
Big Data Infrastructure	

Week 10: Mutable State (1/2)	

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States�
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details	

CS 489/698 Big Data Infrastructure (Winter 2016)	

Jimmy Lin	
David R. Cheriton School of Computer Science	

University of Waterloo	

March 15, 2016	

These slides are available at http://lintool.github.io/bigdata-2016w/	

Structure of the Course	

“Core” framework features  
and algorithm design

An
al

yz
in

g
Te

xt

An
al

yz
in

g
G

ra
ph

s

An
al

yz
in

g
Re

la
tio

na
l D

at
a

Da
ta

 M
in

in
g

The Fundamental Problem	
¢  We want to keep track of mutable state in a scalable manner	

¢  Assumptions:	

l  State organized in terms of many “records”	
l  State unlikely to fit on single machine, must be distributed	

¢  MapReduce won’t do!	

(note: much of this material belongs in a distributed systems or databases course)	

OLTP/OLAP Architecture	

OLTP	 OLAP	
ETL�

(Extract, Transform, and Load)	

Three Core Ideas	
¢  Partitioning (sharding)	

l  For scalability	
l  For latency	

¢  Replication	
l  For robustness (availability)	

l  For throughput	

¢  Caching	
l  For latency	

OLTP/OLAP Architecture	

OLTP	 OLAP	
ETL�

(Extract, Transform, and Load)	

What do RDBMSes provide?	
¢  Relational model with schemas	

¢  Powerful, flexible query language	

¢  Transactional semantics: ACID	

¢  Rich ecosystem, lots of tool support	

RDBMSes: Pain Points	

Source: www.flickr.com/photos/spencerdahl/6075142688/

#1: Must design up front, painful to evolve	

Note: Flexible design doesn’t mean no design!	

{
 "token": 945842,
 "feature_enabled": "super_special",
 "userid": 229922,
 "page": "null",
 "info": { "email": "my@place.com" }
}

Is this really an integer?	

Is this really null?	

This should really be a list…	

Flexible design doesn’t mean no design!	

What keys? What values?	

Remember the camelSnake!	

JSON to the Rescue!	

Source: Wikipedia (Tortoise)

#2: Pay for ACID!	

#3: Cost!	

Source: www.flickr.com/photos/gnusinn/3080378658/

What do RDBMSes provide?	
¢  Relational model with schemas	

¢  Powerful, flexible query language	

¢  Transactional semantics: ACID	

¢  Rich ecosystem, lots of tool support	

What if we want a la carte?	

Source: www.flickr.com/photos/vidiot/18556565/

Features a la carte?	
¢  What if I’m willing to give up consistency for scalability?	

¢  What if I’m willing to give up the relational model for something
more flexible?	

¢  What if I just want a cheaper solution?	

Enter… NoSQL!	

Source: geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

NoSQL	
1.  Horizontally scale “simple operations”	

2.  Replicate/distribute data over many servers	

3.  Simple call interface	

4.  Weaker concurrency model than ACID	

5.  Efficient use of distributed indexes and RAM	

6.  Flexible schemas	

Source: Cattell (2010). Scalable SQL and NoSQL Data Stores. SIGMOD Record.

(Not only SQL)	

But, don’t blindly follow the hype…	

Often, (sharded) MySQL is what you really need!	

(Major) Types of NoSQL databases	
¢  Key-value stores	

¢  Column-oriented databases	

¢  Document stores	

¢  Graph databases	

Source: Wikipedia (Keychain)

Key-Value Stores	

Key-Value Stores: Data Model	
¢  Stores associations between keys and values	

¢  Keys are usually primitives	

l  For example, ints, strings, raw bytes, etc.	

¢  Values can be primitive or complex: usually opaque to store	
l  Primitives: ints, strings, etc.	
l  Complex: JSON, HTML fragments, etc.	

Key-Value Stores: Operations	
¢  Very simple API:	

l  Get – fetch value associated with key	
l  Put – set value associated with key	

¢  Optional operations:	
l  Multi-get	

l  Multi-put	

l  Range queries	

¢  Consistency model:	
l  Atomic puts (usually)	

l  Cross-key operations: who knows?	

Key-Value Stores: Implementation	
¢  Non-persistent:	

l  Just a big in-memory hash table	

¢  Persistent	
l  Wrapper around a traditional RDBMS	

What if data doesn’t fit on a single machine?	

Simple Solution: Partition!	
¢  Partition the key space across multiple machines	

l  Let’s say, hash partitioning	
l  For n machines, store key k at machine h(k) mod n	

¢  Okay… But:	
1.  How do we know which physical machine to contact?	

2.  How do we add a new machine to the cluster?	

3.  What happens if a machine fails?	

See the problems here?	

Clever Solution	
¢  Hash the keys	

¢  Hash the machines also!	

Distributed hash tables!	
(following combines ideas from several sources…)	

h = 0	h = 2n – 1	

h = 0	h = 2n – 1	

Routing: Which machine holds the key?	

Each machine holds pointers
to predecessor and successor	

Send request to any node, gets
routed to correct one in O(n) hops	

Can we do better?	

h = 0	h = 2n – 1	

Routing: Which machine holds the key?	

Each machine holds pointers
to predecessor and successor	

Send request to any node, gets routed
to correct one in O(log n) hops	

+ “finger table”�
(+2, +4, +8, …)	

h = 0	h = 2n – 1	

Routing: Which machine holds the key?	

Simpler Solution	

Service�
Registry	

h = 0	h = 2n – 1	

New machine joins: What happens?	

How do we rebuild the predecessor,
successor, finger tables?	

Stoica et al. (2001). Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. SIGCOMM.

Cf. Gossip Protoccols

h = 0	h = 2n – 1	

Machine fails: What happens?	

Solution: Replication	
N = 3, replicate +1, –1	

Covered!	

Covered!	

Another Refinement: Virtual Nodes	
¢  Don’t directly hash servers	

¢  Create a large number of virtual nodes, map to physical servers	

l  Better load redistribution in event of machine failure	
l  When new server joins, evenly shed load from other servers	

Source: Wikipedia (Table)

Bigtable	

Bigtable Applications	
¢  Gmail	

¢  Google’s web crawl	

¢  Google Earth	

¢  Google Analytics	

¢  Data source and data sink for MapReduce	

HBase is the open-source implementation…	

Data Model	
¢  A table in Bigtable is a sparse, distributed, persistent

multidimensional sorted map	

¢  Map indexed by a row key, column key, and a timestamp	
l  (row:string, column:string, time:int64) → uninterpreted byte array	

¢  Supports lookups, inserts, deletes	
l  Single row transactions only	

Image Source: Chang et al., OSDI 2006

Rows and Columns	
¢  Rows maintained in sorted lexicographic order	

l  Applications can exploit this property for efficient row scans	
l  Row ranges dynamically partitioned into tablets	

¢  Columns grouped into column families	
l  Column key = family:qualifier	

l  Column families provide locality hints	

l  Unbounded number of columns	

At the end of the day, it’s all key-value pairs!	

Key-Values	

row, column family, column qualifier, timestamp	 value	

In Memory	 On Disk	

Mutability Easy	 Mutability Hard	

Small	 Big	

Okay, so how do we build it?	

Bigtable Building Blocks	
¢  GFS	

¢  Chubby	

¢  SSTable	

HDFS	

Zookeeper	

HFile	

HBase	

SSTable	
¢  Basic building block of Bigtable	

¢  Persistent, ordered immutable map from keys to values	

l  Stored in GFS	

¢  Sequence of blocks on disk plus an index for block lookup	
l  Can be completely mapped into memory	

¢  Supported operations:	

l  Look up value associated with key	
l  Iterate key/value pairs within a key range	

Index

64K
block

64K
block

64K
block

SSTable

Source: Graphic from slides by Erik Paulson

HFile	

We get replication for free!	

Tablet	
¢  Dynamically partitioned range of rows	

¢  Built from multiple SSTables	

Index

64K
block

64K
block

64K
block

SSTable

Index

64K
block

64K
block

64K
block

SSTable

Tablet Start:aardvark End:apple

Source: Graphic from slides by Erik Paulson

Region	

Table	
¢  Multiple tablets make up the table	

¢  SSTables can be shared	

SSTable SSTable SSTable SSTable

Tablet

aardvark apple
Tablet

apple_two_E boat

Source: Graphic from slides by Erik Paulson

How do I get mutability?	
Easy, keep everything in memory!	

What happens when I run out of memory?	

Tablet Serving	

Image Source: Chang et al., OSDI 2006

“Log Structured Merge Trees”	

MemStore	

Architecture	
¢  Client library	

¢  Single master server	

¢  Tablet servers	

HMaster	

RegionServers	

Bigtable Master	
¢  Assigns tablets to tablet servers	

¢  Detects addition and expiration of tablet servers	

¢  Balances tablet server load	

¢  Handles garbage collection	

¢  Handles schema changes	

Bigtable Tablet Servers	
¢  Each tablet server manages a set of tablets	

l  Typically between ten to a thousand tablets	
l  Each 100-200 MB by default	

¢  Handles read and write requests to the tablets	

¢  Splits tablets that have grown too large	

Tablet Location	

Upon discovery, clients cache tablet locations

Image Source: Chang et al., OSDI 2006

Tablet Assignment	
¢  Master keeps track of:	

l  Set of live tablet servers	
l  Assignment of tablets to tablet servers	

l  Unassigned tablets	

¢  Each tablet is assigned to one tablet server at a time	
l  Tablet server maintains an exclusive lock on a file in Chubby	

l  Master monitors tablet servers and handles assignment	

¢  Changes to tablet structure	
l  Table creation/deletion (master initiated)	

l  Tablet merging (master initiated)	
l  Tablet splitting (tablet server initiated)	

Table	
¢  Multiple tablets make up the table	

¢  SSTables can be shared	

SSTable SSTable SSTable SSTable

Tablet

aardvark apple
Tablet

apple_two_E boat

Source: Graphic from slides by Erik Paulson

Tablet Serving	

Image Source: Chang et al., OSDI 2006

“Log Structured Merge Trees”	

Compactions	
¢  Minor compaction	

l  Converts the memtable into an SSTable	
l  Reduces memory usage and log traffic on restart	

¢  Merging compaction	
l  Reads the contents of a few SSTables and the memtable, and writes out

a new SSTable	
l  Reduces number of SSTables	

¢  Major compaction	
l  Merging compaction that results in only one SSTable	

l  No deletion records, only live data	

HBase	

Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Source: Wikipedia (Cake)

Source: Wikipedia (Japanese rock garden)

Questions?	

