

Big Data Infrastructure

CS 489/698 Big Data Infrastructure (Winter 2016)

Week 12: Real-Time Data Analytics (2/2) March 31, 2016

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Twitter's data warehousing architecture

Hashing for Three Common Tasks

0	Cardinality estimation	HashSet	HLL counter
	What's the cardinality of set S?How many unique visitors to this page?		
0	Set membership	HashSet	Bloom Filter
	Is x a member of set S?Has this user seen this ad before?		
0	Frequency estimation	HashMap	CMS
	 How many times have we observed x? How many queries has this user issued? 		

HyperLogLog Counter

- Task: cardinality estimation of set
 - size() \rightarrow number of unique elements in the set
- Observation: hash each item and examine the hash code
 - On expectation, 1/2 of the hash codes will start with 1
 - On expectation, 1/4 of the hash codes will start with 01
 - On expectation, I/8 of the hash codes will start with 001
 - On expectation, 1/16 of the hash codes will start with 0001

• ...

How do we take advantage of this observation?

Bloom Filters

- Task: keep track of set membership
 - $put(x) \rightarrow insert x into the set$
 - contains(x) \rightarrow yes if x is a member of the set
- Components
 - *m*-bit bit vector

• k hash functions: $h_1 \dots h_k$

Bloom Filters: put

Bloom Filters: put

What's going on here?

Bloom Filters

- Error properties: contains(x)
 - False positives possible
 - No false negatives
- Usage:
 - Constraints: capacity, error probability
 - Tunable parameters: size of bit vector *m*, number of hash functions *k*

Count-Min Sketches

- Task: frequency estimation
 - $put(x) \rightarrow increment count of x by one$
 - $get(x) \rightarrow$ returns the frequency of x
- Components
 - k hash functions: $h_1 \dots h_k$
 - *m* by *k* array of counters

0	I	0	0	0	0	0	0	0	0	0	0
0	0	0	0	I	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	I	0
0	0	0	I	0	0	0	0	0	0	0	0

0	2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	0
0	0	0	2	0	0	0	0	0	0	0	0

0	2	0	0	0	I	0	0	0	0	0	0
0	0	0	0	3	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	Ι
0	I	0	2	0	0	0	0	0	0	0	0

Count-Min Sketches

- Error properties:
 - Reasonable estimation of heavy-hitters
 - Frequent over-estimation of tail
- Usage:
 - Constraints: number of distinct events, distribution of events, error bounds
 - Tunable parameters: number of counters *m*, number of hash functions *k*, size of counters

Three Common Tasks

 Cardinality estimation 	HashSet	HLL counter
What's the cardinality of set S?How many unique visitors to this page	?	
Set membership	HashSet	Bloom Filter
 Is x a member of set S? Has this user seen this ad before? 		
 Frequency estimation 	HashMap	CMS
 How many times have we observed x? How many queries has this user issued 	?	

Stream Processing Architectures

Source: Wikipedia (River)

How do consumers get data from producers?

Tuple-at-a-Time Processing

Storm

• Open-source real-time distributed stream processing system

- Started at BackType
- BackType acquired by Twitter in 2011
- Now an Apache project

• Storm aspires to be the Hadoop of real-time processing!

Storm Topologies

- Storm topologies = "job"
 - Once started, runs continuously until killed
- A Storm topology is a computation graph
 - Graph contains nodes and edges
 - Nodes hold processing logic (i.e., transformation over its input)
 - Directed edges indicate communication between nodes
- Processing semantics:
 - At most once: without acknowledgments
 - At least once: with acknowledgements

Streams, Spouts, and Bolts

Streams

- The basic collection abstraction: an unbounded sequence of tuples
- Streams are transformed by the processing elements of a topology

Spouts

- Stream generators
- May propagate a single stream to multiple consumers

Bolts

- Subscribe to streams
- Streams transformers
- Process incoming streams and produce new ones

Stream Groupings

- Bolts are executed by multiple workers in parallel
- When a bolt emits a tuple, where should it go?
- Stream groupings:
 - Shuffle grouping: round-robin
 - Field grouping: based on data value

From Storm to Heron

• Heron = API compatible re-implementation of Storm

Mini-Batch Processing

Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic batch jobs

- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as RDDs and processes them using RDD operations
- Finally, the processed results of the RDD operations are returned in batches

Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic batch jobs

- Batch sizes as low as ¹/₂ second, latency ~ I second
- Potential for combining batch processing and streaming processing in the same system

Example: Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

Example: Get hashtags from Twitter

Example: Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Fault-tolerance

- RDDs are remember the sequence of operations that created it from the original fault-tolerant input data
- Batches of input data are replicated in memory of multiple worker nodes, therefore fault-tolerant
- Data lost due to worker failure, can be recomputed from input data

Key concepts

- DStream sequence of RDDs representing a stream of data
 - Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets
- Transformations modify data from on DStream to another
 - Standard RDD operations map, countByValue, reduce, join, ...
 - Stateful operations window, countByValueAndWindow, ...
- Output Operations send data to external entity
 - saveAsHadoopFiles saves to HDFS
 - foreach do anything with each batch of results

Example: Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

- val hashTags = tweets.flatMap (status => getTags(status))
- val tagCounts = hashTags.countByValue()

Example: Count the hashtags over last 10 mins

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

Example: Count the hashtags over last 10 mins

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

Smart window-based reduce

- Technique to incrementally compute count generalizes to many reduce operations
 - Need a function to "inverse reduce" ("subtract" for counting)
- Could have implemented counting as:

hashTags.reduceByKeyAndWindow(_ + _, _ - _, Minutes(I), ...)

Integrating Batch and Online Processing

A domain-specific language (in Scala) designed to integrate batch and online MapReduce computations

Idea #I:Algebraic structures provide the basis for seamless integration of batch and online processing

Idea #2: For many tasks, close enough is good enough Probabilistic data structures as monoids

Batch and Online MapReduce

"map"

flatMap[T, U](fn: T => List[U]): List[U]

map[T, U](fn: T => U): List[U]

filter[T](fn: T => Boolean): List[T]

"reduce"

sumByKey

Idea #I:Algebraic structures provide the basis for seamless integration of batch and online processing

Semigroup =
$$(M, \oplus)$$

 $\oplus : M \times M \rightarrow M, \text{ s.t.}, \forall m_1, m_2, m_3 \supseteq M$
 $(m_1 \oplus m_2) \oplus m_3 = m_1 \oplus (m_2 \oplus m_3)$

Monoid = Semigroup + identity \mathcal{E} s.t., $\mathcal{E} \oplus m = m \oplus \mathcal{E} = m, \forall m \supseteq M$

Commutative Monoid = Monoid + commutativity $\forall m_1, m_2 \supseteq M, m_1 \oplus m_2 = m_2 \oplus m_1$

Simplest example: integers with + (addition)

Idea #I:Algebraic structures provide the basis for seamless integration of batch and online processing

Summingbird values must be at least semigroups (most are commutative monoids in practice)

Power of associativity = You can put the parentheses anywhere!

 $(a \oplus b \oplus c \oplus d \oplus e \oplus f)$ Batch = Hadoop $(((((a \oplus b) \oplus c) \oplus d) \oplus e) \oplus f)$ Online = Storm $((a \oplus b \oplus c) \oplus (d \oplus e \oplus f))$ Mini-batches

Results are exactly the same!

Summingbird Word Count

Run on Scalding (Cascading/Hadoop)

Run on Storm

"Boring" monoids addition, multiplication, max, min moments (mean, variance, etc.) sets tuples of monoids hashmaps with monoid values

More interesting monoids?

Idea #2: For many tasks, close enough is good enough!

"Interesting" monoids Bloom filters (set membership) HyperLogLog counters (cardinality estimation) Count-min sketches (event counts)

Common features

I.Variations on hashing2. Bounded error

Cheat sheet

	Exact	Approximate
Set membership	set	Bloom filter
Set cardinality	set	hyperloglog counter
Frequency count	hashmap	count-min sketches

Task: count queries by hour

Exact with hashmaps

```
def wordCount[P <: Platform[P]]
  (source: Producer[P, Query],
   store: P#Store[Long, Map[String, Long]]) =
   source.flatMap { query =>
      (query.getHour, Map(query.getQuery -> 1L))
   }.sumByKey(store)
```

Approximate with CMS

```
def wordCount[P <: Platform[P]]
  (source: Producer[P, Query],
   store: P#Store[Long, SketchMap[String, Long]])
  (implicit countMonoid: SketchMapMonoid[String, Long]) =
   source.flatMap { query =>
      (query.getHour,
      countMonoid.create((query.getQuery, 1L)))
   }.sumByKey(store)
```

Hybrid Online/Batch Processing

Example: count historical clicks and clicks in real time

Questions?

Source: Wikipedia (Japanese rock garden)