Big Data Infrastructure
 CS 489/698 Big Data Infrastructure (Winter 2016)

Week I2: Real-Time Data Analytics (1/2) March 29, 2016

Jimmy Lin
David R. Cheriton School of Computer Science University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2016w/

OLTP/OLAP Architecture

Twitter's data warehousing architecture

real-time

VS.
online
VS.
streaming

What is a data stream?

- Sequence of items:
- Structured (e.g., tuples)
- Ordered (implicitly or timestamped)
- Arriving continuously at high volumes
- Sometimes not possible to store entirely
- Sometimes not possible to even examine all items

What to do with data streams?

- Network traffic monitoring
- Datacenter telemetry monitoring
- Sensor networks monitoring
- Credit card fraud detection
- Stock market analysis
- Online mining of click streams
- Monitoring social media streams

What's the scale? Packet data streams

- Single $2 \mathrm{~Gb} /$ sec link; say avg. packet size is 50 bytes
- Number of packets/sec $=5$ million
- Time per packet $=0.2$ microseconds
- If we only capture header information per packet: source/destination IP, time, no. of bytes, etc. - at least IO bytes
- 50 MB per second
- 4+ TB per day
- Per link!

What if you wanted to do deep-packet inspection?

Common Architecture

o Data stream management system (DSMS) at observation points

- Voluminous streams-in, reduced streams-out
- Database management system (DBMS)
- Outputs of DSMS can be treated as data feeds to databases

OLTP/OLAP Architecture

DBMS vs. DSMS

DBMS

- Model: persistent relations
- Relation: tuple set/bag
- Data update: modifications
- Query: transient
- Query answer: exact
- Query evaluation: arbitrary
- Query plan: fixed

DSMS

- Model: (mostly) transient relations
- Relation: tuple sequence
- Data update: appends
- Query: persistent
- Query answer: approximate
- Query evaluation: one pass
- Query plan: adaptive

What makes it hard?

- Intrinsic challenges:
- Volume
- Velocity
- Limited storage
- Strict latency requirements
- System challenges:
- Load balancing
- Unreliable and out-of-order message delivery
- Fault-tolerance
- Consistency semantics (at most once, exactly once, at least once)

What exactly do you do?

- "Standard" relational operations:
- Select
- Project
- Transform (i.e., apply custom UDF)
- Group by
- Join
- Aggregations
- What else do you need to make this "work"?

Issues of Semantics

- Group by... aggregate
- When do you stop grouping and start aggregating?
- Joining a stream and a static source
- Simple lookup
- Joining two streams
- How long do you wait for the join key in the other stream?
- Joining two streams, group by and aggregation
- When do you stop joining?

What's the solution?

Windows

- Mechanism for extracting finite relations from an infinite stream
- Windows restrict processing scope:
- Windows based on ordering attributes (e.g., time)
- Windows based on item (record) counts
- Windows based on explicit markers (e.g., punctuations)
- Variants (e.g., some semantic partitioning constraint)

Windows on Ordering Attributes

- Assumes the existence of an attribute that defines the order of stream elements (e.g., time)
- Let T be the window size in units of the ordering attribute

Windows on Counts

- Window of size N elements (sliding, tumbling) over the stream
- Challenges:
- Problematic with non-unique timestamps: non-deterministic output
- Unpredictable window size (and storage requirements)

Windows from "Punctuations"

O Application-inserted "end-of-processing"

- Example: stream of actions... "end of user session"
- Properties
- Advantage: application-controlled semantics
- Disadvantage: unpredictable window size (too large or too small)

"Hello World" Stream Processing

- Problem:
- Count the frequency of items in the stream
- Why?
- Take some action when frequency exceeds a threshold
- Data mining: raw counts \rightarrow co-occurring counts \rightarrow association rules

The Raw Stream...

Divide Into Windows．．．

window 1	window 2		window 3	
$\square \square \square \square \square \square \square \square \square \square$	$\square \square \square$		$\square \square \square \square \square \square \square \square \square \square$	$\square \square$
	ロロロロロロ		$\square \square \square \square \square \square \square \square \square$	
$\square \square \square \square \square \square \square \square \square \square$	ロロロロロロロロ		$\square \square \square \square \square \square \square \square \square \square$	$\square \square$
$\square \square \square \square \square \square \square \square \square \square$	ロロロロロロロ		$\square \square \square \square \square \square \square \square \square \square$	$\square \square$
\square	ロロロロロロロ		$\square \square \square \square \square \square \square \square \square \square$	$\square \square$
$\square \square \square \square \square \square \square \square \square \square$	$\square \square \square \square \square \square \square$		ロロロロロロロロロ■	$\square \square$
ロロロロロロロロロロ	ロロロロロロ		ロロロロロロロロロ■	$\square \square$
$\square \square \square \square \square \square \square \square \square \square$	ロロロロロ		$\square \square \square \square \square \square \square \square \square$	$\square \square$
吅口ロด口ロロ	$\square \square \square \square \square \square \square$		$\square \square \square \square \square \square \square \square \square$	

First Window

first window

Second Window

second window

Window Counting

- What's the issue?

Lessons learned?
Solutions are approximate (or lossy)

General Strategies

- Sampling
- Hashing

Reservoir Sampling

- Task: select s elements from a stream of size N with uniform probability
- N can be very very large
- We might not even know what N is! (infinite stream)
o Solution: Reservoir sampling
- Store first s elements
- For the k-th element thereafter, keep with probability s / k (randomly discard an existing element)
- Example: $s=10$
- Keep first 10 elements
- IIth element: keep with I0/II
- I2th element: keep with I0/I2
- ...

Reservoir Sampling: How does it work?

- Example: $s=10$
- Keep first 10 elements
- IIth element: keep with $10 / \mathrm{II}$

> If we decide to keep it: sampled uniformly by definition probability existing item is discarded: $I 0 / I I \times I / I 0=I / I I$ probability existing item survives: I0/II

o General case: at the $(k+I)$ th element

- Probability of selecting each item up until now is s / k
- Probability existing item is discarded: $s /(k+l) \times I / s=I /(k+l)$
- Probability existing item survives: $k /(k+I)$
- Probability each item survives to $(k+I)$ th round: $(s / k) \times k l(k+I)=s /(k+I)$

Hashing for Three Common Tasks

- Cardinality estimation
- What's the cardinality of set S ?
- How many unique visitors to this page?
- Set membership
- Is x a member of set S ?
- Has this user seen this ad before?
- Frequency estimation
- How many times have we observed x ?
- How many queries has this user issued?

HashSet Bloom Filter
HashSet HLL counter

HashMap
CMS

HyperLogLog Counter

- Task: cardinality estimation of set
- size() \rightarrow number of unique elements in the set
- Observation: hash each item and examine the hash code
- On expectation, I/2 of the hash codes will start with I
- On expectation, I/4 of the hash codes will start with 0I
- On expectation, I/8 of the hash codes will start with 00 I
- On expectation, I/I6 of the hash codes will start with 000I
- ...

How do we take advantage of this observation?

Bloom Filters

- Task: keep track of set membership
- put $(x) \rightarrow$ insert x into the set
- contains $(x) \rightarrow$ yes if x is a member of the set
- Components
- m-bit bit vector

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

- k hash functions: $h_{\text {I }} \ldots h_{k}$

Bloom Filters: put

Bloom Filters: put

put x

0	1	0	0	1	0	0	0	0	0	1	0

Bloom Filters: contains

Bloom Filters: contains

Bloom Filters: contains

Bloom Filters: contains

What's going on here?

Bloom Filters

- Error properties: contains(x)
- False positives possible
- No false negatives
- Usage:
- Constraints: capacity, error probability
- Tunable parameters: size of bit vector m, number of hash functions k

Count-Min Sketches

- Task: frequency estimation
- put $(x) \rightarrow$ increment count of x by one
- $\operatorname{get}(x) \rightarrow$ returns the frequency of x
- Components
- k hash functions: $h_{I} \ldots h_{k}$
- m by k array of counters

Count-Min Sketches: put

Count-Min Sketches: put

| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Count-Min Sketches: put

Count-Min Sketches: put

| 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
| 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Count-Min Sketches: put

Count-Min Sketches: put

put y

| 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 |
| 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Count-Min Sketches: get

Count-Min Sketches: get

Count-Min Sketches: get

Count-Min Sketches: get

Count-Min Sketches

- Error properties:
- Reasonable estimation of heavy-hitters
- Frequent over-estimation of tail
- Usage:
- Constraints: number of distinct events, distribution of events, error bounds
- Tunable parameters: number of counters m, number of hash functions k, size of counters

Three Common Tasks

- Cardinality estimation
- What's the cardinality of set S ?
- How many unique visitors to this page?
- Set membership
- Is x a member of set S ?
- Has this user seen this ad before?
- Frequency estimation
- How many times have we observed x ?
- How many queries has this user issued?

HashSet Bloom Filter

HashMap

HashSet HLL counter

