
●●
●
●
●

●●

●

●
●

●

●

●

●
●
●
●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●
●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●●
●
●
●

●

●●

●

●

●

●●

●
●●

●

●

●

●
●

●

●●●●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●
●

●●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●
●
●

●

●

●●●

●

●●●
●
●
●

●

●●

●

●

●

●

●

●●

●●●●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●
●
●●

●

●

●
●
●●

●

●●●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●●●●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●●●
●●
●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●
●●
●

●

●

●
●
●

●

●

●

●

●●
●●

●

●●

●

●

●
●●●●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●●

●

●
●●

●
●

●

●

●

●

●

●●
●

●●●

●

●●●

●
●

●

●

●

●

●
●

●

●
●

●●●

●●

●

●
●
●

●

●

●

●

●●

●

●
●
●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●

●●

●
●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●
●
●
●
●

●

●●●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●●

●

●

●

●
●●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●●

●

●

●●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●●

●●

●
●

●

●
●

●●●

●
●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●
●

●

●●
●●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●
●

●●

●

●

●

●●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●●

●●

●●●●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●●

●

●

●●

●●

●
●
●

●

●

●●●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●
●

●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●
●

●●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●●●

●●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●
●

●●●●

●●

●●●●

●

●

●

●
●

●●●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●

●

●●

●

●
●

●●●●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●
●

●●●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●
●

●●

●●●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●
●
●
●

●●

●
●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●
●

●

●

●

●●

●

●●

●

●

●

●●

●●●●●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●●●

●●

●●●

●

●

●

●●

●●

●

●●●●

●

●

●●

●

●●●

●

●

●

●●●●

●

●●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●●●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●●●

●●●●●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●●

●

●

●

●●

●

●●

●

●

●

●●

●●
●●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●●●

●●

●●

●

●●

●●

●

●●

●
●

●

●●●●●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●●●

●●●

●●●

●

●●●

●

●●

●●

●

●

●●

●

●●●●

●

●●●●

●

●●●●●●

●

●●●●●

●

●●●●●

●
●

●

●

●

●●

●

●●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●●●●

●●

●

●

●●●

●
●

●

●●

●●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●●●●●●

●

●

●●●●

●
●

●

●

●●●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●

●

●●

●●

●●●●●●●●

●●

●

●

●

●

●●●

●

●

●

●●●●●

●●

●

●●

●●

●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●●

●
●

●

●●

●

●●●●●

●

●

●

●●●●

●●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●
●

●

●

●

●

●

●

●●●

●

●●

●

●●●●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●●

●

●●

●

●●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●●

●●

●

●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●

●●

●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●
●

●●●●

●●●

●

●

●

●

●

●●

●

●

●

●●●

●●●

●

●●

●

●●

●

●

●

●

●●

●●

●

●
●

●●●

●

●●

●●●

●

●

●

●●●●●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●●

●●

●●

●

●●●

●

●●●

●

●●●

●

●●

●●●●●●

●●●

●●

●●

●

●●●●●

●●

●

●

●

●

●●

●

●●●

●●

●●●

●

●

●

●●●

●●

●

●

●●

●

●

●●●

●●●●●

●

●

●

●

●●●●

●●

●

●●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●●●

●●●

●

●

●●

●

●●

●●

●

●●●●

●

●●●●●

●

●

●

●●●

●●●

●●

●●

●●●

●

●

●

●

●

●

●

●●●●●●

●●

●●●●●●

●●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●

●●

●●
●

●●●●●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●●●●●

●

●●●●

●

●●●●

●

●

●

●●●

●

●●●●●

●

●●

●

●

●

●●●●●●●

●

●

●●

●

●

●
●
●

●

●

●

●●

●●

●

●

●●

●

●

●●

●●

●

●●●●●

●

●●

●

●●●

●

●●●●●

●

●

●

●●●●

●●

●●

●

●●●●●

●

●●●●

●

●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●
●●
●

●

●●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●●●●●

●●

●

●●

●●●

●●

●

●

●

●

●●●●●

●

●

●●●

●●●

●

●●●

●

●●

●

●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●●●

●

●●●●●●

●●

●

●

●

●●●●

●●

●

●●

●

●●●●

●

●

●●

●●

●

●

●

●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●●●●

●

●●●

●●

●●

●

●●

●

●

●●●●●

●

●●●●●

●

●

●

●

●●

●●

●

●●●

●

●●

●

●

●

●
●

●●●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●●

●●

●

●●●●●

●

●

●

●●●●●●●

●

●

●

●●●

●

●

●●●

●●

●

●

●●

●

●

●

●

●●

●●●●●

●

●●●

●

●●●●

●

●

●

●

●●

●●

●

●

●●

●

●●●

●

●●●●

●●

●

●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●●●●

●

●

●●

●●●

●

●

●

●●●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●●

●●

●●●●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●●●

●

●

●

●●●●●●●●●

●●

●●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●●

●

●●●●

●

●●●

●●

●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●

●

●●●

●

●●●●●●●

●

●●●●●

●●●

●●●

●

●

●●

●●●

●

●●

●

●

●

●●●

●●

●

●

●

●

●●

●●●●●●

●

●●

●

●●●

●

●●●●

●

●●●●●●●

●

●●●●●

●

●

●

●

●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

●

●

●●●●●

●

●●●●●●

●

●●●●●●●

●●●

●●●●●●●●

●

●●●●●●●●●

●

●●

●●

●●●●●●

●

●●●●●

●

●
●

●

●

●

●

●
●●

●
●

●●●

●●

●

●

●

●●●●

●
●

●●

●

●

●●

●
●

●

●●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●●

●

●●

●

●●●●

●

●●●

●

●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●

●

●

●●●●●

●

●●●●

●

●●●

●

●

●

●●●●●

●

●●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●●

●●

●●

●●●●●●●●

●

●

●

●

●

●

●

●●

●●●

●

●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●

●

●●

●

●●●

●

●●●●

●

●●●●●●●

●

●●●●●

●

●●●●●●●

●●

●●●

●

●

●●●

●

●●

●

●

●●●●●●●●●●●

●

●

●

●●

●

●
●
●
●

●

●
●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●

●

●●

●

●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●

●●

●

●●

●

●●●●●●

●

●●

●

●●●●●●

●

●

●

●●

●●

●

●●●●●●

●

●●●●●

●

●

●

●●●●●

●●

●●●●●●

●

●●

●

●

●●●●●

●

●●●●

●

●●●●●●

●

●●

●

●

●

●

●

●●●●●

●

●●●●

●●

●●●●●●●●

●

●●●●●

●

●●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●
●

●

●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●●●●

●

●●●●●●●●

●

●

●

●

●●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●

●

●

●

●●●●●

●

●

●

●●●●●

●
●

●●●

●

●●●●●●●

●

●●

●

●

●

●

●●●

●●●●

●

●●●

●●

●●●●●●●●●●

●

●●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●

●

●●●●●

●

●●

●●●

●●●●●●●●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●

●

●●

●●

●●●●●●●●

●

●●●

●

●●●●●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●

●

●

●

●●

●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●

●

●

●

●●

●●

●●●●

●●

●●●●●●●●●●

●

●●●

●●

●●●

●

●●●●●●●●

●

●●●●

●

●

●

●

●

●●●

●●●●●

●

●

●

●●●

●

●

●●●●●●●

●

●●

●

●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●

●●●

●

●

●●

●●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●

●●

●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●

●●

●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●●

●

●●●

●

●

●

●

●

●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●

●●

●●

●

●●●●●●●●

●

●

●

●●●●●●●

●

●

●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●

●●●

●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●●

●●

●

●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●

●●

●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●

●●●

●●●

●

●●●●●

●

●●

●

●

●

●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●●●●●●●

●●

●●●●●●●●●●●●

●

●

●

●●●●

●

●

●●●●

●

●●●●●●●●●

●

●●●

●

●●

●

●●●●●

●

●●●

●●

●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●●

●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●

●

●●

●

●

●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●● ●●

●

●●●●●●● ●● ●●●●●●●●●●●●●

1e+00 1e+02 1e+04 1e+06

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Degree

C
ou

nt

Figure 6: ClueWeb09 in-degree distribution. Most
pages have relatively few predecessors, but a signifi-
cant fraction have more than 100, and 15 pages have
more than 1 million.

by gigabit Ethernet to a commodity switch.
We evaluated the effectiveness of the different MapReduce

optimizations by computing 5 iterations of PageRank with
different sets of optimization enabled. The mean and stan-
dard deviation runtimes for computing a single iteration us-
ing each configuration are displayed in Figure 7. A näıve
implementation of PageRank in MapReduce uses basic (non-
schimmy) message passing with the default HashPartitioner,
but no combiner. A standard implementation would also
include a combiner to partially sum PageRank mass contri-
butions directed to the same vertex from the same mapper.
For our web graph, the combiner reduces the number of
PageRank mass messages passed by over 50% from 1.4 bil-
lion to 674 million and improves performance by nearly 20%
over the näıve implementation. The basic implementation,
using combiners and the HashPartitioner, characterizes cur-
rent best practices and is used as the reference point for
measuring subsequent performance increases.

Our enhanced design patterns consistently and dramat-
ically improve performance beyond the basic implementa-
tion. The individual improvement of each technique is con-
siderable: in-mapper combining improved performance by
16%; the RangePartitioner improved performance by 24%;
and schimmy improved performance by 21%. Using all three
techniques improved performance by nearly 70% over the
existing best practice implementation. All three techniques
were consistently effective at improving performance with
the notable exception of the unoptimized (no combiner),
basic implementation using the RangePartitioner. This par-
ticular configuration was an outlier because simple uniform
range partitioning caused moderate load imbalance, and a
few straggler partitions delayed the overall runtime.

It is worthwhile to note that our enhanced design patterns
are applicable to the class of graph algorithms discussed in
Section 3, although their effectiveness depends on the con-
nectivity of the graph and the use of message passing within
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Figure 7: Evaluation of enhanced design patterns on the ClueWeb09 graph. Each bar shows the average and
standard deviation runtimes across 5 iterations of PageRank using the indicated set of optimizations. The
value below each bar shows the percent change in runtime relative to the baseline configuration using basic
message passing (non-schimmy), HashPartitioner, and standard combiner (shown as a dashed orange line).

the algorithm. For example, in-mapper combining is effec-
tive in the web graph setting because the power law distri-
bution of in-degrees implies that there are numerous mes-
sages destined for highly connected nodes to combine from
the same mapper. Without opportunities to aggregate mes-
sages, in-mapper combining would offer no performance ad-
vantage (although neither would standard combiners). The
RangePartitioner was particularly effective on this dataset
because the vast majority of links are to other pages in the
same domain (typical of web graphs). This enabled com-
biners to decrease the number of messages to 86 million,
representing an almost 8-fold improvement in locality over
the HashPartitioner. Such a simple clustering heuristic may
not be available in all other problems. Finally, PageRank is
actually a poor use case for the schimmy design pattern (in
the sense of being able to derive efficiency improvements)
because messages are passed along every edge in every iter-
ation. Other algorithms that pass fewer messages relative
to the size of the graph would benefit even more from the
schimmy design: as the total number messages decreases, ef-
ficiency improvements from schimmy will become more pro-
nounced since it is eliminating a greater fraction intermedi-
ate data that need to be shuffled (i.e., the graph structure).
Nevertheless, our results show that the improvements using
schimmy are significant on a real-world web graph.

7. FUTURE WORK AND CONCLUSIONS
This work presents three design patterns broadly applica-

ble to MapReduce graph algorithms. In-mapper combining
can be used in any setting where a standard out-of-memory
combiner can be used. Schimmy is useful because it obvi-
ates the need to reshuffle the graph structure at every iter-
ation. Range partitioning requires only that vertices within
a cluster, including approximate clusters derived from some
attribute of the vertex, are consecutively labeled.

Future work remains to improve these enhanced design
patterns even further. Partitioning could be improved to
cluster based on actual graph topology. The challenge is
that the graph will, in general, be too large to store entirely
in memory, so clustering must be performed in a distributed
fashion (perhaps with MapReduce). The schimmy design
pattern could be improved by modifying Hadoop’s schedul-
ing algorithm so that a particular key range is consistently
assigned to the same machine, which would allow the graph
structure to be merged from the local disk of the machine
running the reducer (as opposed to a remote network read,
as in the current design). This is challenging to implement
without compromising the robustness of the system to hard-
ware failures. Finally, the general problem of serialization
addressed by in-mapper combining could be improved by



storing more of the graph in memory between iterations.
MapReduce has emerged as an enabling technology for

analyzing large datasets, because its generalized distributed
framework facilitates many types of large-scale analysis with
fewer demands on the developer relative to other paradigms.
Already it has been used for a diverse set of applications
ranging from social network analysis to DNA sequence align-
ment. However, this generality and flexibility comes at a
significant performance cost when analyzing large graphs,
because standard best practices do not sufficiently address
serializing, partitioning, and distributing the graph across a
large cluster. Our enhanced designed patterns of in-mapper
combining, schimmy, and range partitioning directly address
these limitations, and together improved the performance of
PageRank by 69% compared to the best practice baseline.
This dramatic runtime improvement has significant implica-
tions for graph processing in allowing much larger graphs to
be efficiently analyzed.
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