
Big Data Infrastructure	

Week 10: Mutable State (2/2)	

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States�
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details	

CS 489/698 Big Data Infrastructure (Winter 2016)	

Jimmy Lin	
David R. Cheriton School of Computer Science	

University of Waterloo	

March 17, 2016	

These slides are available at http://lintool.github.io/bigdata-2016w/	

The Fundamental Problem	
¢  We want to keep track of mutable state in a scalable manner	

¢  Assumptions:	

l  State organized in terms of many “records”	
l  State unlikely to fit on single machine, must be distributed	

(note: much of this material belongs in a distributed systems or databases course)	

Motivating Scenarios	
¢  Money shouldn’t be created or destroyed:	

l  Alice transfers $100 to Bob and $50 to Carol	
l  The total amount of money after the transfer should be the same	

¢  Phantom shopping cart:	
l  Bob removes an item from his shopping cart…	

l  Item still remains in the shopping cart	

l  Bob refreshes the page a couple of times… item finally gone	

Motivating Scenarios	
¢  People you don’t want seeing your pictures:	

l  Alice removes mom from list of people who can view photos	
l  Alice posts embarrassing pictures from Spring Break	

l  Can mom see Alice’s photo?	

¢  Why am I still getting messages?	
l  Bob unsubscribes from mailing list	

l  Message sent to mailing list right after	

l  Does Bob receive the message?	

Three Core Ideas	
¢  Partitioning (sharding)	

l  For scalability	
l  For latency	

¢  Replication	
l  For robustness (availability)	

l  For throughput	

¢  Caching	
l  For latency	

Need distributed transactions!	

Need replica coherence protocol!	

Need cache coherence protocol!	

How to address?	

Relational Databases	

… to the rescue!	

Source: images.wikia.com/batman/images/b/b1/Bat_Signal.jpg

What do RDBMSes provide?	
¢  Relational model with schemas	

¢  Powerful, flexible query language	

¢  Transactional semantics: ACID	

¢  Rich ecosystem, lots of tool support	

RDBMSes: Pain Points	

Source: www.flickr.com/photos/spencerdahl/6075142688/

#1: Must design up front, painful to evolve	

Note: Flexible design doesn’t mean no design!	

Source: Wikipedia (Tortoise)

#2: Pay for ACID!	

#3: Cost!	

Source: www.flickr.com/photos/gnusinn/3080378658/

What do RDBMSes provide?	
¢  Relational model with schemas	

¢  Powerful, flexible query language	

¢  Transactional semantics: ACID	

¢  Rich ecosystem, lots of tool support	

What if we want a la carte?	

Source: www.flickr.com/photos/vidiot/18556565/

Features a la carte?	
¢  What if I’m willing to give up consistency for scalability?	

¢  What if I’m willing to give up the relational model for something
more flexible?	

¢  What if I just want a cheaper solution?	

Three Core Ideas	
¢  Partitioning (sharding)	

l  For scalability	
l  For latency	

¢  Replication	
l  For robustness (availability)	

l  For throughput	

¢  Caching	
l  For latency	

Need distributed transactions!	

Need replica coherence protocol!	

Need cache coherence protocol!	

Motivating application?	

How do RDBMSes do it?	
¢  Transactions on a single machine: (relatively) easy!	

¢  Partition tables to keep transactions on a single machine	

l  Example: partition by user	

¢  What about transactions that require multiple machine?	
l  Example: transactions involving multiple users	

Solution: Two-Phase Commit	

2PC: Sketch	

Coordinator	

subordinates	

Okay everyone,
PREPARE!	 YES	

YES	

YES	

Good. �
COMMIT!	

ACK!	

ACK!	

ACK!	

DONE!	

2PC: Sketch	

Coordinator	

subordinates	

Okay everyone,
PREPARE!	 YES	

YES	

NO	

ABORT!	

2PC: Sketch	

Coordinator	

subordinates	

Okay everyone,
PREPARE!	 YES	

YES	

YES	

Good. �
COMMIT!	

ACK!	

ACK!	

2PC: Assumptions and Limitations	
¢  Assumptions:	

l  Persistent storage and write-ahead log at every node	
l  WAL is never permanently lost	

¢  Limitations:	
l  It’s blocking and slow	

l  What if the coordinator dies?	

Beyond 2PC: Paxos!	
(details beyond scope of this course)	

Remember this?	

Key-Value Stores: Operations
!  Very simple API:

"  Get – fetch value associated with key
"  Put – set value associated with key

!  Optional operations:
"  Multi-get

"  Multi-put

"  Range queries

!  Consistency model:
"  Atomic puts (usually)

"  Cross-key operations: who knows?

“Unit of Consistency”	
¢  Single record:	

l  Relatively straightforward	
l  Complex application logic to handle multi-record transactions	

¢  Arbitrary transactions:	
l  Requires 2PC	

¢  Middle ground: entity groups	
l  Groups of entities that share affinity	

l  Co-locate entity groups	

l  Provide transaction support within entity groups	

l  Example: user + user’s photos + user’s posts etc.	

Where have we learned this trick before?	

Three Core Ideas	
¢  Partitioning (sharding)	

l  For scalability	
l  For latency	

¢  Replication	
l  For robustness (availability)	

l  For throughput	

¢  Caching	
l  For latency	

Need distributed transactions!	

Need replica coherence protocol!	

Need cache coherence protocol!	

Consistency	

CAP “Theorem”	

Availability	

(Brewer, 2000)	

Partition tolerance	

… pick two	

CAP Tradeoffs	
¢  CA = consistency + availability	

l  E.g., parallel databases that use 2PC	

¢  AP = availability + tolerance to partitions	
l  E.g., DNS, web caching	

Is this helpful?	
¢  CAP not really even a “theorem” because vague definitions	

l  More precise formulation came a few years later	

Wait a sec, that
doesn’t sound right!	

Source: Abadi (2012) Consistency Tradeoffs in Modern Distributed Database System Design. IEEE Computer, 45(2):37-42

Abadi Says…	
¢  CP makes no sense!	

¢  CAP says, in the presence of P, choose A or C	

l  But you’d want to make this tradeoff even when there is no P	

¢  Fundamental tradeoff is between consistency and latency	
l  Not available = (very) long latency	

Replication possibilities	
¢  Update sent to all replicas at the same time	

l  To guarantee consistency you need something like Paxos	

¢  Update sent to a master	
l  Replication is synchronous	

l  Replication is asynchronous	

l  Combination of both	

¢  Update sent to an arbitrary replica	

All these possibilities involve tradeoffs!	
“eventual consistency”	

Move over, CAP	
¢  PACELC (“pass-elk”)	

¢  PAC	

l  If there’s a partition, do we choose A or C?	

¢  ELC	
l  Otherwise, do we choose latency or consistency?	

Morale of the story: there’s no free lunch!	

Source: www.phdcomics.com/comics/archive.php?comicid=1475

HBase	

Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Three Core Ideas	
¢  Partitioning (sharding)	

l  For scalability	
l  For latency	

¢  Replication	
l  For robustness (availability)	

l  For throughput	

¢  Caching	
l  For latency	

This is really hard!	

Need distributed transactions!	

Need replica coherence protocol!	

Need cache coherence protocol!	

Source: Google

Now imagine multiple datacenters…	
What’s different?	

Three Core Ideas	
¢  Partitioning (sharding)	

l  For scalability	
l  For latency	

¢  Replication	
l  For robustness (availability)	

l  For throughput	

¢  Caching	
l  For latency	

Need distributed transactions!	

Need replica coherence protocol!	

Need cache coherence protocol!	

Facebook Architecture	

Source: www.facebook.com/note.php?note_id=23844338919

MySQL	

memcached	

Read path:	
Look in memcached	
Look in MySQL	
Populate in memcached	

Write path:	
Write in MySQL	
Remove in memcached	

Subsequent read:	
Look in MySQL	
Populate in memcached	

✔	

Facebook Architecture: Multi-DC	

1.  User updates first name from “Jason” to “Monkey”.	

2.  Write “Monkey” in master DB in CA, delete memcached entry in CA and VA.	

3.  Someone goes to profile in Virginia, read VA slave DB, get “Jason”.	

4.  Update VA memcache with first name as “Jason”.	

5.  Replication catches up. “Jason” stuck in memcached until another write!	

Source: www.facebook.com/note.php?note_id=23844338919

MySQL	

memcached	

California	

MySQL	

memcached	

Virginia	

Replication lag	

Facebook Architecture	

Source: www.facebook.com/note.php?note_id=23844338919

= stream of SQL statements	

Solution: Piggyback on replication stream, tweak SQL	
REPLACE INTO profile (`first_name`) VALUES ('Monkey’)
WHERE `user_id`='jsobel' MEMCACHE_DIRTY 'jsobel:first_name'

MySQL	

memcached	

California	

MySQL	

memcached	

Virginia	

Replication	

Three Core Ideas	
¢  Partitioning (sharding)	

l  For scalability	
l  For latency	

¢  Replication	
l  For robustness (availability)	

l  For throughput	

¢  Caching	
l  For latency	

Need distributed transactions!	

Need replica coherence protocol!	

Need cache coherence protocol!	

Yahoo’s PNUTS	
¢  Yahoo’s globally distributed/replicated key-value store	

¢  Provides per-record timeline consistency	

l  Guarantees that all replicas provide all updates in same order	

¢  Different classes of reads:	
l  Read-any: may time travel!	
l  Read-critical(required version): monotonic reads	

l  Read-latest	

PNUTS: Implementation Principles	
¢  Each record has a single master	

l  Asynchronous replication across datacenters	
l  Allow for synchronous replicate within datacenters	

l  All updates routed to master first, updates applied, then propagated	

l  Protocols for recognizing master failure and load balancing	

¢  Tradeoffs:	
l  Different types of reads have different latencies	

l  Availability compromised when master fails and partition failure in
protocol for transferring of mastership	

Three Core Ideas	
¢  Partitioning (sharding)	

l  For scalability	
l  For latency	

¢  Replication	
l  For robustness (availability)	

l  For throughput	

¢  Caching	
l  For latency	

Have our cake and eat it too?	

Need distributed transactions!	

Need replica coherence protocol!	

Need cache coherence protocol!	

Source: Wikipedia (Cake)

Google’s Megastore	

Figure 1: Scalable Replication

Figure 2: Operations Across Entity Groups

replicated via Paxos). Operations across entity groups could
rely on expensive two-phase commits, but typically leverage
Megastore’s efficient asynchronous messaging. A transac-
tion in a sending entity group places one or more messages
in a queue; transactions in receiving entity groups atomically
consume those messages and apply ensuing mutations.
Note that we use asynchronous messaging between logi-

cally distant entity groups, not physically distant replicas.
All network traffic between datacenters is from replicated
operations, which are synchronous and consistent.
Indexes local to an entity group obey ACID semantics;

those across entity groups have looser consistency. See Fig-
ure 2 for the various operations on and between entity groups.

2.2.2 Selecting Entity Group Boundaries
The entity group defines the a priori grouping of data

for fast operations. Boundaries that are too fine-grained
force excessive cross-group operations, but placing too much
unrelated data in a single group serializes unrelated writes,
which degrades throughput.
The following examples show ways applications can work

within these constraints:

Email Each email account forms a natural entity group.
Operations within an account are transactional and
consistent: a user who sends or labels a message is
guaranteed to observe the change despite possible fail-
over to another replica. External mail routers handle
communication between accounts.

Blogs A blogging application would be modeled with mul-
tiple classes of entity groups. Each user has a profile,
which is naturally its own entity group. However, blogs

are collaborative and have no single permanent owner.
We create a second class of entity groups to hold the
posts and metadata for each blog. A third class keys
off the unique name claimed by each blog. The appli-
cation relies on asynchronous messaging when a sin-
gle user operation affects both blogs and profiles. For
a lower-traffic operation like creating a new blog and
claiming its unique name, two-phase commit is more
convenient and performs adequately.

Maps Geographic data has no natural granularity of any
consistent or convenient size. A mapping application
can create entity groups by dividing the globe into non-
overlapping patches. For mutations that span patches,
the application uses two-phase commit to make them
atomic. Patches must be large enough that two-phase
transactions are uncommon, but small enough that
each patch requires only a small write throughput.
Unlike the previous examples, the number of entity
groups does not grow with increased usage, so enough
patches must be created initially for sufficient aggre-
gate throughput at later scale.

Nearly all applications built on Megastore have found nat-
ural ways to draw entity group boundaries.

2.2.3 Physical Layout
We use Google’s Bigtable [15] for scalable fault-tolerant

storage within a single datacenter, allowing us to support
arbitrary read and write throughput by spreading operations
across multiple rows.

We minimize latency and maximize throughput by let-
ting applications control the placement of data: through the
selection of Bigtable instances and specification of locality
within an instance.

To minimize latency, applications try to keep data near
users and replicas near each other. They assign each entity
group to the region or continent from which it is accessed
most. Within that region they assign a triplet or quintuplet
of replicas to datacenters with isolated failure domains.

For low latency, cache efficiency, and throughput, the data
for an entity group are held in contiguous ranges of Bigtable
rows. Our schema language lets applications control the
placement of hierarchical data, storing data that is accessed
together in nearby rows or denormalized into the same row.

3. A TOUR OF MEGASTORE
Megastore maps this architecture onto a feature set care-

fully chosen to encourage rapid development of scalable ap-
plications. This section motivates the tradeoffs and de-
scribes the developer-facing features that result.

3.1 API Design Philosophy
ACID transactions simplify reasoning about correctness,

but it is equally important to be able to reason about perfor-
mance. Megastore emphasizes cost-transparent APIs with
runtime costs that match application developers’ intuitions.

Normalized relational schemas rely on joins at query time
to service user operations. This is not the right model for
Megastore applications for several reasons:

• High-volume interactive workloads benefit more from
predictable performance than from an expressive query
language.

Source: Baker et al., CIDR 2011

Google’s Spanner	
¢  Features:	

l  Full ACID translations across multiple datacenters, across continents!	
l  External consistency (= linearizability): �

system preserves happens-before relationship among transactions	

¢  How?	
l  Given write transactions A and B, if A happens-before B, then�

timestamp(A) < timestamp(B)	

Source: Llyod, 2012

Why this works

Source: Llyod, 2012

TrueTime → write timestamps

Source: Llyod, 2012

TrueTime

Source: Llyod, 2012

Source: The Matrix

What’s the catch?	

Morale of the story: there’s no free lunch!	

Source: www.phdcomics.com/comics/archive.php?comicid=1475

Source: Wikipedia (Japanese rock garden)

Questions?	

