
Big Data Infrastructure

Week 12: Real-Time Data Analytics (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

March 29, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

OLTP/OLAP Architecture

OLTP OLAP
ETL���

(Extract, Transform, and Load)

Twitter’s data warehousing architecture
What’s the issue?

real-time
vs.

online
vs.

streaming

What is a data stream?
¢  Sequence of items:

l  Structured (e.g., tuples)
l  Ordered (implicitly or timestamped)

l  Arriving continuously at high volumes

l  Sometimes not possible to store entirely

l  Sometimes not possible to even examine all items

What to do with data streams?
¢  Network traffic monitoring

¢  Datacenter telemetry monitoring

¢  Sensor networks monitoring

¢  Credit card fraud detection

¢  Stock market analysis

¢  Online mining of click streams

¢  Monitoring social media streams

What’s the scale? Packet data streams
¢  Single 2 Gb/sec link; say avg. packet size is 50 bytes

l  Number of packets/sec = 5 million
l  Time per packet = 0.2 microseconds

¢  If we only capture header information per packet: ���
source/destination IP, time, no. of bytes, etc. – at least 10 bytes
l  50 MB per second

l  4+ TB per day

l  Per link!

What if you wanted to do deep-packet inspection?
Source: Minos Garofalakis, Berkeley CS 286

Converged IP/MPLS
Network

 PSTN

DSL/Cable
Networks

Enterprise
Networks

Network Operations
Center (NOC)

BG
P Peer

R1 R2
R3

What are the top (most frequent) 1000 (source, dest)
pairs seen by R1 over the last month?

SELECT COUNT (R1.source, R1.dest)
FROM R1, R2
WHERE R1.source = R2.source

SQL Join Query

How many distinct (source, dest) pairs have
been seen by both R1 and R2 but not R3?

Set-Expression Query

Off-line analysis – Data
access is slow, expensive

DBMS

Source: Minos Garofalakis, Berkeley CS 286

Common Architecture

¢  Data stream management system (DSMS) at observation points
l  Voluminous streams-in, reduced streams-out

¢  Database management system (DBMS)
l  Outputs of DSMS can be treated as data feeds to databases

DSMS

DSMS

DBMS

data streams
queries

queries
data feeds

Source: Peter Bonz

OLTP/OLAP Architecture

OLTP OLAP
ETL���

(Extract, Transform, and Load)

DBMS vs. DSMS

DBMS
l  Model: persistent relations
l  Relation: tuple set/bag

l  Data update: modifications

l  Query: transient

l  Query answer: exact
l  Query evaluation: arbitrary

l  Query plan: fixed

DSMS
l  Model: (mostly) transient relations
l  Relation: tuple sequence

l  Data update: appends

l  Query: persistent

l  Query answer: approximate
l  Query evaluation: one pass

l  Query plan: adaptive

Source: Peter Bonz

What makes it hard?
¢  Intrinsic challenges:

l  Volume
l  Velocity

l  Limited storage

l  Strict latency requirements

¢  System challenges:
l  Load balancing

l  Unreliable and out-of-order message delivery
l  Fault-tolerance

l  Consistency semantics (at most once, exactly once, at least once)

What exactly do you do?
¢  “Standard” relational operations:

l  Select
l  Project

l  Transform (i.e., apply custom UDF)

l  Group by

l  Join
l  Aggregations

¢  What else do you need to make this “work”?

Issues of Semantics
¢  Group by… aggregate

l  When do you stop grouping and start aggregating?

¢  Joining a stream and a static source
l  Simple lookup

¢  Joining two streams
l  How long do you wait for the join key in the other stream?

¢  Joining two streams, group by and aggregation
l  When do you stop joining?

What’s the solution?

Windows
¢  Mechanism for extracting finite relations from an infinite stream

¢  Windows restrict processing scope:

l  Windows based on ordering attributes (e.g., time)
l  Windows based on item (record) counts

l  Windows based on explicit markers (e.g., punctuations)

l  Variants (e.g., some semantic partitioning constraint)

Windows on Ordering Attributes
¢  Assumes the existence of an attribute that defines the order of

stream elements (e.g., time)

¢  Let T be the window size in units of the ordering attribute

t1 t2 t3 t4 t1' t2’ t3’ t4’

t1 t2
t3

sliding window

tumbling window

ti’ – ti = T

ti+1 – ti = T

Source: Peter Bonz

Windows on Counts
¢  Window of size N elements (sliding, tumbling) over the stream

¢  Challenges:

l  Problematic with non-unique timestamps: non-deterministic output
l  Unpredictable window size (and storage requirements)

t1 t2 t3 t1' t2’ t3’ t4’

Source: Peter Bonz

Windows from “Punctuations”
¢  Application-inserted “end-of-processing”

l  Example: stream of actions… “end of user session”

¢  Properties
l  Advantage: application-controlled semantics

l  Disadvantage: unpredictable window size (too large or too small)

Common Techniques

Source: Wikipedia (Forge)

“Hello World” Stream Processing
¢  Problem:

l  Count the frequency of items in the stream

¢  Why?
l  Take some action when frequency exceeds a threshold

l  Data mining: raw counts → co-occurring counts → association rules

The Raw Stream…

stream

ite
m
s

Source: Peter Bonz

Divide Into Windows…

window 1 window 2 window 3

Source: Peter Bonz

First Window

Source: Peter Bonz

Second Window

Next Window

+

Frequency
Counts

second window

frequency counts

Frequenc
y
Counts

frequency counts

Source: Peter Bonz

Window Counting
¢  What’s the issue?

Lessons learned?
Solutions are approximate (or lossy)

General Strategies
¢  Sampling

¢  Hashing

Reservoir Sampling
¢  Task: select s elements from a stream of size N with uniform

probability
l  N can be very very large

l  We might not even know what N is! (infinite stream)

¢  Solution: Reservoir sampling
l  Store first s elements

l  For the k-th element thereafter, keep with probability s/k ���
(randomly discard an existing element)

¢  Example: s = 10
l  Keep first 10 elements

l  11th element: keep with 10/11
l  12th element: keep with 10/12

l  …

Reservoir Sampling: How does it work?
¢  Example: s = 10

l  Keep first 10 elements
l  11th element: keep with 10/11

¢  General case: at the (k + 1)th element
l  Probability of selecting each item up until now is s/k

l  Probability existing item is discarded: s/(k+1) × 1/s = 1/(k + 1)

l  Probability existing item survives: k/(k + 1)

l  Probability each item survives to (k + 1)th round: ���
(s/k) × k/(k + 1) = s/(k + 1)

If we decide to keep it: sampled uniformly by definition
probability existing item is discarded: 10/11 × 1/10 = 1/11
probability existing item survives: 10/11

Hashing for Three Common Tasks
¢  Cardinality estimation

l  What’s the cardinality of set S?
l  How many unique visitors to this page?

¢  Set membership
l  Is x a member of set S?

l  Has this user seen this ad before?

¢  Frequency estimation
l  How many times have we observed x?

l  How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS

HyperLogLog Counter
¢  Task: cardinality estimation of set

l  size() → number of unique elements in the set

¢  Observation: hash each item and examine the hash code
l  On expectation, 1/2 of the hash codes will start with 1

l  On expectation, 1/4 of the hash codes will start with 01

l  On expectation, 1/8 of the hash codes will start with 001

l  On expectation, 1/16 of the hash codes will start with 0001

l  …

How do we take advantage of this observation?

Bloom Filters
¢  Task: keep track of set membership

l  put(x) → insert x into the set
l  contains(x) → yes if x is a member of the set

¢  Components
l  m-bit bit vector

l  k hash functions: h1 … hk

0 0 0 0 0 0 0 0 0 0 0 0

Bloom Filters: put

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11

Bloom Filters: put

0 1 0 0 1 0 0 0 0 0 1 0

xput

Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

AND = YES
A[h1(x)]
A[h2(x)]
A[h3(x)]

Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

Bloom Filters: contains

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

What’s going on here?

AND = NO
A[h1(y)]
A[h2(y)]
A[h3(y)]

Bloom Filters
¢  Error properties: contains(x)

l  False positives possible
l  No false negatives

¢  Usage:
l  Constraints: capacity, error probability

l  Tunable parameters: size of bit vector m, number of hash functions k

Count-Min Sketches
¢  Task: frequency estimation

l  put(x) → increment count of x by one
l  get(x) → returns the frequency of x

¢  Components
l  k hash functions: h1 … hk

l  m by k array of counters

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

m

k

Count-Min Sketches: put

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: put

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput

Count-Min Sketches: put

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: put

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

xput

Count-Min Sketches: put

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

yput h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

Count-Min Sketches: put

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yput

Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

A[h3(x)]MIN = 2

A[h1(x)]
A[h2(x)]

A[h4(x)]

Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

Count-Min Sketches: get

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

MIN = 1 A[h3(y)]

A[h1(y)]
A[h2(y)]

A[h4(y)]

Count-Min Sketches
¢  Error properties:

l  Reasonable estimation of heavy-hitters
l  Frequent over-estimation of tail

¢  Usage:
l  Constraints: number of distinct events, distribution of events, error

bounds
l  Tunable parameters: number of counters m, number of hash functions k,

size of counters

Three Common Tasks
¢  Cardinality estimation

l  What’s the cardinality of set S?
l  How many unique visitors to this page?

¢  Set membership
l  Is x a member of set S?

l  Has this user seen this ad before?

¢  Frequency estimation
l  How many times have we observed x?

l  How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS

Source: Wikipedia (River)

Stream Processing Architectures
Next time:

Source: Wikipedia (Japanese rock garden)

Questions?

