24 WATERLOO

Big Data Infrastructure
CS 489/698 Big Data Infrastructure (Winter 2016)

Week [0: Mutable State (2/2)
March 17,2016

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at http://lintool.github.io/bigdata-20 | 6w/

‘@ ®®@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

The Fundamental Problem

O We want to keep track of mutable state in a scalable manner

O Assumptions:

e State organized in terms of many “records”
e State unlikely to fit on single machine, must be distributed

(note: much of this material belongs in a distributed systems or databases course)

Motivating Scenarios

O Money shouldn’t be created or destroyed:

e Alice transfers $100 to Bob and $50 to Carol

e The total amount of money after the transfer should be the same
O Phantom shopping cart:

® Bob removes an item from his shopping cart...
e [tem still remains in the shopping cart

® Bob refreshes the page a couple of times... item finally gone

Motivating Scenarios

O People you don’t want seeing your pictures:

e Alice removes mom from list of people who can view photos
e Alice posts embarrassing pictures from Spring Break

e Can mom see Alice’s photo!?

O Why am | still getting messages?

e Bob unsubscribes from mailing list
e Message sent to mailing list right after

® Does Bob receive the message?

Three Core Ideas

O Partitioning (sharding)

ons!
o Forscalability N|eed distributed transactions:
e For latency

O Replication

e For robustness (availability)

e For throughput Need replica coherence protocol!

O Caching

Need ¢
ache
e For latency COherence pProtoco|!

How to address?

What do RDBMSes provide?

O Relational model with schemas
O Powerful, flexible query language
O Transactional semantics: ACID

O Rich ecosystem, lots of tool support

o
o
0
J 5
g~
g
@

RDBMSes:

“Source: www.flickr.com/photos/spencerdahl/6Q,

#1: Must design up front, painful to evolve

&
7 Artistld 1% Abumid ¥ Trackld e0=e ¢ MediaTypeld
Name Title Name Name
Artistld AlbumId
MediaTypeld ‘ e
Genreld co=saf 9
Composer Genreld
? Playlistld ? Playlistld Milliseconds fiame
Name ? Trackid Bytes
UnitPrice
? Invoicelineld
imvcicld
? Employeeld B Trackld
LastName . Customer UnitPrice
FirstName ? CustomerId Quantity
Title FirstName §
ReportsTo oo LastName :
BirthDate Company E. Invoice
HireDate Address ? Invoiceld
Address City Customerld
City State InvoiceDate
State Country BilingAddress
Country PostalCode BillingCity
PostalCode Phone BilingState
Phone “H=00 Fax BilingCountry
Fax Email BilingPostalCode
Email SupportRepld Total

Note: Flexible design doesn’t mean no design!

.
S,urce: Wikipedia (Tortoise

Source: www.flickr.com 0s/gnusinn/3080378658/

What do RDBMSes provide?

O Relational model with schemas

O Powerful, flexible query language
O Transactional semantics: ACID

O Rich ecosystem, lots of tool support

What if we want a la carte!?

Source: www.flickr.com/photos/vidiot/18556565/

Features a la carte?

O What if I'm willing to give up consistency for scalability?

O What if I'm willing to give up the relational model for something
more flexible?

O What if | just want a cheaper solution!?

Three Core Ideas

I O Partitioning (sharding)

|
! . ions! :
| ® For scalability Need distributed transactions |
|

I e For latency

O Replication

e For robustness (availability)

e For throughput Need replica coherence protocol!

O Caching

Need ¢
ache
e For latency COherence Protoco|!

Motivating application?

How do RDBMSes do it?

O Transactions on a single machine: (relatively) easy!

O Partition tables to keep transactions on a single machine

e Example: partition by user

O What about transactions that require multiple machine?

e Example: transactions involving multiple users

Solution: Two-Phase Commit

2PC: Sketch

Okay everyone,
PREPARE! YES

y‘\ sood N 4

COMMIT!
YES

DONE! HERS "

YES

ACK! .‘

Coordinator

subordinates

2PC: Sketch

Okay everyone,
PREPARE! YES

;‘ 14

2

Coordinator
NO

2

subordinates

2PC: Sketch

Okay everyone,
PREPARE! YES

;‘\ sood N 4

COMMIT!
YES

ACK! .‘
2

Coordinator
YES

subordinates

2PC: Assumptions and Limitations

O Assumptions:

e Persistent storage and write-ahead log at every node
e WAL is never permanently lost

O Limitations:

e [t’s blocking and slow
e What if the coordinator dies?

Beyond 2PC: Paxos!

(details beyond scope of this course)

Key-Value Stores: Operations

O Very simple API:

o Get — fetch value associated with key
e Put — set value associated with key

o Optional operations:
e Multi-get
e Multi-put
e Range queries

o Consistency model:

e Atomic puts (usually)

e Cross-key operations: who knows!?

“Unit of Consistency”

O Single record:

e Relatively straightforward

e Complex application logic to handle multi-record transactions

O Arbitrary transactions:
e Requires 2PC

O Middle ground: entity groups

e Groups of entities that share affinity
e Co-locate entity groups
® Provide transaction support within entity groups

e Example: user + user’s photos + user’s posts etc.

. ick before!
|earned this tric
Where have W€

Three Core Ideas

O Partitioning (sharding)
ons!
e For scalability Need distributed transactions.
e For latency
r o
 © Replication

|

|

' e For robustness (availability) I
|

: e For throughput Need replica coherence protocol!

O Caching

e For latency

CAP “Theorem?” (Brewer,2000)

Consistency
Availability

Partition tolerance

... pick two

CAP Tradeoffs

O CA = consistency + availability

e E.g., parallel databases that use 2PC

O AP = availability + tolerance to partitions

e E.g, DNS, web caching

Is this helpful?

O CAP not really even a “theorem” because vague definitions

® More precise formulation came a few years later

Wait a sec, that
doesn’t sound right!

Source: Abadi (2012) Consistency Tradeoffs in Modern Distributed Database System Design. IEEE Computer, 45(2):37-42

Abadi Says...

O CP makes no sense!

O CAP says, in the presence of P, choose A or C
e But you’d want to make this tradeoff even when there is no P

O Fundamental tradeoff is between consistency and latency

® Not available = (very) long latency

Replication possibilities

O Update sent to all replicas at the same time

e To guarantee consistency you need something like Paxos

O Update sent to a master

e Replication is synchronous
e Replication is asynchronous

e Combination of both

O Update sent to an arbitrary replica

All these possibilities involve tradeoffs!
“eventual consistency”

Move over, CAP

O PACELC (“pass-elk”)
o PAC

e [f there’s a partition, do we choose A or C?

o ELC

e Otherwise, do we choose latency or consistency!?

To: All Graduate Students

Due to a recent incident, we would like to
remind all Grad Students that refreshments
provided in communal areas during an event
are for attendees of that event only.

Please vacate the communal area and do not
consume the refreshments unless you have been
specifically invited to participate.

To avoid any misunderstanding, you are only
invited if you received a specific invitation
by e-mail or if it was arranged by your

supervisor for you to attend.

Thank you for your cooperation,
The Department Administrator

:
9
3
$
3

WWW.PHDCOMICS,.COM

Morale of the story: there’s no free lunch!

Source: www.phdcomics.com/comics/archive.php?comicid=1475

HBase

HRegionServer

HRegionServer

HRegion

HRegion

P Store Store
8 . | StoreFile \ StoreFile StoreFile ” | StoreFile \
I - ' o
T (T (T T s Yoo oot o oo -)
Al
2 (ooogoo || oNoo oooogo || ooogoo
g | oo || obood oo (| oot
% uodood (f oot | goodog (| godooo

DataNode DataNode DataNode DataNode

Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Three Core Ideas

O Partitioning (sharding)

ons!
o Forscalability N|eed distributed transactions:
e For latency

O Replication

e For robustness (availability)

e For throughput Need replica coherence protocol!

O Caching

Need ¢
ache
e For latency COherence pProtoco|!

This is really hard!

D —

. x S oY s

Bk S

~.Squrce: Google N f" ——
> B g B e

Three Core Ideas

O Partitioning (sharding)
ons!
e For scalability Need distributed transactions:
e For latency
O Replication

e For robustness (availability)

e For throughput Need replica coherence protocol!

Facebook Architecture

memcached

MySQL

Read path:

Look in memcached
Look in MySQL
Populate in memcached

Source: www.facebook.com/note.php?note_id=23844338919

Write path:
Write in MySQL
Remove in memcached

Subsequent read:
Look in MySQL
Populate in memcached

Facebook Architecture: Multi-DC

memcached memcached

MySQL MySQL
Replication lag

California Virginia

I. User updates first name from “Jason” to “Monkey”.

2. Write “Monkey” in master DB in CA, delete memcached entry in CA and VA.
3. Someone goes to profile in Virginia, read VA slave DB, get “Jason”.

4. Update VA memcache with first name as “Jason”.

5. Replication catches up. “Jason” stuck in memcached until another write!

Source: www.facebook.com/note.php?note_id=23844338919

Facebook Architecture

memcached memcached

MySQL MySQL
Replication

= stream of SQL statements
California Virginia

Solution: Piggyback on replication stream, tweak SQL

REPLACE INTO profile (first name) VALUES ('Monkey’)
WHERE “user_id ='jsobel' MEMCACHE DIRTY 'jsobel:first name'

Source: www.facebook.com/note.php?note_id=23844338919

Three Core Ideas

O Partitioning (sharding)
ons!
e For scalability Need distributed transactions.
e For latency
r o
 © Replication

|

|

' e For robustness (availability) I
|

: e For throughput Need replica coherence protocol!

O Caching

e For latency

Yahoo’s PNUTS

O Yahoo’s globally distributed/replicated key-value store

O Provides per-record timeline consistency
e Guarantees that all replicas provide all updates in same order

O Different classes of reads:

e Read-any: may time travel!
e Read-critical(required version): monotonic reads

e Read-latest

PNUTS: Implementation Principles

O Each record has a single master

e Asynchronous replication across datacenters
e Allow for synchronous replicate within datacenters
e All updates routed to master first, updates applied, then propagated

e Protocols for recognizing master failure and load balancing

O Tradeoffs:

e Different types of reads have different latencies

e Availability compromised when master fails and partition failure in
protocol for transferring of mastership

Three Core Ideas

I O Partitioning (sharding)
| ‘ans!

| e For scalability Need distributed transactions

I e For latency

| o Replicat Have our cake and eat it too?
I eplication

e For robustness (availability)

Need replica coherence protocol!

I e For throughput I

O Caching

e For latency

o e .

Source: Wikipedia (Cake)

Google’s Megastore

Datacenters

SN

| ACID semantics
within an entity group

/'__\I
I
I
I
I
I
I
I
I
I
J
I
I
I
I
I
)

N
i
A

)

EntityGroups/("____;_____—;_____
partition the ——>: % — ; e
datastore __ —1 [[Y—

(T— 1 == [—]
| Ek=-# =
\ = | == ==

Each entity group / Entity group data and

is synchronously / i : ~__ replication metadata
replicated across \ stored in scalable
NoSQL datastores

datacenters

| Looser consistency
across entity groups

N~ —_— — N~ —_——

)

Source: Baker et al., CIDR 2011

Google’s Spanner

O Features:

e Full ACID translations across multiple datacenters, across continents!

e External consistency (= linearizability):
system preserves happens-before relationship among transactions

o How!?

e Given write transactions A and B, if A happens-before B, then
timestamp(A) < timestamp(B)

Source: Llyod, 2012

Why this works Google

T1 Start

timestamp(T1)

® T1 End
\

\
\
T2 Start “‘

timestamp(T2)

Source: Llyod, 2012

TrueTime — write timestamps Google

4< Start commit >

'L;_J

!

ts = now().max

-

Wait until now().min > ts

Paxos
consensus

——

Notify replcias

Source: Llyod, 2012

TrueTime

Source: Llyod, 2012

daemon

Atomic
oscillator
time
master

al

GPS
time
master

Google

What’s the catch?

Source: The Matrix

To: All Graduate Students

Due to a recent incident, we would like to
remind all Grad Students that refreshments
provided in communal areas during an event
are for attendees of that event only.

Please vacate the communal area and do not
consume the refreshments unless you have been
specifically invited to participate.

To avoid any misunderstanding, you are only
invited if you received a specific invitation
by e-mail or if it was arranged by your

supervisor for you to attend.

Thank you for your cooperation,
The Department Administrator

:
9
3
$
3

WWW.PHDCOMICS,.COM

Morale of the story: there’s no free lunch!

Source: www.phdcomics.com/comics/archive.php?comicid=1475

