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Twitter’s data warehousing architecture
What’s the issue?



Hashing for Three Common Tasks
¢  Cardinality estimation

l  What’s the cardinality of set S?
l  How many unique visitors to this page?

¢  Set membership
l  Is x a member of set S?

l  Has this user seen this ad before?

¢  Frequency estimation
l  How many times have we observed x?

l  How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS



HyperLogLog Counter
¢  Task: cardinality estimation of set

l  size() → number of unique elements in the set

¢  Observation: hash each item and examine the hash code
l  On expectation, 1/2 of the hash codes will start with 1

l  On expectation, 1/4 of the hash codes will start with 01

l  On expectation, 1/8 of the hash codes will start with 001

l  On expectation, 1/16 of the hash codes will start with 0001

l  …

How do we take advantage of this observation?



Bloom Filters
¢  Task: keep track of set membership

l  put(x) → insert x into the set
l  contains(x) → yes if x is a member of the set

¢  Components
l  m-bit bit vector

l  k hash functions: h1 … hk

0 0 0 0 0 0 0 0 0 0 0 0



Bloom Filters: put

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11



Bloom Filters: put

0 1 0 0 1 0 0 0 0 0 1 0

xput



Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11



Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

AND                      = YES       
A[h1(x)]
A[h2(x)]
A[h3(x)]



Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9



Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

What’s going on here?

AND                      = NO     
A[h1(y)]
A[h2(y)]
A[h3(y)]



Bloom Filters
¢  Error properties: contains(x)

l  False positives possible
l  No false negatives

¢  Usage:
l  Constraints: capacity, error probability

l  Tunable parameters: size of bit vector m, number of hash functions k



Count-Min Sketches
¢  Task: frequency estimation

l  put(x) → increment count of x by one
l  get(x) → returns the frequency of x

¢  Components
l  k hash functions: h1 … hk

l  m by k array of counters

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

m

k



Count-Min Sketches: put

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4



Count-Min Sketches: put

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput



Count-Min Sketches: put

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4



Count-Min Sketches: put

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

xput



Count-Min Sketches: put

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

yput h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2



Count-Min Sketches: put

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yput



Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4



Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

A[h3(x)]MIN                      = 2    

A[h1(x)]
A[h2(x)]

A[h4(x)]



Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2



Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

MIN                      = 1    A[h3(y)]

A[h1(y)]
A[h2(y)]

A[h4(y)]



Count-Min Sketches
¢  Error properties:

l  Reasonable estimation of heavy-hitters
l  Frequent over-estimation of tail

¢  Usage:
l  Constraints: number of distinct events, distribution of events, error 

bounds
l  Tunable parameters: number of counters m, number of hash functions k, 

size of counters



Three Common Tasks
¢  Cardinality estimation

l  What’s the cardinality of set S?
l  How many unique visitors to this page?

¢  Set membership
l  Is x a member of set S?

l  Has this user seen this ad before?

¢  Frequency estimation
l  How many times have we observed x?

l  How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS



Source: Wikipedia (River) 

Stream Processing Architectures



Producer/Consumers

Producer Consumer

How do consumers get data from producers?



Producer/Consumers

Producer Consumer

Producer pushes
e.g., callback



Producer/Consumers

Producer Consumer

e.g., poll, tail
Consumer pulls



Producer/Consumers

Producer Consumer

Consumer

Consumer

Consumer

Producer



Producer/Consumers

Producer Consumer

Consumer

Consumer

Consumer

Producer
Br

ok
er

Queue, Pub/Sub

Kafka



Tuple-at-a-Time Processing



Storm
¢  Open-source real-time distributed stream processing system

l  Started at BackType
l  BackType acquired by Twitter in 2011

l  Now an Apache project

¢  Storm aspires to be the Hadoop of real-time processing!



Storm Topologies
¢  Storm topologies = “job”

l  Once started, runs continuously until killed

¢  A Storm topology is a computation graph
l  Graph contains nodes and edges 

l  Nodes hold processing logic (i.e., transformation over its input)

l  Directed edges indicate communication between nodes

¢  Processing semantics:
l  At most once: without acknowledgments

l  At least once: with acknowledgements



Streams, Spouts, and Bolts

bolt bolt bolt

bolt bolt

bolt bolt

spoutspout

spout

stream

stream stream

•  Spouts

–  Stream generators

–  May propagate a single stream to 
multiple consumers

•  Bolts

–  Subscribe to streams

–  Streams transformers 

–  Process incoming streams and produce 
new ones

•  Streams

–  The basic collection abstraction: an 
unbounded sequence of tuples 

–  Streams are transformed by the 
processing elements of a topology 



Stream Groupings
¢  Bolts are executed by multiple workers in parallel

¢  When a bolt emits a tuple, where should it go?

¢  Stream groupings: 
l  Shuffle grouping: round-robin

l  Field grouping: based on data value 

spout spout

boltbolt

bolt



From Storm to Heron
¢  Heron = API compatible re-implementation of Storm

Source: https://blog.twitter.com/2015/flying-faster-with-twitter-heron 



Source: https://blog.twitter.com/2015/flying-faster-with-twitter-heron 



Mini-Batch Processing



Discretized Stream Processing 

Run a streaming computation as a series of 
very small, deterministic batch jobs

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results

§  Chop up the live stream into batches of X 
seconds 

§  Spark treats each batch of data as RDDs 
and processes them using RDD operations

§  Finally, the processed results of the RDD 
operations are returned in batches

Source: All following Spark Streaming slides by Tathagata Das  



Discretized Stream Processing 

Run a streaming computation as a series of 
very small, deterministic batch jobs

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results

§  Batch sizes as low as ½ second, latency ~ 1 
second

§  Potential for combining batch processing 
and streaming processing in the same 
system



Example: Get hashtags from Twitter 

val	
  tweets	
  =	
  ssc.twitterStream(<Twitter	
  username>,	
  <Twitter	
  password>)	
  

	
  
DStream: a sequence of RDD representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

Twitter Streaming API

stored in memory as an RDD 
(immutable, distributed)



Example: Get hashtags from Twitter 

val	
  tweets	
  =	
  ssc.twitterStream(<Twitter	
  username>,	
  <Twitter	
  password>)	
  

val	
  hashTags	
  =	
  tweets.flatMap	
  (status	
  =>	
  getTags(status))	
  

	
  

flatMap flatMap flatMap

…

transformation: modify data in one ���
Dstream to create another DStream 

new DStream

new RDDs created 
for every batch 

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, … ]



Example: Get hashtags from Twitter  

val	
  tweets	
  =	
  ssc.twitterStream(<Twitter	
  username>,	
  <Twitter	
  password>)	
  

val	
  hashTags	
  =	
  tweets.flatMap	
  (status	
  =>	
  getTags(status))	
  

hashTags.saveAsHadoopFiles("hdfs://...")	
  

	
   output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch 
saved to HDFS



Fault-tolerance

§ RDDs are remember the sequence 
of operations that created it from 
the original fault-tolerant input data

§ Batches of input data are replicated 
in memory of multiple worker 
nodes, therefore fault-tolerant

§ Data lost due to worker failure, 
can be recomputed from input data

input data 
replicated
in memory

flatMap

lost partitions 
recomputed on 
other workers

tweets
RDD

hashTags
RDD



Key concepts

§ DStream – sequence of RDDs representing a stream of data
-  Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

§ Transformations – modify data from on DStream to another

-  Standard RDD operations – map, countByValue, reduce, join, …

-  Stateful operations – window, countByValueAndWindow, …

§ Output Operations – send data to external entity

-  saveAsHadoopFiles – saves to HDFS

-  foreach – do anything with each batch of results



Example: Count the hashtags

val	
  tweets	
  =	
  ssc.twitterStream(<Twitter	
  username>,	
  <Twitter	
  password>)	
  

val	
  hashTags	
  =	
  tweets.flatMap	
  (status	
  =>	
  getTags(status))	
  

val	
  tagCounts	
  =	
  hashTags.countByValue()	
  

flatMap

map

reduceByKey

flatMap

map

reduceByKey

…

flatMap

map

reduceByKey

batch @ t+1batch @ t batch @ t+2

hashTags

tweets

tagCounts
[(#cat, 10), (#dog, 25), ... ]



Example: Count the hashtags over last 10 mins

val	
  tweets	
  =	
  ssc.twitterStream(<Twitter	
  username>,	
  <Twitter	
  password>)	
  

val	
  hashTags	
  =	
  tweets.flatMap	
  (status	
  =>	
  getTags(status))	
  

val	
  tagCounts	
  =	
  hashTags.window(Minutes(10),	
  Seconds(1)).countByValue()	
  

sliding window 
operation window length sliding interval



tagCounts

Example: Count the hashtags over last 10 mins	
  

val	
  tagCounts	
  =	
  hashTags.window(Minutes(10),	
  Seconds(1)).countByValue()	
  

	
  

hashTags

t-1 t t+1 t+2 t+3

sliding window

countByValue

count over all 
the data in the 

window



?

Smart window-based countByValue

val	
  tagCounts	
  =	
  hashtags.countByValueAndWindow(Minutes(10),	
  Seconds(1))	
  

	
  
	
  
	
  	
  	
  hashTags

t-1 t t+1 t+2 t+3

+
+
–

countByValue

add the 
counts from 

the new batch 
in the window

subtract 
the counts 
from batch 
before the 
window

tagCounts



Smart window-based reduce

§ Technique to incrementally compute count generalizes to many reduce 
operations

-  Need a function to “inverse reduce” (“subtract” for counting)

§ Could have implemented counting as:

hashTags.reduceByKeyAndWindow(_ + _, _ - _, Minutes(1), …)



Integrating Batch and Online Processing



A domain-specific language (in Scala) designed
to integrate batch and online MapReduce computations

Summingbird

Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing

Probabilistic data structures as monoids
Idea #2: For many tasks, close enough is good enough



“map”

flatMap[T, U](fn: T => List[U]): List[U] 

map[T, U](fn: T => U): List[U] 

filter[T](fn: T => Boolean): List[T] 

sumByKey 

Batch and Online MapReduce 

“reduce”



Semigroup = ( M , ⊕ )
⊕ : M × M → M, s.t., ∀m1, m2, m3 ∋ M

Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing

(m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3) 

Monoid = Semigroup + identity

Commutative Monoid = Monoid + commutativity

ε s.t., ε ⊕ m = m ⊕ ε = m, ∀m ∋ M

∀m1, m2 ∋ M, m1 ⊕ m2 = m2 ⊕ m1

Simplest example:  integers with + (addition)



( a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f )

You can put the parentheses anywhere!

Batch = Hadoop

Mini-batches
Online = Storm

 Summingbird values must be at least semigroups���
(most are commutative monoids in practice)

((((( a ⊕ b ) ⊕ c ) ⊕ d ) ⊕ e ) ⊕ f )
(( a ⊕ b ⊕ c ) ⊕ ( d ⊕ e ⊕ f ))

Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing

Power of associativity =

Results are exactly the same!



def wordCount[P <: Platform[P]] 
  (source: Producer[P, String], 
   store: P#Store[String, Long]) = 
   source.flatMap { sentence => 
      toWords(sentence).map(_ -> 1L) 
    }.sumByKey(store) 

Scalding.run { 
  wordCount[Scalding]( 
    Scalding.source[Tweet]("source_data"), 
    Scalding.store[String, Long]("count_out") 
  ) 
} 

Storm.run { 
  wordCount[Storm]( 
    new TweetSpout(), 
    new MemcacheStore[String, Long] 
  ) 
} 

Summingbird Word Count

Run on Scalding (Cascading/Hadoop)

Run on Storm

where data comes from
where data goes

“map”

“reduce”

read from HDFS

write to HDFS

read from message queue

write to KV store



Map Map Map 

Input Input Input 

Reduce Reduce 

Output Output 

Spout 

Bolt 

memcached 

Bolt Bolt 

Bolt Bolt 



“Boring” monoids

addition, multiplication, max, min
moments (mean, variance, etc.)

sets

hashmaps with monoid values

More interesting monoids?

tuples of monoids



Idea #2: For many tasks, close enough is good enough!

“Interesting” monoids
Bloom filters (set membership)

HyperLogLog counters (cardinality estimation)
Count-min sketches (event counts)

1. Variations on hashing
2. Bounded error

Common features



Cheat sheet

Set membership

Set cardinality

Frequency count

set

set

hashmap

Bloom filter

hyperloglog counter 

count-min sketches

Exact Approximate



def wordCount[P <: Platform[P]] 
  (source: Producer[P, Query], 
   store: P#Store[Long, Map[String, Long]]) = 
   source.flatMap { query => 
      (query.getHour, Map(query.getQuery -> 1L)) 
    }.sumByKey(store) 

def wordCount[P <: Platform[P]] 
  (source: Producer[P, Query], 
   store: P#Store[Long, SketchMap[String, Long]]) 
  (implicit countMonoid: SketchMapMonoid[String, Long]) = 
   source.flatMap { query => 
      (query.getHour, 
       countMonoid.create((query.getQuery, 1L))) 
    }.sumByKey(store) 

Exact with hashmaps

Task: count queries by hour

Approximate with CMS



Hybrid Online/Batch Processing

online results  
key-value store 

batch results  
key-value store 

client 
Summingbird 

program 

Message 
Queue 

Hadoop job 

Storm topology 

store1 source2 source3 … store2 store3 … source1 

read write 

ingest 

HDFS 

read write 

query 

query 

online 

batch 

cl
ie

nt
 li

br
ar

y 

Example: count historical clicks and clicks in real time



Source: Wikipedia (Japanese rock garden) 

Questions?


