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OLTP/OLAP Architecture

OLTP OLAP
ETL���

(Extract, Transform, and Load)



Twitter’s data warehousing architecture
What’s the issue?



real-time 
vs. 

online 
vs. 

streaming



What is a data stream?
¢  Sequence of items:

l  Structured (e.g., tuples)
l  Ordered (implicitly or timestamped)

l  Arriving continuously at high volumes

l  Sometimes not possible to store entirely

l  Sometimes not possible to even examine all items



What to do with data streams?
¢  Network traffic monitoring

¢  Datacenter telemetry monitoring

¢  Sensor networks monitoring

¢  Credit card fraud detection

¢  Stock market analysis

¢  Online mining of click streams

¢  Monitoring social media streams



What’s the scale? Packet data streams
¢  Single 2 Gb/sec link; say avg. packet size is 50 bytes

l  Number of packets/sec = 5 million 
l  Time per packet = 0.2 microseconds 

¢  If we only capture header information per packet: ���
source/destination IP, time, no. of bytes, etc. – at least 10 bytes
l  50 MB per second

l  4+ TB per day

l  Per link!

What if you wanted to do deep-packet inspection?
Source: Minos Garofalakis, Berkeley  CS 286 
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What are the top (most frequent) 1000 (source, dest) 
pairs seen by R1 over the last month? 

SELECT COUNT (R1.source, R1.dest) 
FROM  R1, R2 
WHERE R1.source = R2.source 

SQL Join Query 

How many distinct (source, dest) pairs have 
been seen by both R1 and R2 but not R3? 

Set-Expression Query 

Off-line analysis – Data 
access is slow, expensive 

 
DBMS 

 

Source: Minos Garofalakis, Berkeley  CS 286 



Common Architecture

¢  Data stream management system (DSMS) at observation points
l  Voluminous streams-in, reduced streams-out

¢  Database management system (DBMS)
l  Outputs of DSMS can be treated as data feeds to databases

DSMS

DSMS

DBMS

data streams
queries

queries
data feeds

Source: Peter Bonz 
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DBMS vs. DSMS

DBMS
l  Model: persistent relations 
l  Relation: tuple set/bag

l  Data update: modifications 

l  Query: transient 

l  Query answer: exact
l  Query evaluation: arbitrary 

l  Query plan: fixed 

DSMS
l  Model: (mostly) transient relations 
l  Relation: tuple sequence 

l  Data update: appends

l  Query: persistent 

l  Query answer: approximate
l  Query evaluation: one pass 

l  Query plan: adaptive 

Source: Peter Bonz 



What makes it hard?
¢  Intrinsic challenges:

l  Volume
l  Velocity

l  Limited storage

l  Strict latency requirements

¢  System challenges:
l  Load balancing

l  Unreliable and out-of-order message delivery
l  Fault-tolerance

l  Consistency semantics (at most once, exactly once, at least once)



What exactly do you do?
¢  “Standard” relational operations:

l  Select
l  Project

l  Transform (i.e., apply custom UDF)

l  Group by

l  Join
l  Aggregations

¢  What else do you need to make this “work”?



Issues of Semantics
¢  Group by… aggregate

l  When do you stop grouping and start aggregating?

¢  Joining a stream and a static source
l  Simple lookup

¢  Joining two streams
l  How long do you wait for the join key in the other stream?

¢  Joining two streams, group by and aggregation
l  When do you stop joining?

What’s the solution?



Windows
¢  Mechanism for extracting finite relations from an infinite stream

¢  Windows restrict processing scope:

l  Windows based on ordering attributes (e.g., time) 
l  Windows based on item (record) counts

l  Windows based on explicit markers (e.g., punctuations)

l  Variants (e.g., some semantic partitioning constraint)



Windows on Ordering Attributes
¢  Assumes the existence of an attribute that defines the order of 

stream elements (e.g., time)

¢  Let T be the window size in units of the ordering attribute

t1 t2 t3 t4 t1' t2’ t3’ t4’ 

t1 t2 
t3 

sliding window 

tumbling window 

ti’ – ti = T 

ti+1 – ti = T 

Source: Peter Bonz 



Windows on Counts
¢  Window of size N elements (sliding, tumbling) over the stream

¢  Challenges:

l  Problematic with non-unique timestamps: non-deterministic output
l  Unpredictable window size (and storage requirements)

t1 t2 t3 t1' t2’ t3’ t4’ 

Source: Peter Bonz 



Windows from “Punctuations”
¢  Application-inserted “end-of-processing”

l  Example: stream of actions… “end of user session”

¢  Properties
l  Advantage: application-controlled semantics

l  Disadvantage: unpredictable window size (too large or too small)



Common Techniques

Source: Wikipedia (Forge) 



“Hello World” Stream Processing
¢  Problem:

l  Count the frequency of items in the stream

¢  Why?
l  Take some action when frequency exceeds a threshold

l  Data mining: raw counts → co-occurring counts → association rules



The Raw Stream…

stream

ite
m
s

Source: Peter Bonz 



Divide Into Windows…

window 1 window 2 window 3

Source: Peter Bonz 



First Window

Source: Peter Bonz 



Second Window

Next Window

+

Frequency
Counts

second window

frequency counts

Frequenc
y
Counts

frequency counts

Source: Peter Bonz 



Window Counting
¢  What’s the issue?

Lessons learned?
Solutions are approximate (or lossy)



General Strategies
¢  Sampling

¢  Hashing



Reservoir Sampling
¢  Task: select s elements from a stream of size N with uniform 

probability
l  N can be very very large

l  We might not even know what N is! (infinite stream)

¢  Solution: Reservoir sampling
l  Store first s elements

l  For the k-th element thereafter, keep with probability s/k ���
(randomly discard an existing element)

¢  Example: s = 10
l  Keep first 10 elements

l  11th element: keep with 10/11
l  12th element: keep with 10/12

l  …



Reservoir Sampling: How does it work?
¢  Example: s = 10

l  Keep first 10 elements
l  11th element: keep with 10/11

¢  General case: at the (k + 1)th element
l  Probability of selecting each item up until now is s/k

l  Probability existing item is discarded: s/(k+1) × 1/s = 1/(k + 1)

l  Probability existing item survives: k/(k + 1)

l  Probability each item survives to (k + 1)th round: ���
(s/k) × k/(k + 1) = s/(k + 1)

If we decide to keep it: sampled uniformly by definition
probability existing item is discarded: 10/11 × 1/10 = 1/11
probability existing item survives: 10/11



Hashing for Three Common Tasks
¢  Cardinality estimation

l  What’s the cardinality of set S?
l  How many unique visitors to this page?

¢  Set membership
l  Is x a member of set S?

l  Has this user seen this ad before?

¢  Frequency estimation
l  How many times have we observed x?

l  How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS



HyperLogLog Counter
¢  Task: cardinality estimation of set

l  size() → number of unique elements in the set

¢  Observation: hash each item and examine the hash code
l  On expectation, 1/2 of the hash codes will start with 1

l  On expectation, 1/4 of the hash codes will start with 01

l  On expectation, 1/8 of the hash codes will start with 001

l  On expectation, 1/16 of the hash codes will start with 0001

l  …

How do we take advantage of this observation?



Bloom Filters
¢  Task: keep track of set membership

l  put(x) → insert x into the set
l  contains(x) → yes if x is a member of the set

¢  Components
l  m-bit bit vector

l  k hash functions: h1 … hk

0 0 0 0 0 0 0 0 0 0 0 0



Bloom Filters: put

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11



Bloom Filters: put

0 1 0 0 1 0 0 0 0 0 1 0

xput



Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11



Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

AND                      = YES       
A[h1(x)]
A[h2(x)]
A[h3(x)]



Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9



Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

What’s going on here?

AND                      = NO     
A[h1(y)]
A[h2(y)]
A[h3(y)]



Bloom Filters
¢  Error properties: contains(x)

l  False positives possible
l  No false negatives

¢  Usage:
l  Constraints: capacity, error probability

l  Tunable parameters: size of bit vector m, number of hash functions k



Count-Min Sketches
¢  Task: frequency estimation

l  put(x) → increment count of x by one
l  get(x) → returns the frequency of x

¢  Components
l  k hash functions: h1 … hk

l  m by k array of counters

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

m

k



Count-Min Sketches: put

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4



Count-Min Sketches: put

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput



Count-Min Sketches: put

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4



Count-Min Sketches: put

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

xput



Count-Min Sketches: put

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

yput h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2



Count-Min Sketches: put

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yput



Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4



Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

A[h3(x)]MIN                      = 2    

A[h1(x)]
A[h2(x)]

A[h4(x)]



Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2



Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

MIN                      = 1    A[h3(y)]

A[h1(y)]
A[h2(y)]

A[h4(y)]



Count-Min Sketches
¢  Error properties:

l  Reasonable estimation of heavy-hitters
l  Frequent over-estimation of tail

¢  Usage:
l  Constraints: number of distinct events, distribution of events, error 

bounds
l  Tunable parameters: number of counters m, number of hash functions k, 

size of counters



Three Common Tasks
¢  Cardinality estimation

l  What’s the cardinality of set S?
l  How many unique visitors to this page?

¢  Set membership
l  Is x a member of set S?

l  Has this user seen this ad before?

¢  Frequency estimation
l  How many times have we observed x?

l  How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS



Source: Wikipedia (River) 

Stream Processing Architectures
Next time:



Source: Wikipedia (Japanese rock garden) 

Questions?


