24 WATERLOO

Big Data Infrastructure
CS 489/698 Big Data Infrastructure (Winter 2016)

Week [0: Mutable State (1/2)
March 15,2016

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at http://lintool.github.io/bigdata-20 | 6w/

‘@ ®®@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Structure of the Course

Analyzing Text
Analyzing Graphs
Analyzing
Relational Data
Data Mining

“Core” framework features
and algorithm design

The Fundamental Problem

O We want to keep track of mutable state in a scalable manner

O Assumptions:

e State organized in terms of many “records”
e State unlikely to fit on single machine, must be distributed

O MapReduce won’t do!

(note: much of this material belongs in a distributed systems or databases course)

OLTP/OLAP Architecture

ETL

(Extract, Transform, and Load)

OLTP > OLAP

Three Core Ideas

O Partitioning (sharding)

e For scalability
e For latency

O Replication

e For robustness (availability)

e For throughput

O Caching

e For latency

OLTP/OLAP Architecture

ETL

(Extract, Transform, and Load)

OLTP > OLAP

What do RDBMSes provide?

O Relational model with schemas
O Powerful, flexible query language
O Transactional semantics: ACID

O Rich ecosystem, lots of tool support

o
o
0
J 5
g~
g
@

RDBMSes:

“Source: www.flickr.com/photos/spencerdahl/6Q,

#1: Must design up front, painful to evolve

&
7 Artistld 1% Abumid ¥ Trackld e0=e ¢ MediaTypeld
Name Title Name Name
Artistld AlbumId
MediaTypeld ‘ e
Genreld co=saf 9
Composer Genreld
? Playlistld ? Playlistld Milliseconds fiame
Name ? Trackid Bytes
UnitPrice
? Invoicelineld
imvcicld
? Employeeld B Trackld
LastName . Customer UnitPrice
FirstName ? CustomerId Quantity
Title FirstName §
ReportsTo oo LastName :
BirthDate Company E. Invoice
HireDate Address ? Invoiceld
Address City Customerld
City State InvoiceDate
State Country BilingAddress
Country PostalCode BillingCity
PostalCode Phone BilingState
Phone “H=00 Fax BilingCountry
Fax Email BilingPostalCode
Email SupportRepld Total

Note: Flexible design doesn’t mean no design!

This should really be a list...

Remember the camelSnake!
{ /
"token": 945842,

"feature _enabled": "super_special”,
"userid": 229922 =
Hpagell. llnu11||

"info" em;\{;g\"my@place com" }
/ Is this really null?

What keys? What values?

= Is this really an integer?

JSON to the Rescue!

Flexible design doesn’t mean no design!

.
S,urce: Wikipedia (Tortoise

Source: www.flickr.com 0s/gnusinn/3080378658/

What do RDBMSes provide?

O Relational model with schemas

O Powerful, flexible query language
O Transactional semantics: ACID

O Rich ecosystem, lots of tool support

What if we want a la carte!?

Source: www.flickr.com/photos/vidiot/18556565/

Features a la carte?

O What if I'm willing to give up consistency for scalability?

O What if I'm willing to give up the relational model for something
more flexible?

O What if | just want a cheaper solution!?

Enter... NoSQL!

HOW TO WRITE A CV

DO YOU HAVE
ANY EXPERTISE
IN s@L?

geek & poke

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO sQL"

Leverage the NoSQL boom

Source: geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

NoSQL (Not only SQL)

I. Horizontally scale “simple operations”

2. Replicate/distribute data over many servers
3. Simple call interface

4. Weaker concurrency model than ACID

5. Efficient use of distributed indexes and RAM

6. Flexible schemas

hype. .-
But, don’t blindly follow tbewz\zt you really need:

Source: Cattell (2010). Scalable SQL and NoSQL Data Stores. SIGMOD Record.

(Major) Types of NoSQL databases

O Key-value stores
O Column-oriented databases
O Document stores

O Graph databases

Key-Value Stores

Source: Wikipedia (Keychain)

Key-Value Stores: Data Model

O Stores associations between keys and values

O Keys are usually primitives
e For example, ints, strings, raw bytes, etc.

O Values can be primitive or complex: usually opaque to store

e Primitives: ints, strings, etc.
e Complex: JSON, HTML fragments, etc.

Key-Value Stores: Operations

O Very simple API:

e Get — fetch value associated with key
® Put — set value associated with key

o Optional operations:

e Multi-get
e Multi-put

e Range queries

o Consistency model:

e Atomic puts (usually)

e Cross-key operations: who knows!?

Key-Value Stores: Implementation

O Non-persistent:

® Just a big in-memory hash table

O Persistent

® Wrapper around a traditional RDBMS

What if data doesn’t fit on a single machine?

Simple Solution: Partition!

O Partition the key space across multiple machines

e Let’s say, hash partitioning
e For n machines, store key k at machine h(k) mod n

o Okay... But:

I. How do we know which physical machine to contact?
2. How do we add a new machine to the cluster?

3. What happens if a machine fails?

See the problems here!?

Clever Solution

O Hash the keys

o Hash the machines also!

Distributed hash tables!

(following combines ideas from several sources...)

h=2"—1 h=0 . .
Each machine holds pointers

to predecessor and successor

™~

Send request to any node, gets
routed to correct one in O(n) hops

Can we do better?

Routing:Which machine holds the key?

h=2"—1 h=0 . .
Each machine holds pointers

to predecessor and successor

™~

+ “finger table”
(+2,+4,+8,...)

Send request to any node, gets routed
to correct one in O(log n) hops

Routing:Which machine holds the key?

h=2"-1 h=0 . .
Simpler Solution

Service
Registry

™~

Routing:Which machine holds the key?

Stoica et al. (2001). Chord: A Scalable Peer-to-peer
h=2n—] h=0 Lookup Service for Internet Applications. SIGCOMM.

Cf. Gossip Protoccols

™~

How do we rebuild the predecessor,
successor, finger tables?

New machine joins:What happens!?

h=r-1 h=0 Solution: Replication

N = 3, replicate +1, |

Covered!

Covered!

Machine fails:VWhat happens!?

Another Refinement: Virtual Nodes

O Don’t directly hash servers

O Create a large number of virtual nodes, map to physical servers

e Better load redistribution in event of machine failure

® When new server joins, evenly shed load from other servers

| Bigtable

Bigtable Applications

Gmail

Google’s web crawl

O

O

O Google Earth
O Google Analytics
O

Data source and data sink for MapReduce

HBase is the open-source implementation...

Data Model

O A table in Bigtable is a sparse, distributed, persistent
multidimensional sorted map

O Map indexed by a row key, column key, and a timestamp

e (row:string, column:string, time:inté4) — uninterpreted byte array

O Supports lookups, inserts, deletes

e Single row transactions only

"contents:" "anchor:.cnnsi.com" "anchor:my.look.ca"
I I I I I ! ! I !
I ¢ [I ¢ Z . { [
I N A (U - - - - - - - ___1_____]
I =Rt ! l ' I
! " = T - (3 " " " "
"com.cnn.www" — =Rttt CNN" =t CNN.com" = tg
| _ CI—ITFI—ID-- <__J I()— _ _l ______________________ J_ ______
| | | |
| | | |

Image Source: Chang et al., OSDI 2006

Rows and Columns

O Rows maintained in sorted lexicographic order

e Applications can exploit this property for efficient row scans
® Row ranges dynamically partitioned into tablets

O Columns grouped into column families

e Column key = family:qualifier
® Column families provide locality hints

e Unbounded number of columns

At the end of the day, it’s all key-value pairs!

Key-Values

value

Okay, so how do we build it?

In Memory On Disk

Mutability Easy Mutability Hard

Small Big

HBase
Bigtable Building Blocks

o GFS HDFS

O Chubby Zookeep€el
O SSTable HFile

SSTable HFile

O Basic building block of Bigtable

O Persistent, ordered immutable map from keys to values

e Stored in GFS

We get replication for free!

O Sequence of blocks on disk plus an index for block lookup

e Can be completely mapped into memory

O Supported operations:

® Look up value associated with key

o [terate key/value pairs within a key range

64K
block

64K
block

64K
block

SSTable

Index

Source: Graphic from slides by Erik Paulson

Tablet Region

O Dynamically partitioned range of rows

O Built from multiple SSTables

Tablet Start:aardvark End:apple

64K || 64K ||6ak | SSTAPlel g |lgak |64k | SSTable

block block block block block block

Index Index

Source: Graphic from slides by Erik Paulson

Table

O Multiple tablets make up the table

o SSTables can be shared

Tablet
aardvark

apple

Tablet

apple two E

boat

/

N~/

SSTable

SSTable

SSTable

SSTable

Source: Graphic from slides by Erik Paulson

How do | get mutability?
Easy, keep everything in memory!
What happens when | run out of memory!?

Tablet Serving

memtable / Read Op -\‘;
| S
Memory
GFS /
tablet log
/. W .)"\%
'\%- llte (]-)/

SSTable Files

“Log Structured Merge Trees”

Image Source: Chang et al., OSDI 2006

Architecture

O Client library
HMaSter

O Single master server

O Tablet servers RegionServers

Bigtable Master

Assigns tablets to tablet servers

Detects addition and expiration of tablet servers

O
O
O Balances tablet server load
O Handles garbage collection
O

Handles schema changes

Bigtable Tablet Servers

O Each tablet server manages a set of tablets

e Typically between ten to a thousand tablets
e Each 100-200 MB by default

O Handles read and write requests to the tablets

O Splits tablets that have grown too large

Tablet Location

Root tablet

(1st METADATA tablet)

Other

METADATA
tablets

UserTable1

Chubby file
(—

/.

Upon discovery, clients cache tablet locations

Image Source: Chang et al., OSDI 2006

N\

Tablet Assighment

O Master keeps track of:

e Set of live tablet servers
e Assignment of tablets to tablet servers

e Unassigned tablets

O Each tablet is assigned to one tablet server at a time

e Tablet server maintains an exclusive lock on a file in Chubby

e Master monitors tablet servers and handles assignment

O Changes to tablet structure

e Table creation/deletion (master initiated)
e Tablet merging (master initiated)
e Tablet splitting (tablet server initiated)

Table

O Multiple tablets make up the table

o SSTables can be shared

Tablet
aardvark

apple

Tablet

apple two E

boat

/

N~/

SSTable

SSTable

SSTable

SSTable

Source: Graphic from slides by Erik Paulson

Tablet Serving

memtable | / Read Op -\':.
ST
Memory
GFS /
tablet log
N W))'\.
'-\%— llte (]_)/

SSTable Files

“Log Structured Merge Trees”

Image Source: Chang et al., OSDI 2006

Compactions

O Minor compaction

e Converts the memtable into an SSTable
e Reduces memory usage and log traffic on restart

O Merging compaction

e Reads the contents of a few SSTables and the memtable, and writes out
a new SSTable

e Reduces number of SSTables

O Major compaction

e Merging compaction that results in only one SSTable

® No deletion records, only live data

HBase

HRegionServer

HRegionServer

HRegion

HRegion

P Store Store
8 . | StoreFile \ StoreFile StoreFile ” | StoreFile \
I - ' o
T (T (T T s Yoo oot o oo -)
Al
2 (ooogoo || oNoo oooogo || ooogoo
g | oo || obood oo (| oot
% uodood (f oot | goodog (| godooo

DataNode DataNode DataNode DataNode

Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

o e .

Source: Wikipedia (Cake)

