

Big Data Infrastructure

CS 489/698 Big Data Infrastructure (Winter 2016)

Week 11: Analyzing Graphs, Redux (1/2) March 22, 2016

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Structure of the Course

"Core" framework features and algorithm design

Characteristics of Graph Algorithms

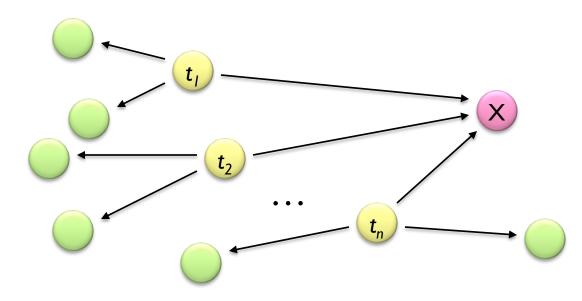
- Parallel graph traversals
 - Local computations
 - Message passing along graph edges
- Iterations

PageRank: Defined

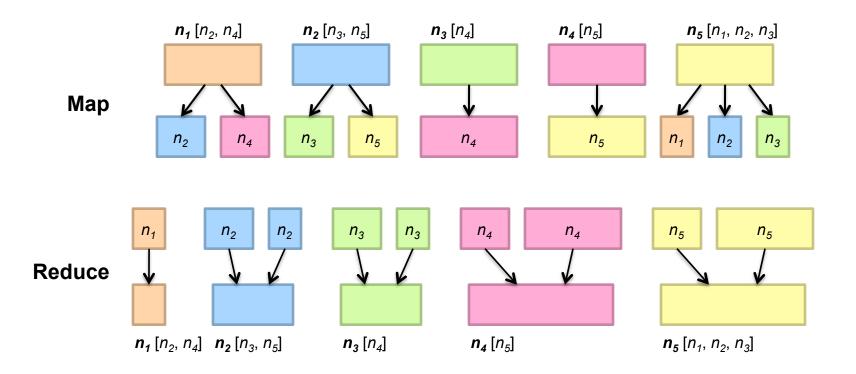
Given page x with inlinks $t_1 \dots t_n$, where

- C(t) is the out-degree of t
- α is probability of random jump
- N is the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1-\alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$



PageRank in MapReduce



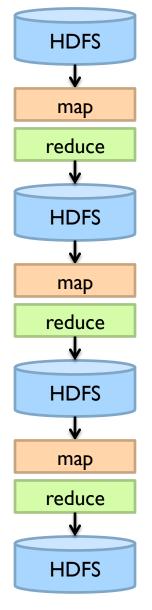
MapReduce Sucks

- Java verbosity
- Hadoop task startup time
- Stragglers
- Needless graph shuffling
- Checkpointing at each iteration

Characteristics of Graph Algorithms

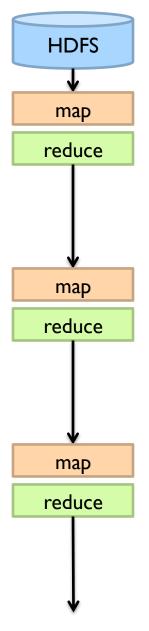
- Parallel graph traversals
 - Local computations
 - Message passing along graph edges
- Iterations

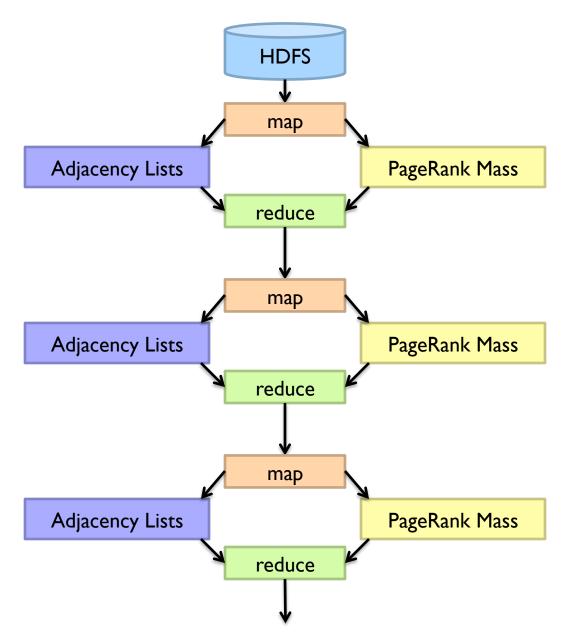
Let's Spark!



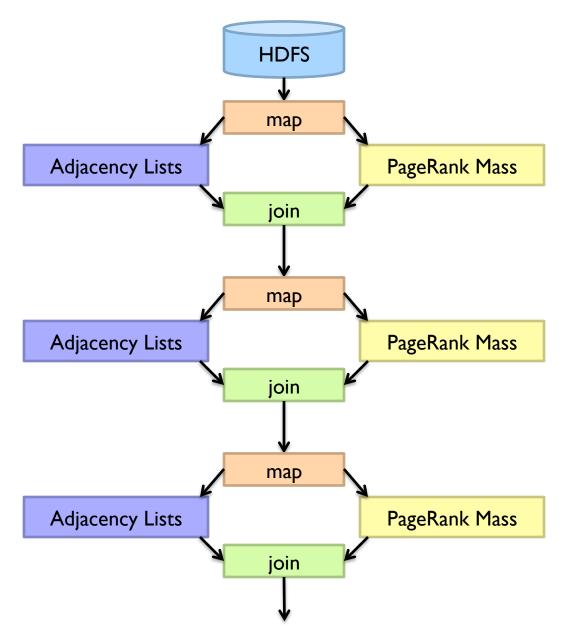
•••

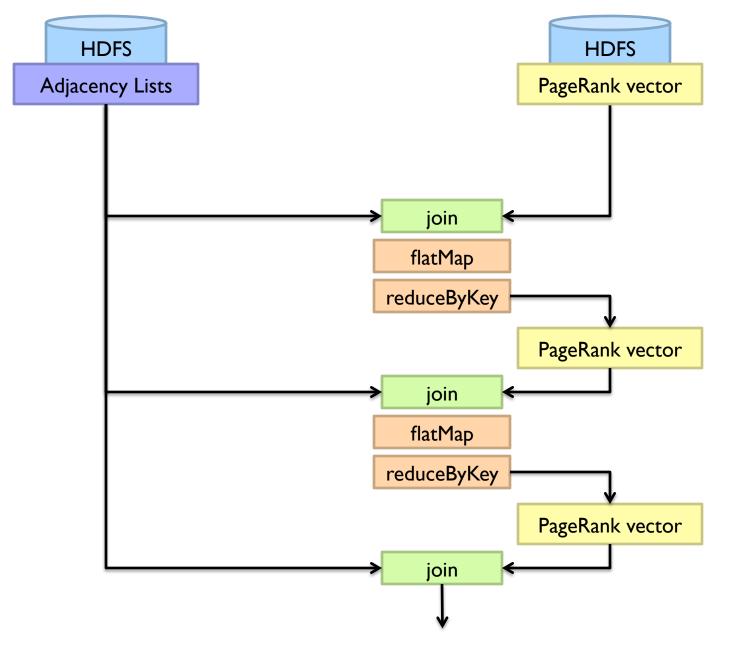
(omitting the second MapReduce job for simplicity; no handling of dangling links)

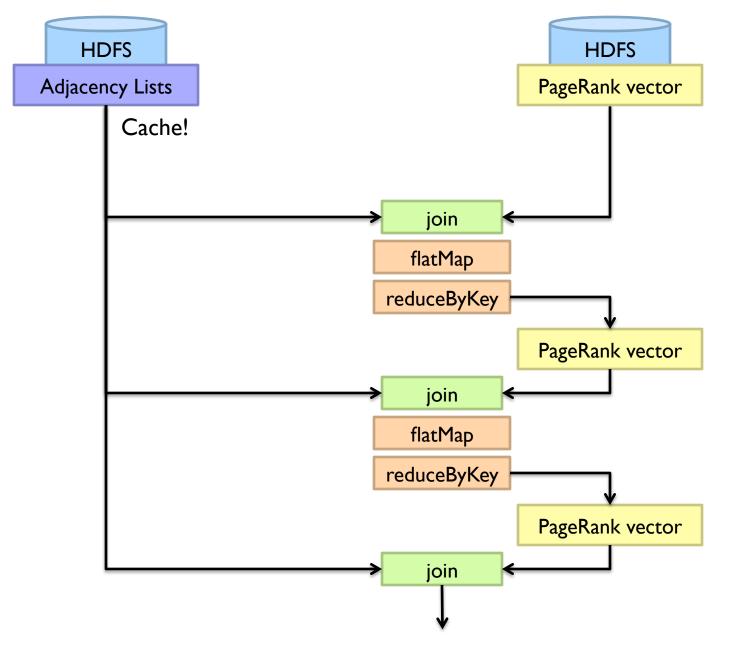




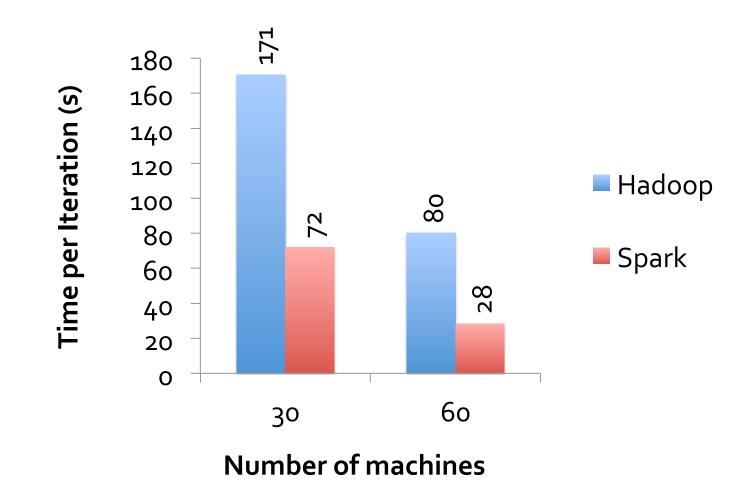
...







MapReduce vs. Spark



Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

MapReduce Sucks

- Java verbosity
- Hadoop task startup time
- Stragglers
- Needless graph shuffling
- Checkpointing at each iteration

Characteristics of Graph Algorithms

- Parallel graph traversals
 - Local computations
 - Message passing along graph edges
- Iterations

Big Data Processing in a Nutshell

- Lessons learned so far:
 - Partition
 - Replicate
 - Reduce cross-partition communication
- What makes MapReduce/Spark fast?

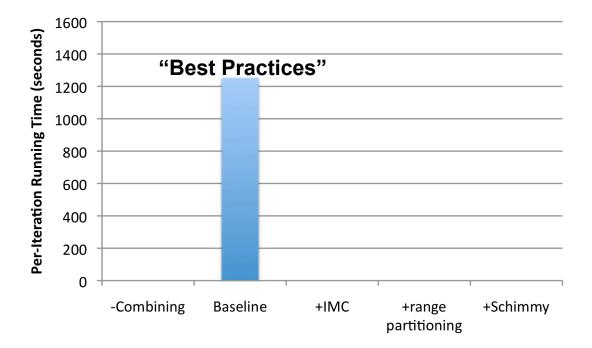
Characteristics of Graph Algorithms

- Parallel graph traversals
 - Local computations
 - Message passing along graph edges
- Iterations

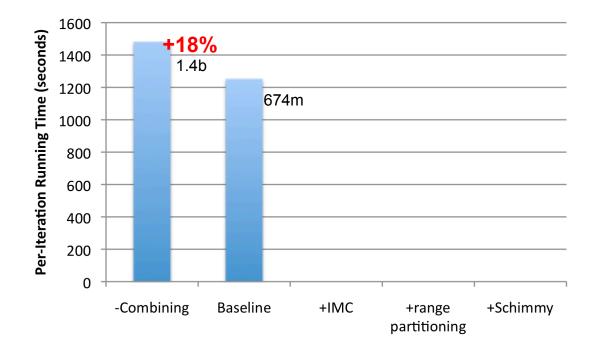
Obvious solution: keep "neighborhoods" together!

Simple Partitioning Techniques

- Hash partitioning
- Range partitioning on some underlying linearization
 - Web pages: lexicographic sort of domain-reversed URLs
 - Social networks: sort by demographic characteristics



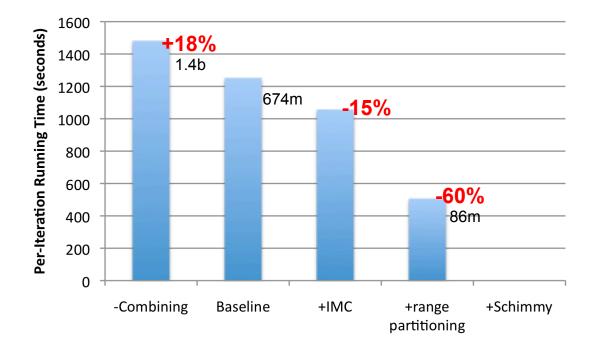
PageRank over webgraph (40m vertices, 1.4b edges)



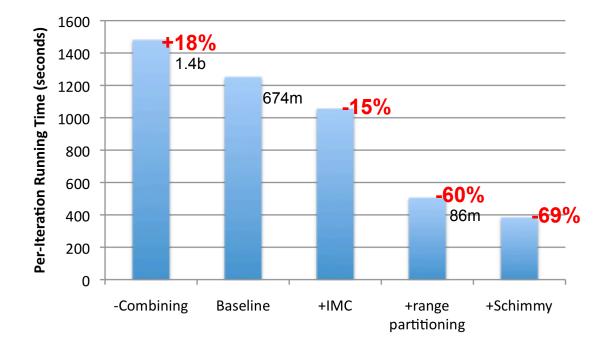
PageRank over webgraph (40m vertices, 1.4b edges)



PageRank over webgraph (40m vertices, 1.4b edges)

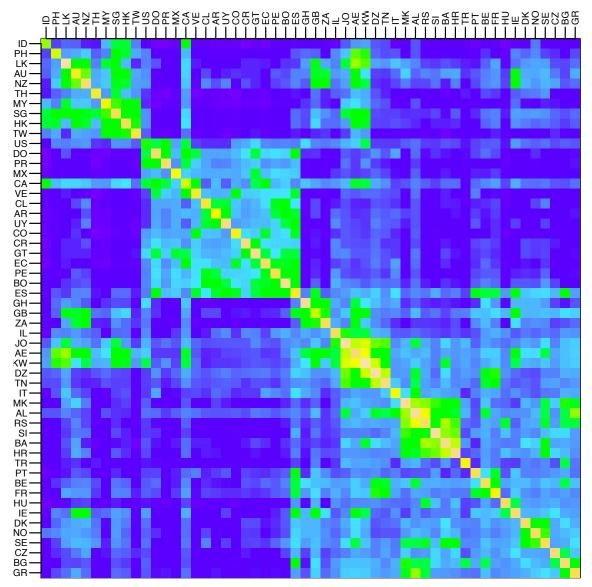


PageRank over webgraph (40m vertices, 1.4b edges)



PageRank over webgraph (40m vertices, 1.4b edges)

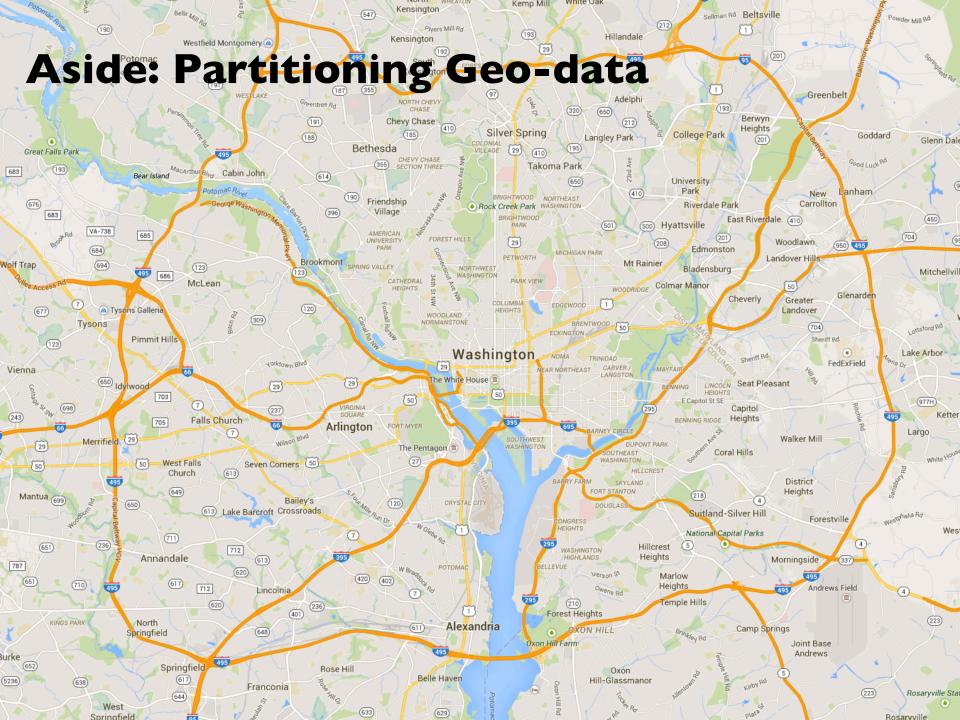
Country Structure in Facebook



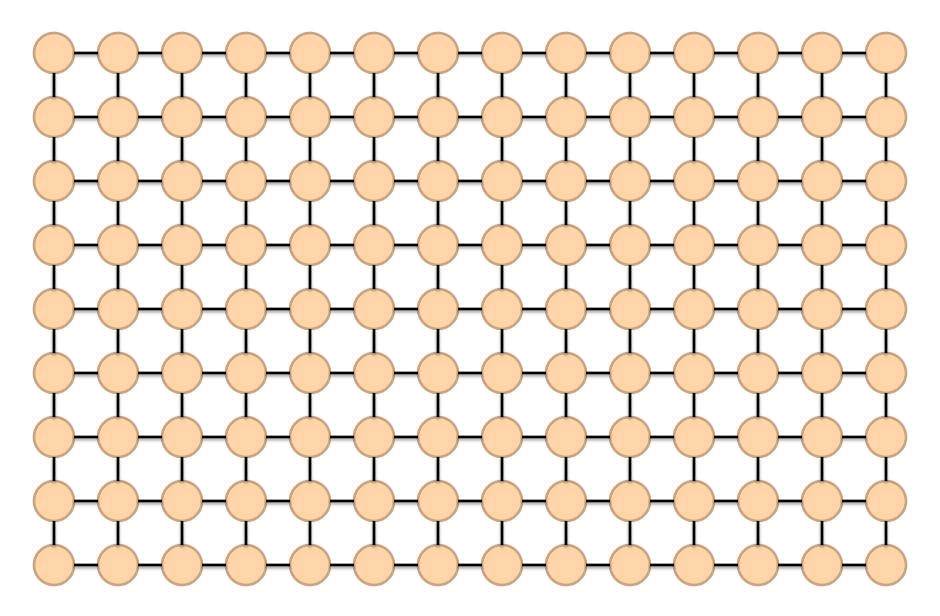
Analysis of 721 million active users (May 2011)

54 countries w/ >1m active users, >50% penetration

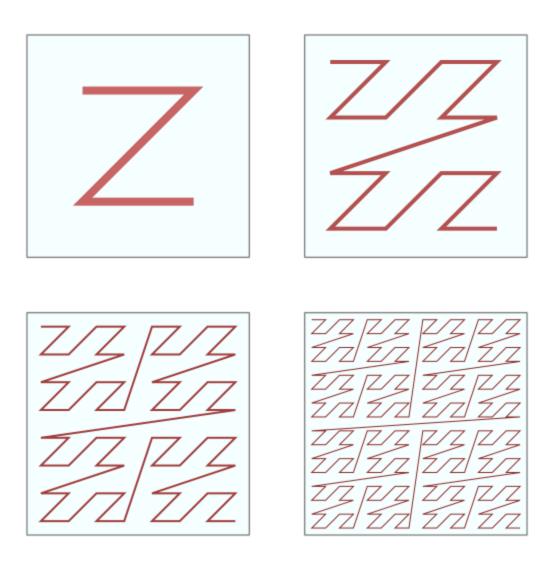
Ugander et al. (2011) The Anatomy of the Facebook Social Graph.



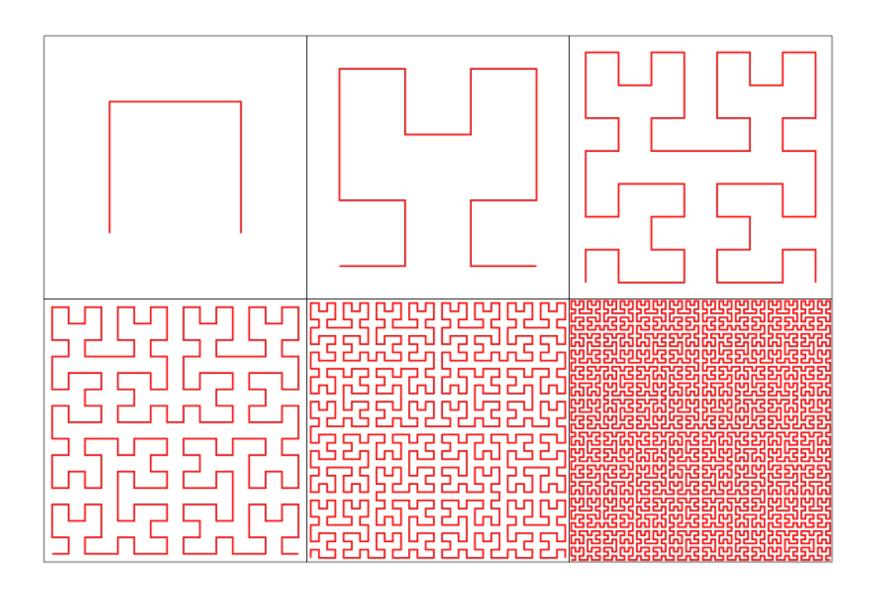
Geo-data = regular graph



Space-filling curves: Z-Order Curves

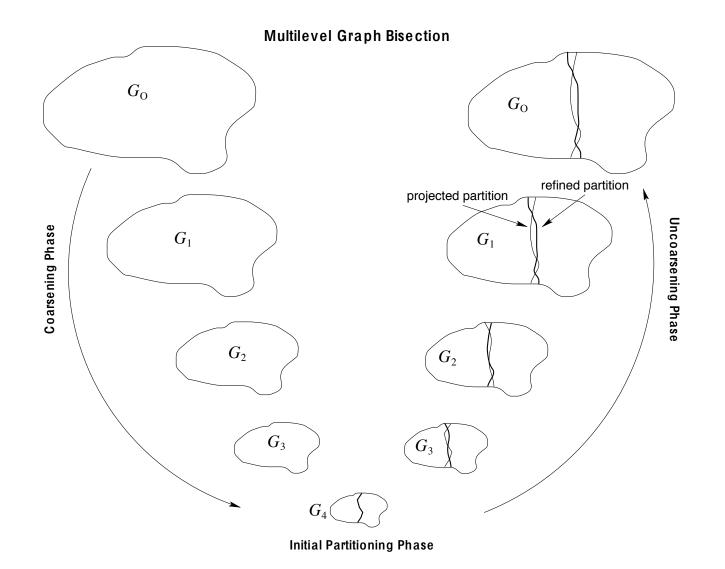


Space-filling curves: Hilbert Curves



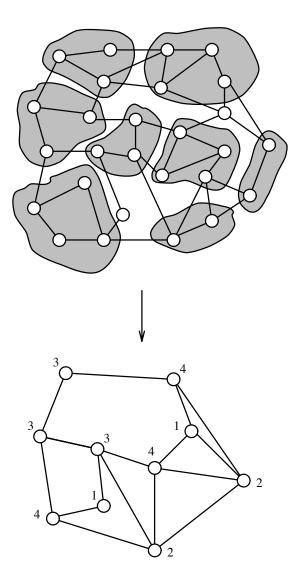
Source: http://www.flickr.com/photos/fusedforces/4324320625/

General-Purpose Graph Partitioning



Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

Graph Coarsening

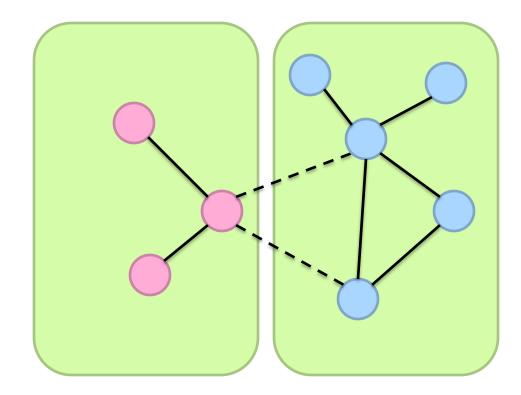


Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

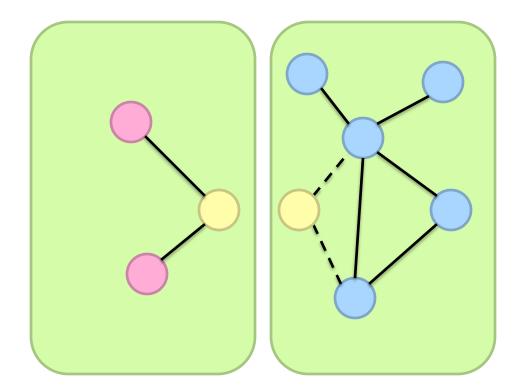
Partition



Partition



Partition + Replicate



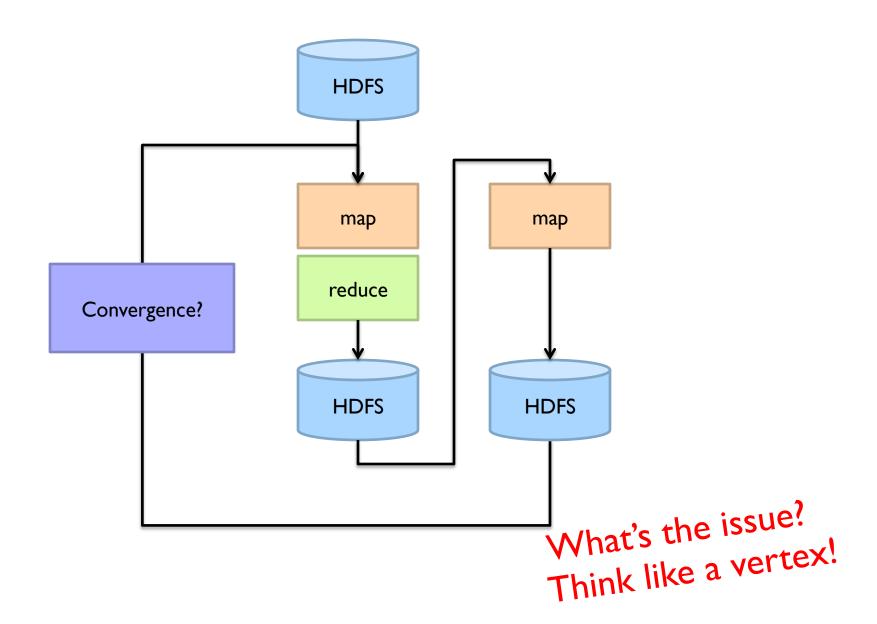
What's the issue?

The fastest current graph algorithms combine smart partitioning with asynchronous iterations

Graph Processing Frameworks

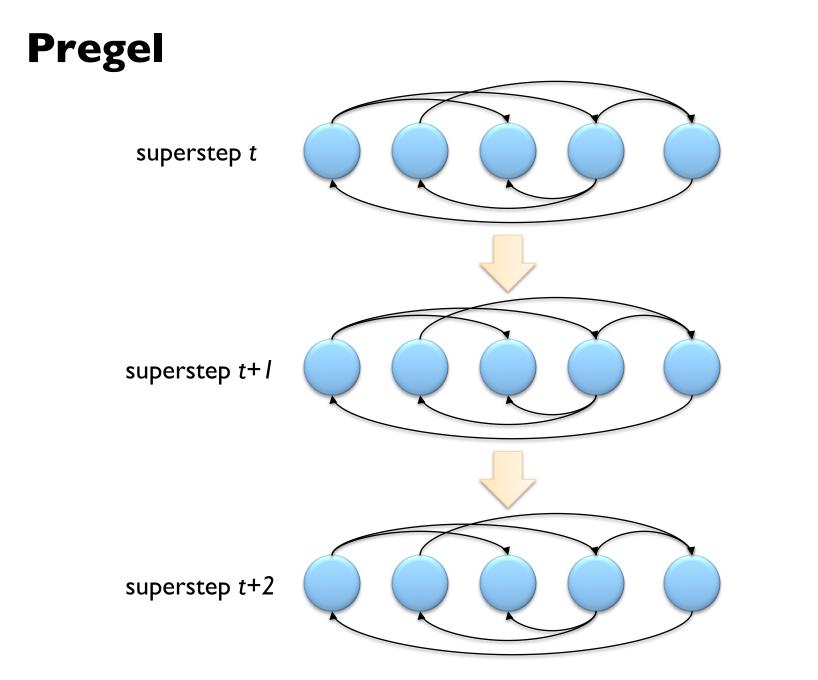
Source: Wikipedia (Waste container)

MapReduce PageRank



Pregel: Computational Model

- Based on Bulk Synchronous Parallel (BSP)
 - Computational units encoded in a directed graph
 - Computation proceeds in a series of supersteps
 - Message passing architecture
- Each vertex, at each superstep:
 - Receives messages directed at it from previous superstep
 - Executes a user-defined function (modifying state)
 - Emits messages to other vertices (for the next superstep)
- Termination:
 - A vertex can choose to deactivate itself
 - Is "woken up" if new messages received
 - Computation halts when all vertices are inactive



Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: Implementation

- Master-Slave architecture
 - Vertices are hash partitioned (by default) and assigned to workers
 - Everything happens in memory
- Processing cycle:
 - Master tells all workers to advance a single superstep
 - Worker delivers messages from previous superstep, executing vertex computation
 - Messages sent asynchronously (in batches)
 - Worker notifies master of number of active vertices
- Fault tolerance
 - Checkpointing
 - Heartbeat/revert

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: PageRank

```
class PageRankVertex : public Vertex<double, void, double> {
  public:
```

```
virtual void Compute(MessageIterator* msgs) {
    if (superstep() >= 1) {
        double sum = 0;
        for (; !msgs->Done(); msgs->Next())
        sum += msgs->Value();
        *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
}
```

```
if (superstep() < 30) {
    const int64 n = GetOutEdgeIterator().size();
    SendMessageToAllNeighbors(GetValue() / n);
    else {
        VoteToHalt();
    }
};</pre>
```

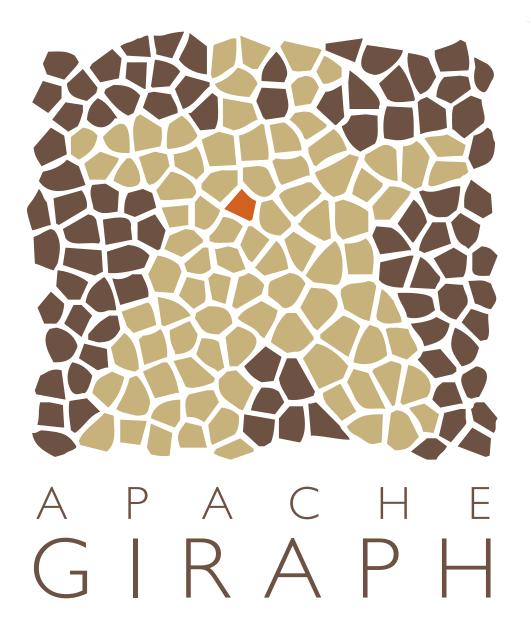
Pregel: SSSP

```
class ShortestPathVertex : public Vertex<int, int, int> {
  void Compute(MessageIterator* msgs) {
    int mindist = IsSource(vertex id()) ? 0 : INF;
    for (; !msgs->Done(); msgs->Next())
      mindist = min(mindist, msgs->Value());
    if (mindist < GetValue()) {</pre>
      *MutableValue() = mindist;
      OutEdgeIterator iter = GetOutEdgeIterator();
      for (; !iter.Done(); iter.Next())
        SendMessageTo(iter.Target(),
                      mindist + iter.GetValue());
    VoteToHalt():
};
```

Pregel: Combiners

```
class MinIntCombiner : public Combiner<int> {
    virtual void Combine(MessageIterator* msgs) {
```

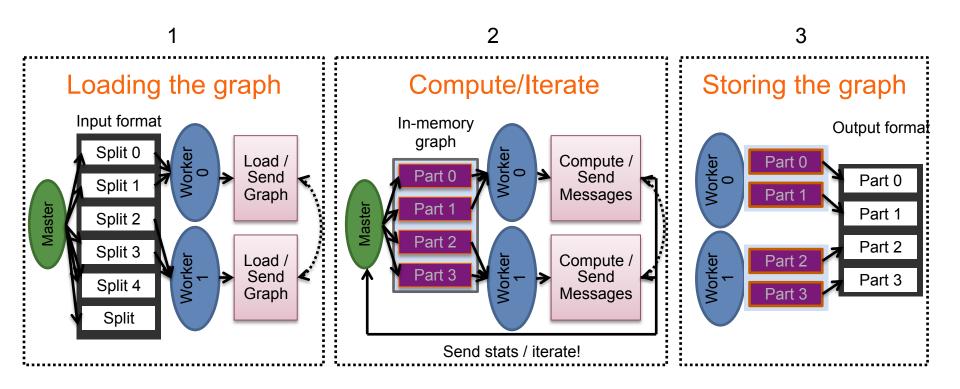
```
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
    mindist = min(mindist, msgs->Value());
    Output("combined_source", mindist);
}
};
```

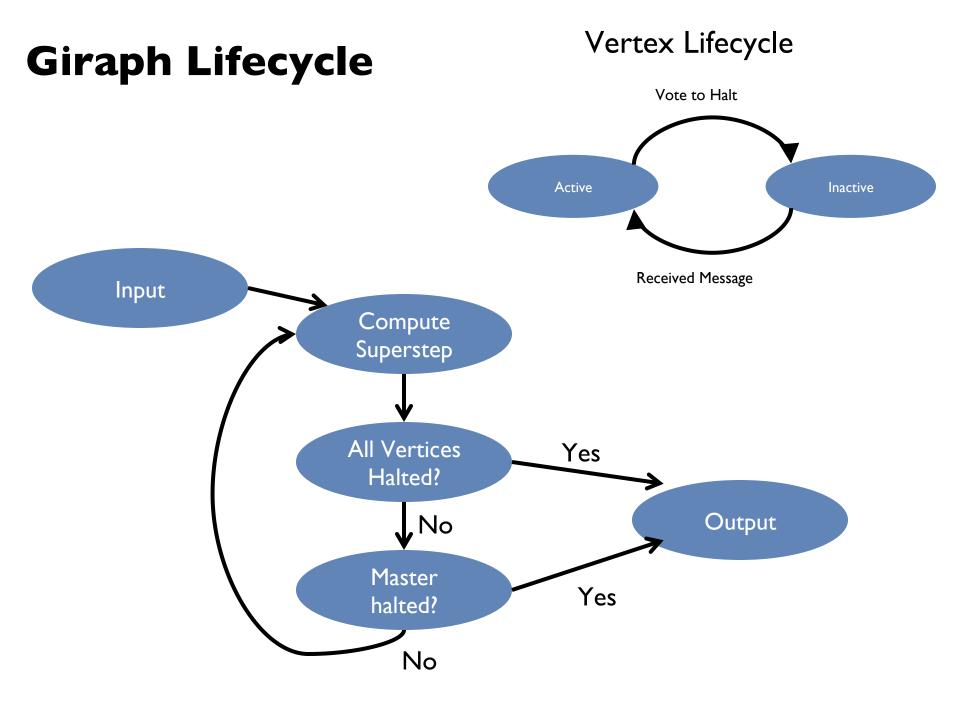


Giraph Architecture

- Master Application coordinator
 - Synchronizes supersteps
 - Assigns partitions to workers before superstep begins
- Workers Computation & messaging
 - Handle I/O reading and writing the graph
 - Computation/messaging of assigned partitions
- ZooKeeper
 - Maintains global application state

Giraph Dataflow

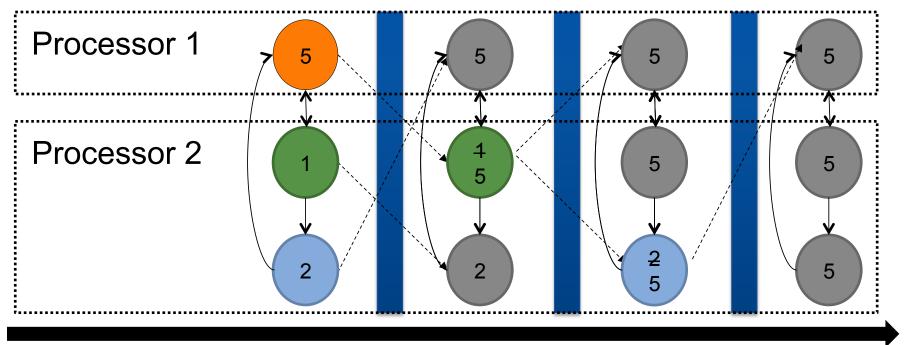




Giraph Example

```
public class MaxComputation extends BasicComputation<IntWritable, IntWritable,</pre>
   NullWritable, IntWritable> {
 @Override
 public void compute(Vertex<IntWritable, IntWritable, NullWritable> vertex,
      Iterable<IntWritable> messages) throws IOException
  Ł
    boolean changed = false;
    for (IntWritable message : messages) {
      if (vertex.getValue().get() < message.get()) {</pre>
        vertex.setValue(message);
        changed = true;
    if (getSuperstep() == 0 || changed) {
      sendMessageToAllEdges(vertex, vertex.getValue());
    vertex.voteToHalt();
```

Execution Trace

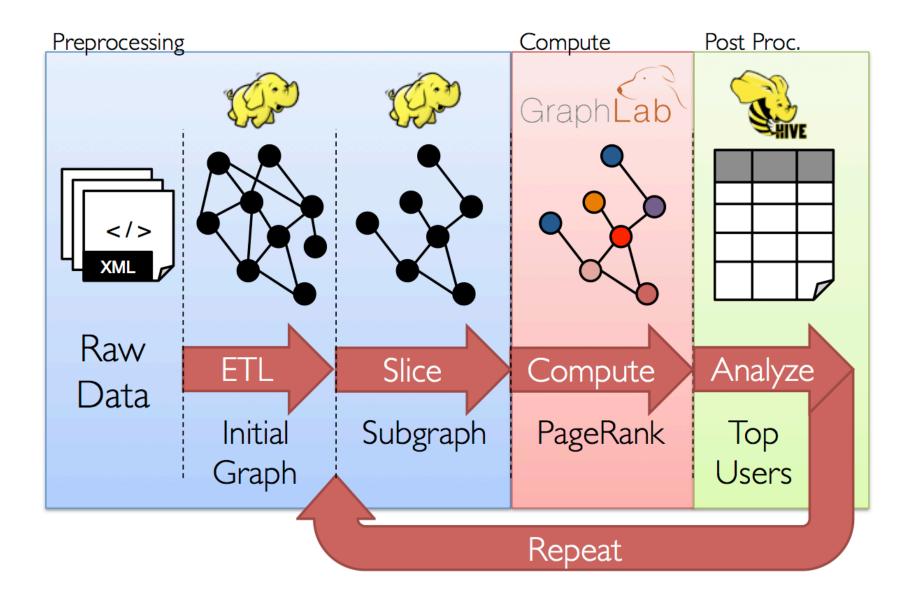


Time

Graph Processing Frameworks

Source: Wikipedia (Waste container)

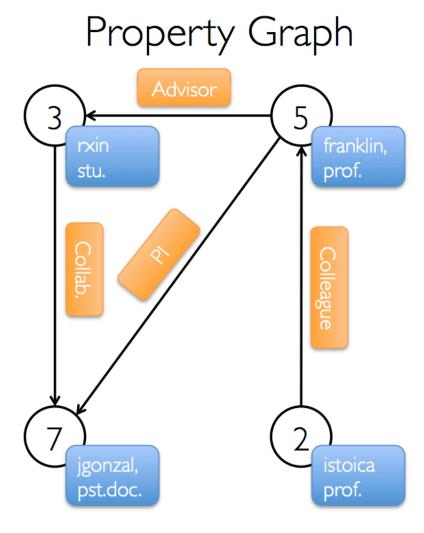
GraphX: Motivation



GraphX = Spark for Graphs

- Integration of record-oriented and graph-oriented processing
- Extends RDDs to Resilient Distributed Property Graphs
- Property graphs:
 - Present different views of the graph (vertices, edges, triplets)
 - Support map-like operations
 - Support distributed Pregel-like aggregations

Property Graph: Example



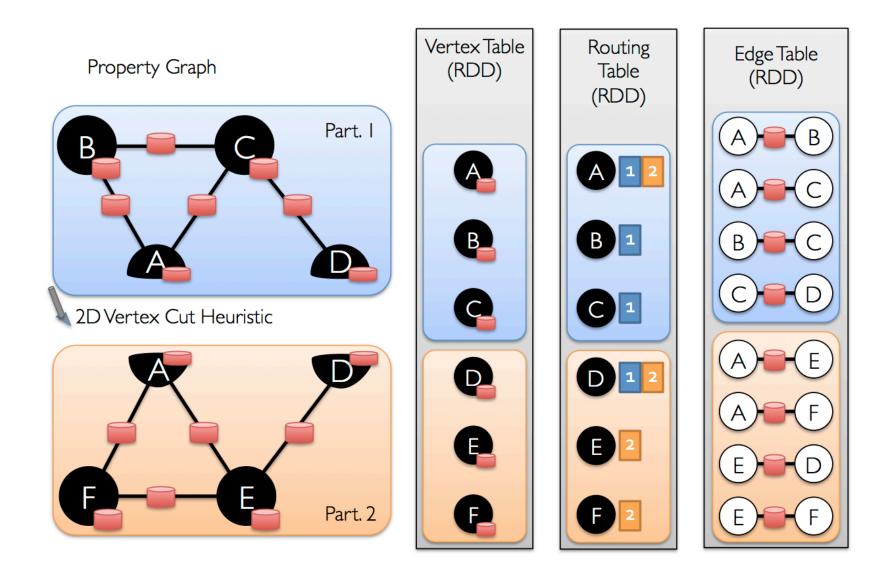
Vertex Table

ld	Property (V)	
3	(rxin, student)	
7	(jgonzal, postdoc)	
5	(franklin, professor)	
2	(istoica, professor)	

Edge Table

Srcld	Dstld	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

Underneath the Covers



Questions?

Source: Wikipedia (Japanese rock garden)