24 WATERLOO

Big Data Infrastructure
CS 489/698 Big Data Infrastructure (Winter 2016)

Week [2: Real-Time Data Analytics (2/2)
March 31,2016

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at http://lintool.github.io/bigdata-20 | 6w/

‘@ ®®@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Venica HADOOP

Analytics, Bl

. 7
ue’

Analysis

Twitter’s data warehousing architecture

Hashing for Three Common Tasks

O Cardinality estimation HashSet HLL counter

® What’s the cardinality of set $?
e How many unique visitors to this page!

O Set membership HashSet Bloom Filter

e Is x a member of set §?

e Has this user seen this ad before!?

o Frequency estimation HashMap CMS

e How many times have we observed x?

® How many queries has this user issued?

HyperLogLog Counter

O Task: cardinality estimation of set
e size() — number of unique elements in the set
O Observation: hash each item and examine the hash code

e On expectation, 1/2 of the hash codes will start with |

e On expectation, 1/4 of the hash codes will start with Ol

e On expectation, |/8 of the hash codes will start with 001

e On expectation, |/16 of the hash codes will start with 000
S

How do we take advantage of this observation!?

Bloom Filters

O Task: keep track of set membership

® put(x) — insert x into the set
e contains(x) — yes if x is a member of the set

o Components

® m-bit bit vector

® k hash functions: h, ... h,

Bloom Filters: put

put (x h,(x) =2
h,(x) =5
hy(x) = 1

Bloom Filters: put

put X

Bloom Filters: contains

contains [x h (x) =2
h,(x) =5
hy(x) = 1

Bloom Filters: contains

contains

X

h (x) =2
h,(x) =5
hy(x) = 11

h(x).
[hy(x)]

= YES

h3(x)]

Bloom Filters: contains

contains y h,(y)
h,(y)

h;(y)

2
6
9

Bloom Filters: contains

contains

4

hily) =2
hy(y) = 6
hs(y) =9
AND <
0 | 0 0 0 0

What'’s going on here!

> > >

h(y)]
hy(y).

» = NO

hs(y).

Bloom Filters

O Error properties: contains(x)

e False positives possible
e No false negatives

O Usage:

e Constraints: capacity, error probability

e Tunable parameters: size of bit vector m, number of hash functions k

Count-Min Sketches

O Task: frequency estimation

® put(x) — increment count of x by one
e get(x) — returns the frequency of x

o Components

® k hash functions: h, ... h,

e m by k array of counters

Count-Min Sketches: put

put [x h;(x) =2
h,(x) =5
hy(x) = 1
h,(x) = 4

Count-Min Sketches: put

put X
0 I 0 0 0 0 0 0
0 0 0 0 I 0 0 0

Count-Min Sketches: put

put [x h;(x) =2
h,(x) =5
hy(x) = 1
h,(x) = 4

Count-Min Sketches: put

put X

Count-Min Sketches: put

put |y h,(y) =6
h,(y) =5
hs(y) = 12
h,(y) = 2

Count-Min Sketches: put

put y

Count-Min Sketches: get

cet (0 i) =2
h,(x) =5
hy(x) = 1
h,(x) = 4

Count-Min Sketches: get

cet (0 i) =2
h,(x) =5
hy(x) = 1
h,(x) = 4

>

Count-Min Sketches: get

get hi(y) = 6
h,(y) =5
hs(y) = 12
h,(y) = 2

Count-Min Sketches: get

get hi(y) = 6
h,(y) =5
hs(y) = 12
h,(y) = 2

Count-Min Sketches

O Error properties:

e Reasonable estimation of heavy-hitters

e Frequent over-estimation of tail

O Usage:
e Constraints: number of distinct events, distribution of events, error
bounds

e Tunable parameters: number of counters m, number of hash functions k,
size of counters

Three Common Tasks

O Cardinality estimation HashSet HLL counter

® What’s the cardinality of set $?
e How many unique visitors to this page!

O Set membership HashSet Bloom Filter

e Is x a member of set §?

e Has this user seen this ad before!?

o Frequency estimation HashMap CMS

e How many times have we observed x?

® How many queries has this user issued?

Source: Wikipedia {River)

Producer/Consumers

{ Producer } Consumer

How do consumers get data from producers!?

Producer/Consumers

Producer > Consumer

Producer pushes
e.g., callback

Producer/Consumers

Producer = Consumer

Consumer pulls
e.g., poll, tail

Producer/Consumers

Consumer
Producer Consumer
Producer Consumer

Consumer

Producer/Consumers

Consumer
afla

Producer K L Consumer

9

o)

L

o
[Producer Consumer
Consumer

Queue, Pub/Sub

Tuple-at-a-Time Processing

Storm

O Open-source real-time distributed stream processing system

e Started at BackType
e BackType acquired by Twitter in 201 |

e Now an Apache project

O Storm aspires to be the Hadoop of real-time processing!

Storm Topologies

O Storm topologies = “job”

e Once started, runs continuously until killed

O A Storm topology is a computation graph

e Graph contains nodes and edges
e Nodes hold processing logic (i.e., transformation over its input)

® Directed edges indicate communication between nodes

O Processing semantics:

e At most once: without acknowledgments

e At least once: with acknowledgements

Streams, Spouts, and Bolts

e Streams

— The basic collection abstraction: an
unbounded sequence of tuples

— Streams are transformed by the stream

processing elements of a topology

* Spouts
— Stream generators

— May propagate a single stream to
multiple consumers

* Bolts stream
— Subscribe to streams
— Streams transformers

— Process incoming streams and produce
new ones

Stream Groupings

O Bolts are executed by multiple workers in parallel

O When a bolt emits a tuple, where should it go!?

O Stream groupings:

e Shuffle grouping: round-robin spout spout

e Field grouping: based on data value

bolt

From Storm to Heron

O Heron = APl compatible re-implementation of Storm

TOPOLOGY
SUBMISSION

Topology N

Source: https://blog.twitter.com/2015/flying-faster-with-twitter-heron

Logical Plan,

Topology Physical Plan and

Master

Execution State

Sync Physical Plan . \seereseeeo "

-

Stream Stream Metrics
Manager : Manager Manager [

CONTAINER CONTAINER

Source: https://blog.twitter.com/2015/flying-faster-with-twitter-heron

Mini-Batch Processing

Discretized Stream Processing

Run a streaming computation as a series of
very small, deterministic batch jobs

live data stream

Spark
= Chop up the live stream into batches of X Streaming
seconds
= Spark treats each batch of data as RDDs batches of X —
and processes them using RDD operations seconds

= Finally, the processed results of the RDD
operations are returned in batches <:| o B

processed
results

Source: All following Spark Streaming slides by Tathagata Das

Discretized Stream Processing

Run a streaming computation as a series of
very small, deterministic batch jobs

live data stream

, o | SPark

= Batch sizes as low as '/2 second, latency ~ | Streaming

second \N T

]

= Potential for combining batch processing batches of X —

and streaming processing in the same seconds —

system

P
processed

results

Example: Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream:a sequence of RDD representing a stream of data

Twitter Streaming API M W M #
tweets DStream m m

stored in memory as an RDD
(immutable, distributed)

Example: Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

new DStream transformation: modify data in one
Dstream to create another DStream

tweets DStream

hashTags Dstream
[#cat, #dog, ...]

Example: Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

batch @ t batch @ t+1 batch @ t+2
tweets DStream

atMap atMap atMap

hashTags DStream

save save

every batch
saved to HDFS

Fault-tolerance

= RDDs are remember the sequence
of operations that created it from
the original fault-tolerant input data

= Batches of input data are replicated
in memory of multiple worker
nodes, therefore fault-tolerant

= Data lost due to worker failure,
can be recomputed from input data

tweets
RDD

hashTags
RDD

input data
replicated
in memory

lost partitions
recomputed on
other workers

Key concepts

= DStream — sequence of RDDs representing a stream of data
- Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

* Transformations — modify data from on DStream to another
- Standard RDD operations — map, countByValue, reduce, join, ...

- Stateful operations — window, countByValueAndWindow, ...

= Output Operations — send data to external entity
- saveAsHadoopFiles — saves to HDFS

- foreach — do anything with each batch of results

Example: Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.countByValue()

batch @ t batch @ t+1 batch @ t+2
tweets
flatMap flatMap flatMap
hashTags
ap ap : ap
ank ank ankk
| SN | SN | S
educeByKey educeByKey educeByKey
tagCounts

[(#cat, 10), (#dog, 25), ..

Example: Count the hashtags over last 10 mins

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(10), Seconds(1l)).countByValue()

sliding window

: window length | | sliding interval
operation

Example: Count the hashtags over last 10 mins

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

t-1 t t+ | t+2 t+3

hashTags

tagCounts

Q Q count over all

the data in the
window

Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

t-1 t t+| t+2 t+3

hashTags

add the
counts from
the new batch
+ in the window

subtract

the counts
tagCounts | | === | from batch
---------- before the

window

Smart window-based reduce

= Technique to incrementally compute count generalizes to many reduce
operations

- Need a function to “inverse reduce” (“subtract” for counting)

* Could have implemented counting as:

hashTags.reduceByKeyAndWindow(_ + _, - _, Minutes(l), ...)

Integrating Batch and Online Processing

Summingbird

A domain-specific language (in Scala) designed
to integrate batch and online MapReduce computations

Idea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

|dea #2: For many tasks, close enough is good enough
Probabilistic data structures as monoids

Batch and Online MapReduce

€¢ ’»

n1ap>
flatMap[T, U]l (fn: T => List[U]): List[U]
map[T, Ul (fn: T => U): List[U]

filter[T]1(fn: T => Boolean): List[T]

“reduce”

sumByKey

Idea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

Semigroup = (M, @)
®@MxXM—->Mst,Vm,m,ymSM
(M) ® my) ®mz=m,; & (m; & m;)

Monoid = Semigroup + identity
ESL,LEDM=MO®E="mM Vm>2M

Commutative Monoid = Monoid + commutativity
Vm,m, 3 Mm, &m,=m, ® m,

Simplest example: integers with + (addition)

Idea #1:Algebraic structures provide the basis for
seamless integration of batch and online processing

Summingbird values must be at least semigroups
(most are commutative monoids in practice)

Power of associativity =
You can put the parentheses anywhere!

(a®obdcododedf) Batch = Hadoop
(((a@b)@c)odd)de)®f) Online =Storm
(a®b@dc)®d(d®edf)) Mini-batches

\
same.
Results are exactly the

Summingbird Word Count

def wordCount[P <: Platform[P]]

(source: Producer[P, Stringl], ‘(//where data goes

store: P#Store[String, Long]) g .

source.flatMap { sentence => éﬂ/ﬂ/,,——’ map

toWords (sentence) .map(_ -> 1L)
}.sumByKey (store) < reduce

where data comes from

Run on Scalding (Cascading/Hadoop)

Scalding.run { read from HDFS
wordCount[Scalding] (
Scalding.source[Tweet] ("source_data"),
Scalding.store[String, Longl ("count out")

)
} \ write to HDFS

Run on Storm

Storm.run { read from message queue
wordCount[Storm] (

new TweetSpout(),
new MemcacheStore[String, Long]

)
}

write to KV store

Reduce

Reduce

y

y

Output

Output

memcached

“Boring” monoids

addition, multiplication, max, min
moments (mean, variance, etc.)
sets
tuples of monoids
hashmaps with monoid values

. 4]
More interesting monoid

|dea #2: For many tasks, close enough is good enough!

“Interesting” monoids

Bloom filters (set membership)
HyperLoglog counters (cardinality estimation)
Count-min sketches (event counts)

Common features
| .Variations on hashing
2. Bounded error

Cheat sheet

Exact Approximate
Set membership set Bloom filter
Set cardinality set hyperloglog counter

Frequency count hashmap count-min sketches

Task: count queries by hour

Exact with hashmaps

def wordCount[P <: Platform[P]]
(source: Producer [P, Query],
store: P#Store[Long, Map[String, Longl]) =
source.flatMap { query =>
(query.getHour, Map(query.getQuery -> 1L))
}.sumByKey (store)

Approximate with CMS

def wordCount[P <: Platform[P]]
(source: Producer [P, Query],
store: P#Store[Long, SketchMap[String, Longl])
(implicit countMonoid: SketchMapMonoid[String, Long]) =
source.flatMap { query =>
(query.getHour,
countMonoid.create((query.getQuery, 1L)))
}.sumByKey (store)

Hybrid Online/Batch Processing

Example: count historical clicks and clicks in real time

read write i
Message Storm topology online results
Queue key-value store

'Q‘

>
. ©
________ © 2I|2e_ _ Summingbird L 5 L
batch program E
/ i
query
Hadoop job batch results

key-value store

74 M R NN78 g

read writey
N

source, source, source; ... store; store, store; ...

