

Big Data Infrastructure

CS 489/698 Big Data Infrastructure (Winter 2016)

Week 9: Data Mining (4/4) March 10, 2016

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

What's the Problem?

- Arrange items into clusters
 - High similarity (low distance) between items in the same cluster
 - Low similarity (high distance) between items in different clusters
- Cluster labeling is a separate problem

Compare/Contrast

- Finding similar items
 - Focus on individual items
- Clustering
 - Focus on groups of items
 - Relationship between items in a cluster is of interest

Evaluation?

- Classification
- Finding similar items
- Clustering

Clustering

Source: Wikipedia (Star cluster)

Clustering

- Specify distance metric
 - Jaccard, Euclidean, cosine, etc.
- Compute representation
 - Shingling, tf.idf, etc.
- Apply clustering algorithm

Distances

-

Source: www.flickr.com/photos/thiagoalmeida/250190676/

Distance Metrics

- I. Non-negativity: $d(x,y) \geq 0$
- 2. Identity:

$$d(x,y) = 0 \iff x = y$$

3. Symmetry:

$$d(x, y) = d(y, x)$$

4. Triangle Inequality

$$d(x,y) \leq d(x,z) + d(z,y)$$

Distance: Jaccard

- Given two sets A, B
- Jaccard similarity:

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$
$$d(A, B) = 1 - J(A, B)$$

Distance: Hamming

- Given two bit vectors
- Hamming distance: number of elements which differ

Distance: Norms

• Given:
$$x = [x_1, x_2, \dots x_n]$$

 $y = [y_1, y_2, \dots y_n]$

• Euclidean distance (L₂-norm)

$$d(x, y) = \sqrt{\sum_{i=0}^{n} (x_i - y_i)^2}$$

• Manhattan distance (L₁-norm)

$$d(x, y) = \sum_{i=0}^{n} |x_i - y_i|$$

• L_r-norm

$$d(x, y) = \left[\sum_{i=0}^{n} |x_i - y_i|^r\right]^{1/r}$$

Distance: Cosine

• Given:
$$x = [x_1, x_2, \dots x_n]$$

 $y = [y_1, y_2, \dots y_n]$

• Idea: measure distance between the vectors

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|}$$

• Thus:

$$\operatorname{sim}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=0}^{n} x_i y_i}{\sqrt{\sum_{i=0}^{n} x_i^2} \sqrt{\sum_{i=0}^{n} y_i^2}}$$
$$\operatorname{d}(\mathbf{x}, \mathbf{y}) = 1 - \operatorname{sim}(\mathbf{x}, \mathbf{y})$$

Representations

Representations: Text

- Unigrams (i.e., words)
- Shingles = *n*-grams
 - At the word level
 - At the character level
- Feature weights
 - boolean
 - tf.idf
 - BM25
 - ...

Representations: Beyond Text

- For recommender systems:
 - Items as features for users
 - Users as features for items
- For graphs:
 - Adjacency lists as features for vertices
- With log data:
 - Behaviors (clicks) as features

General Clustering Approaches

- Hierarchical
- K-Means
- Gaussian Mixture Models

Hierarchical Agglomerative Clustering

- Start with each document in its own cluster
- Until there is only one cluster:
 - Find the two clusters c_i and c_j , that are most similar
 - Replace c_i and c_j with a single cluster $c_i \cup c_j$
- The history of merges forms the hierarchy

HAC in Action

Cluster Merging

- Which two clusters do we merge?
- What's the similarity between two clusters?
 - Single Link: similarity of two most similar members
 - Complete Link: similarity of two least similar members
 - Group Average: average similarity between members

Link Functions

• Single link:

• Uses maximum similarity of pairs:

$$\sin(c_i, c_j) = \max_{x \in c_i, y \in c_j} \sin(x, y)$$

• Can result in "straggly" (long and thin) clusters due to chaining effect

• Complete link:

• Use minimum similarity of pairs:

$$\sin(c_i, c_j) = \min_{x \in c_i, y \in c_j} \sin(x, y)$$

• Makes more "tight" spherical clusters

MapReduce Implementation

• What's the inherent challenge?

K-Means Algorithm

- Let d be the distance between documents
- Define the centroid of a cluster to be:

$$\mu(c) = \frac{1}{|c|} \sum_{\mathbf{x} \in c} \mathbf{x}$$

- Select k random instances $\{s_1, s_2, \dots, s_k\}$ as seeds.
- Until clusters converge:
 - Assign each instance x_i to the cluster c_i such that $d(x_i, s_i)$ is minimal
 - Update the seeds to the centroid of each cluster
 - For each cluster c_j , $s_j = \mu(c_j)$

K-Means Clustering Example

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters
Converged!

Basic MapReduce Implementation

1: class MAPPER

- 2: **method** CONFIGURE()
- 3: $c \leftarrow \text{LOADCLUSTERS}()$
- 4: **method** MAP(id i, point p)
- 5: $n \leftarrow \text{NEARESTCLUSTERID}(\text{clusters } c, \text{ point } p)$

```
p \leftarrow \text{ExtendPoint}(\text{point } p) \longleftarrow  (Just a clever way to keep
6:
```

EMIT(clusterid n, point p) 7:

track of denominator)

- 1: class Reducer.
- 2: **method** REDUCE(clusterid *n*, points $[p_1, p_2, \ldots]$)
- $s \leftarrow \text{INITPOINTSUM}()$ 3:
- 4: for all point $p \in$ points do

```
5:
            s \leftarrow s + p
```

- 6: $m \leftarrow \text{COMPUTECENTROID}(\text{point } s)$
- EMIT(clusterid n, centroid m) 7:

MapReduce Implementation w/ IMC

- 1: **class** Mapper
- 2: **method** CONFIGURE()
- 3: $c \leftarrow \text{LOADCLUSTERS}()$
- 4: $H \leftarrow \text{INITASSOCIATIVEARRAY}()$
- 5: method MAP(id i, point p)
- 6: $n \leftarrow \text{NEARESTCLUSTERID}(\text{clusters } c, \text{ point } p)$
- 7: $p \leftarrow \text{ExtendPoint}(\text{point } p)$
- 8: $H\{n\} \leftarrow H\{n\} + p$
- 9: method CLOSE()
- 10: for all clusterid $n \in H$ do
- 11: EMIT(clusterid n, point $H\{n\}$)
 - 1: **class** Reducer
 - 2: method REDUCE(clusterid n, points $[p_1, p_2, \ldots]$)
 - 3: $s \leftarrow \text{INITPOINTSUM}()$
 - 4: for all point $p \in \text{points}$ do
 - 5: $s \leftarrow s + p$
 - 6: $m \leftarrow \text{COMPUTECENTROID}(\text{point } s)$
 - 7: EMIT(clusterid n, centroid m)

What about Spark?

Implementation Notes

• Standard setup of iterative MapReduce algorithms

- Driver program sets up MapReduce job
- Waits for completion
- Checks for convergence
- Repeats if necessary
- Must be able keep cluster centroids in memory
 - With large k, large feature spaces, potentially an issue
 - Memory requirements of centroids grow over time!
- Variant: *k*-medoids

Clustering w/ Gaussian Mixture Models

- Model data as a mixture of Gaussians
- Given data, recover model parameters

Gaussian Distributions

• Univariate Gaussian (i.e., Normal):

$$p(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

- A random variable with such a distribution we write as: $x \sim \mathcal{N}(\mu, \sigma^2)$
- Multivariate Gaussian:

$$p(\mathbf{x};\mu,\Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)\right)$$

- A vector-value random variable with such a distribution we write as: $\mathbf{x}\sim\mathcal{N}(\mu,\Sigma)$

Univariate Gaussian

Source: Wikipedia (Normal Distribution)

Multivariate Gaussians

Source: Lecture notes by Chuong B. Do (IIT Delhi)

Gaussian Mixture Models

- Model parameters
 - Number of components: K
 - "Mixing" weight vector: $\boldsymbol{\pi}$
 - For each Gaussian, mean and covariance matrix: $\mu_{1:K}$ $\Sigma_{1:K}$
- Varying constraints on co-variance matrices
 - Spherical vs. diagonal vs. full
 - Tied vs. untied

Learning for Simple Univariate Case

• Problem setup:

- Given number of components: K
- Given points: $x_{1:N}$
- Learn parameters: $\pi, \mu_{1:K}, \sigma_{1:K}^2$
- Model selection criterion: maximize likelihood of data
 - Introduce indicator variables:

$$z_{n,k} = \begin{cases} 1 & \text{if } x_n \text{ is in cluster } k \\ 0 & \text{otherwise} \end{cases}$$

• Likelihood of the data:

 $p(x_{1:N}, z_{1:N,1:K} | \mu_{1:K}, \sigma_{1:K}^2, \pi)$

EM to the Rescue!

• We're faced with this:

 $p(x_{1:N}, z_{1:N,1:K} | \mu_{1:K}, \sigma_{1:K}^2, \pi)$

- It'd be a lot easier if we knew the z's!
- Expectation Maximization
 - Guess the model parameters
 - E-step: Compute posterior distribution over latent (hidden) variables given the model parameters
 - M-step: Update model parameters using posterior distribution computed in the E-step
 - Iterate until convergence

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

EM for Univariate GMMs

- Initialize: $\pi, \mu_{1:K}, \sigma_{1:K}^2$
- Iterate:
 - E-step: compute expectation of z variables

$$\mathbb{E}[z_{n,k}] = \frac{\mathcal{N}(x_n | \mu_k, \sigma_k^2) \cdot \pi_k}{\sum_{k'} \mathcal{N}(x_n | \mu_{k'}, \sigma_{k'}^2) \cdot \pi_{k'}}$$

• M-step: compute new model parameters

$$\pi_k = \frac{1}{N} \sum_n z_{n,k}$$
$$\mu_k = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} \cdot x_n$$
$$\sigma_k^2 = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} ||x_n - \mu_k||^2$$

MapReduce Implementation

 \mathbf{Map} $\mathbb{E}[z_{n,k}] = \frac{\mathcal{N}(x_n | \mu_k, \sigma_k^2) \cdot \pi_k}{\sum_{k'} \mathcal{N}(x_n | \mu_{k'}, \sigma_{k'}^2) \cdot \pi_{k'}}$

Reduce

$$\pi_k = \frac{1}{N} \sum_n z_{n,k}$$
$$\mu_k = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} \cdot x_n$$
$$\sigma_k^2 = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} ||x_n - \mu_k||^2$$

What about Spark?

K-Means vs. GMMs

K-Means

GMM

Мар

Compute distance of points to centroids

E-step: compute expectation of z indicator variables

Reduce Recompute new centroids

M-step: update values of model parameters

Questions?

Source: Wikipedia (Japanese rock garden)