
Big Data Infrastructure

Week 9: Data Mining (4/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

March 10, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

What’s the Problem?
¢  Arrange items into clusters

l  High similarity (low distance) between items in the same cluster
l  Low similarity (high distance) between items in different clusters

¢  Cluster labeling is a separate problem

Compare/Contrast
¢  Finding similar items

l  Focus on individual items

¢  Clustering
l  Focus on groups of items

l  Relationship between items in a cluster is of interest

Evaluation?
¢  Classification

¢  Finding similar items

¢  Clustering

Clustering

Source: Wikipedia (Star cluster)

Clustering
¢  Specify distance metric

l  Jaccard, Euclidean, cosine, etc.

¢  Compute representation
l  Shingling, tf.idf, etc.

¢  Apply clustering algorithm

Distances

Source: www.flickr.com/photos/thiagoalmeida/250190676/

Distance Metrics
1.  Non-negativity:

2.  Identity:

3.  Symmetry:

4.  Triangle Inequality

d(x, y) � 0

d(x, y) = 0 () x = y

d(x, y) = d(y, x)

d(x, y) d(x, z) + d(z, y)

Distance: Jaccard
¢  Given two sets A, B

¢  Jaccard similarity:

J(A,B) =
|A \B|
|A [B|

d(A,B) = 1� J(A,B)

Distance: Hamming
¢  Given two bit vectors

¢  Hamming distance: number of elements which differ

Distance: Norms
¢  Given:

¢  Euclidean distance (L2-norm)

¢  Manhattan distance (L1-norm)

¢  Lr-norm

x = [x1, x2, . . . xn]

y = [y1, y2, . . . yn]

d(x, y) =

vuut
nX

i=0

(xi � yi)
2

d(x, y) =

nX

i=0

|xi � yi|

d(x, y) =

"
nX

i=0

|xi � yi|r
#1/r

Distance: Cosine
¢  Given:

¢  Idea: measure distance between the vectors

¢  Thus:

x = [x1, x2, . . . xn]

y = [y1, y2, . . . yn]

cos ✓ =

x · y
|x||y|

sim(x, y) =

Pn
i=0 xiyipPn

i=0 x
2
i

pPn
i=0 y

2
i

d(x, y) = 1� sim(x, y)

Advantages over others?

Representations

Representations: Text
¢  Unigrams (i.e., words)

¢  Shingles = n-grams

l  At the word level
l  At the character level

¢  Feature weights
l  boolean

l  tf.idf

l  BM25

l  …

Representations: Beyond Text
¢  For recommender systems:

l  Items as features for users
l  Users as features for items

¢  For graphs:
l  Adjacency lists as features for vertices

¢  With log data:
l  Behaviors (clicks) as features

General Clustering Approaches
¢  Hierarchical

¢  K-Means

¢  Gaussian Mixture Models

Hierarchical Agglomerative Clustering
¢  Start with each document in its own cluster

¢  Until there is only one cluster:

l  Find the two clusters ci and cj, that are most similar
l  Replace ci and cj with a single cluster ci ∪ cj

¢  The history of merges forms the hierarchy

HAC in Action

A B C D E F G H

Cluster Merging
¢  Which two clusters do we merge?

¢  What’s the similarity between two clusters?

l  Single Link: similarity of two most similar members
l  Complete Link: similarity of two least similar members

l  Group Average: average similarity between members

Link Functions
¢  Single link:

l  Uses maximum similarity of pairs:

l  Can result in “straggly” (long and thin) clusters due to chaining effect

¢  Complete link:
l  Use minimum similarity of pairs:

l  Makes more “tight” spherical clusters

sim(c

i

, c

j

) = max

x2ci,y2cj

sim(x, y)

sim(c
i

, c

j

) = min
x2ci,y2cj

sim(x, y)

MapReduce Implementation
¢  What’s the inherent challenge?

K-Means Algorithm
¢  Let d be the distance between documents

¢  Define the centroid of a cluster to be:

¢  Select k random instances {s1, s2,… sk} as seeds.

¢  Until clusters converge:

l  Assign each instance xi to the cluster cj such that d(xi, sj) is minimal
l  Update the seeds to the centroid of each cluster

l  For each cluster cj, sj = µ(cj)

µ(c) =
1

|c|
X

x2c

x

Compute centroids

¤
¤

K-Means Clustering Example

Pick seeds

Reassign clusters

Reassign clusters

¤ ¤ Compute centroids

Reassign clusters

Converged!

Basic MapReduce Implementation

input point and then updates the location of each cluster
by taking the arithmetic mean of the points it is nearest to.
The algorithm iterates until a stopping condition is met. To
apply this to the MapReduce framework (see Algorithm 5)
we find the cluster membership for each point in the map-
per, emitting the point’s nearest cluster number as the key
and the point itself as the value. The points are extended
by one dimension and initialized to a value of one to repre-
sent the count for cluster normalization. For simplicity, we
load the current cluster estimate into memory in the map-
per; however, later we will discuss a method that can be
used when the clusters are too large to fit into memory. The
MapReduce framework will group the points by their nearest
cluster. The reducer sums all of the points and normalizes
to produce the updated cluster center, which is emitted as
the value with the key being the cluster number. A ‘driver’
program orchestrates the communication of the new clusters
to the mapper during the next k-means iteration.

In practice the previous implementation will perform poorly
as the entire dataset will be transferred over the network
during the shu✏e phase, resulting in a bottleneck due to the
high network tra�c. We can dramatically improve the per-
formance by observing that the cluster mean computation
requires the sum of all of the points and their cardinality.
Addition is associative and commutative which allows us to
perform partial aggregation in a combiner that is similar to
the reducer, except that it will not normalize the result. Af-
ter the combiner runs, it decreases the data sent over the
network from O(N) where N is points to O(KM) where K
is clusters and M is Map tasks. For the k-means algorithm,
the usefulness of the combiner increases as the ratio N

KM

increases.
We can further extend this idea by noting that before the

combiner can run, the mapper output is sorted; however, we
can instead maintain an associative array in the mapper that
holds the partial sums. By using the in-mapper combining
design pattern (see Section 3.2.2), the initial algorithm is
modified to not emit during calls to the Map method, and
instead accumulate the partial sums until the Closemethod
is called after all of the input has been processed (see Al-
gorithm 6). This adds on to the previous optimization by
decreasing the amount of data that is serialized between the
mapper to the combiner and the time taken to sort the map-
per’s output for the combiner. This modification uses up to
twice the memory as the original k-means algorithm while
generally improving the run-time.

To simplify the previous k-means algorithms, we assumed
that there is enough memory to hold the clusters. If this
is not the case then the following extension can be used to
perform k-means in three jobs per iteration. We start by
partitioning the clusters into smaller sets that fit into mem-
ory. In a map-only job emit the point id as the key and a
tuple of the point, nearest available cluster, and the cluster
distance as the value; there is one job for every set of clusters
and they can all be run in parallel. The results from these
jobs are passed through an identity (i.e., emits what is re-
ceived) mapper and the reducer emits the minimum distance
cluster as the key and the point as the value. These clus-
ter assignments are then passed through an identity mapper
and the reducer computes the updated cluster centers.

4.5 Bag-of-Features
In Csurka et al. [3] an analogy between textual words and

1: class Mapper
2: method Configure()
3: c LoadClusters()
4: method Map(id i, point p)
5: n NearestClusterID(clusters c, point p)
6: p ExtendPoint(point p)
7: Emit(clusterid n, point p)
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s InitPointSum()
4: for all point p 2 points do
5: s s + p
6: m ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)

Algorithm 5: K-means clustering algorithm.

1: class Mapper
2: method Configure()
3: c LoadClusters()
4: H InitAssociativeArray()

5: method Map(id i, point p)
6: n NearestClusterID(clusters c, point p)
7: p ExtendPoint(point p)
8: H{n} H{n} + p
9: method Close()

10: for all clusterid n 2 H do
11: Emit(clusterid n, point H{n})
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s InitPointSum()
4: for all point p 2 points do
5: s s + p
6: m ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)
Algorithm 6: K-means clustering algorithm with
IMC (in-mapper combining) design pattern.

image key point clusters was drawn to produce an e↵ective
method of capturing a global image feature composed of
many local descriptors. This “bag-of-features” (BoF) model
has been shown to produce state-of-the-art performance in
several applications [3, 9, 10]. To compute BoF vectors, lo-
cal feature points are selected by a detection algorithm [3]
or randomly [16], the local features are clustered, and a his-
togram is calculated from the local feature quantizations.
To apply this algorithm to the MapReduce framework we
will use 3 separate stages: compute features, cluster fea-
tures (see Section 4.4), and create feature quantization his-
tograms. The feature computation is a mapper that takes in
images and outputs the features as a list or individually de-
pending on the clustering and quantization algorithms used.
Two approaches are provided for computing quantization
histograms, Algorithm 7 is most e↵ective when the nearest
cluster operation is fast (i.e., e�cient distance metric with
few clusters and features) while Algorithm 8 distributes the
features to di↵erent mappers which scales to more clusters
and features.

4.6 Background Subtraction
A successful method of segmenting objects of interest in

a surveillance setting is by using background subtraction [7,

(Just a clever way to keep
track of denominator)

MapReduce Implementation w/ IMC

input point and then updates the location of each cluster
by taking the arithmetic mean of the points it is nearest to.
The algorithm iterates until a stopping condition is met. To
apply this to the MapReduce framework (see Algorithm 5)
we find the cluster membership for each point in the map-
per, emitting the point’s nearest cluster number as the key
and the point itself as the value. The points are extended
by one dimension and initialized to a value of one to repre-
sent the count for cluster normalization. For simplicity, we
load the current cluster estimate into memory in the map-
per; however, later we will discuss a method that can be
used when the clusters are too large to fit into memory. The
MapReduce framework will group the points by their nearest
cluster. The reducer sums all of the points and normalizes
to produce the updated cluster center, which is emitted as
the value with the key being the cluster number. A ‘driver’
program orchestrates the communication of the new clusters
to the mapper during the next k-means iteration.

In practice the previous implementation will perform poorly
as the entire dataset will be transferred over the network
during the shu✏e phase, resulting in a bottleneck due to the
high network tra�c. We can dramatically improve the per-
formance by observing that the cluster mean computation
requires the sum of all of the points and their cardinality.
Addition is associative and commutative which allows us to
perform partial aggregation in a combiner that is similar to
the reducer, except that it will not normalize the result. Af-
ter the combiner runs, it decreases the data sent over the
network from O(N) where N is points to O(KM) where K
is clusters and M is Map tasks. For the k-means algorithm,
the usefulness of the combiner increases as the ratio N

KM

increases.
We can further extend this idea by noting that before the

combiner can run, the mapper output is sorted; however, we
can instead maintain an associative array in the mapper that
holds the partial sums. By using the in-mapper combining
design pattern (see Section 3.2.2), the initial algorithm is
modified to not emit during calls to the Map method, and
instead accumulate the partial sums until the Closemethod
is called after all of the input has been processed (see Al-
gorithm 6). This adds on to the previous optimization by
decreasing the amount of data that is serialized between the
mapper to the combiner and the time taken to sort the map-
per’s output for the combiner. This modification uses up to
twice the memory as the original k-means algorithm while
generally improving the run-time.

To simplify the previous k-means algorithms, we assumed
that there is enough memory to hold the clusters. If this
is not the case then the following extension can be used to
perform k-means in three jobs per iteration. We start by
partitioning the clusters into smaller sets that fit into mem-
ory. In a map-only job emit the point id as the key and a
tuple of the point, nearest available cluster, and the cluster
distance as the value; there is one job for every set of clusters
and they can all be run in parallel. The results from these
jobs are passed through an identity (i.e., emits what is re-
ceived) mapper and the reducer emits the minimum distance
cluster as the key and the point as the value. These clus-
ter assignments are then passed through an identity mapper
and the reducer computes the updated cluster centers.

4.5 Bag-of-Features
In Csurka et al. [3] an analogy between textual words and

1: class Mapper
2: method Configure()
3: c LoadClusters()
4: method Map(id i, point p)
5: n NearestClusterID(clusters c, point p)
6: p ExtendPoint(point p)
7: Emit(clusterid n, point p)
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s InitPointSum()
4: for all point p 2 points do
5: s s + p
6: m ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)

Algorithm 5: K-means clustering algorithm.

1: class Mapper
2: method Configure()
3: c LoadClusters()
4: H InitAssociativeArray()

5: method Map(id i, point p)
6: n NearestClusterID(clusters c, point p)
7: p ExtendPoint(point p)
8: H{n} H{n} + p
9: method Close()

10: for all clusterid n 2 H do
11: Emit(clusterid n, point H{n})
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s InitPointSum()
4: for all point p 2 points do
5: s s + p
6: m ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)
Algorithm 6: K-means clustering algorithm with
IMC (in-mapper combining) design pattern.

image key point clusters was drawn to produce an e↵ective
method of capturing a global image feature composed of
many local descriptors. This “bag-of-features” (BoF) model
has been shown to produce state-of-the-art performance in
several applications [3, 9, 10]. To compute BoF vectors, lo-
cal feature points are selected by a detection algorithm [3]
or randomly [16], the local features are clustered, and a his-
togram is calculated from the local feature quantizations.
To apply this algorithm to the MapReduce framework we
will use 3 separate stages: compute features, cluster fea-
tures (see Section 4.4), and create feature quantization his-
tograms. The feature computation is a mapper that takes in
images and outputs the features as a list or individually de-
pending on the clustering and quantization algorithms used.
Two approaches are provided for computing quantization
histograms, Algorithm 7 is most e↵ective when the nearest
cluster operation is fast (i.e., e�cient distance metric with
few clusters and features) while Algorithm 8 distributes the
features to di↵erent mappers which scales to more clusters
and features.

4.6 Background Subtraction
A successful method of segmenting objects of interest in

a surveillance setting is by using background subtraction [7,

What about Spark?

Implementation Notes
¢  Standard setup of iterative MapReduce algorithms

l  Driver program sets up MapReduce job
l  Waits for completion

l  Checks for convergence

l  Repeats if necessary

¢  Must be able keep cluster centroids in memory
l  With large k, large feature spaces, potentially an issue

l  Memory requirements of centroids grow over time!

¢  Variant: k-medoids

Clustering w/ Gaussian Mixture Models
¢  Model data as a mixture of Gaussians

¢  Given data, recover model parameters

Source: Wikipedia (Cluster analysis)

Gaussian Distributions
¢  Univariate Gaussian (i.e., Normal):

l  A random variable with such a distribution we write as:

¢  Multivariate Gaussian:

l  A vector-value random variable with such a distribution we write as:

p(x;µ,�

2
) =

1p
2⇡�

exp

✓
� 1

2�

2
(x� µ)

2

◆

x ⇠ N (µ,�2)

x ⇠ N (µ,⌃)

p(x;µ,⌃) =
1

(2⇡)n/2|⌃|1/2
exp

✓
�1

2

(x� µ)T⌃�1
(x� µ)

◆

Univariate Gaussian

Source: Wikipedia (Normal Distribution)

Multivariate Gaussians

−6 −4 −2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

8

−4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

Figure 2:
The figure on the left shows a heatmap indicating values of the density function for an

axis-aligned multivariate Gaussian with mean µ =

[

3
2

]

and diagonal covariance matrix Σ =
[

25 0
0 9

]

. Notice that the Gaussian is centered at (3, 2), and that the isocontours are all

elliptically shaped with major/minor axis lengths in a 5:3 ratio. The figure on the right
shows a heatmap indicating values of the density function for a non axis-aligned multivariate

Gaussian with mean µ =

[

3
2

]

and covariance matrix Σ =

[

10 5
5 5

]

. Here, the ellipses are

again centered at (3, 2), but now the major and minor axes have been rotated via a linear
transformation.

6

µ =

3
2

�
µ =

3
2

�
⌃ =

25 0
0 9

�
⌃ =

10 5
5 5

�

Source: Lecture notes by Chuong B. Do (IIT Delhi)

Gaussian Mixture Models
¢  Model parameters

l  Number of components:
l  “Mixing” weight vector:

l  For each Gaussian, mean and covariance matrix:

¢  Varying constraints on co-variance matrices
l  Spherical vs. diagonal vs. full

l  Tied vs. untied

µ1:K ⌃1:K

⇡
K

The generative story?

(yes, that’s a technical term)

Learning for Simple Univariate Case
¢  Problem setup:

l  Given number of components:
l  Given points:

l  Learn parameters:

¢  Model selection criterion: maximize likelihood of data
l  Introduce indicator variables:

l  Likelihood of the data:

K

⇡, µ1:K ,�2
1:K

x1:N

p(x1:N , z1:N,1:K |µ1:K ,�

2
1:K ,⇡)

zn,k =

⇢
1 if xn is in cluster k

0 otherwise

EM to the Rescue!
¢  We’re faced with this:

l  It’d be a lot easier if we knew the z’s!

¢  Expectation Maximization
l  Guess the model parameters
l  E-step: Compute posterior distribution over latent (hidden) variables

given the model parameters
l  M-step: Update model parameters using posterior distribution computed

in the E-step
l  Iterate until convergence

p(x1:N , z1:N,1:K |µ1:K ,�

2
1:K ,⇡)

EM for Univariate GMMs
¢  Initialize:

¢  Iterate:

l  E-step: compute expectation of z variables

l  M-step: compute new model parameters

⇡, µ1:K ,�2
1:K

E[zn,k] =
N (xn|µk,�

2
k) · ⇡kP

k0 N (xn|µk0
,�

2
k0) · ⇡k0

⇡k =
1

N

X

n

zn,k

µk =
1P

n zn,k

X

n

zn,k · xn

�

2
k =

1P
n zn,k

X

n

zn,k||xn � µk||2

MapReduce Implementation

E[zn,k] =
N (xn|µk,�

2
k) · ⇡kP

k0 N (xn|µk0
,�

2
k0) · ⇡k0

⇡k =
1

N

X

n

zn,k

µk =
1P

n zn,k

X

n

zn,k · xn

�

2
k =

1P
n zn,k

X

n

zn,k||xn � µk||2

z1,1

z2,1

z3,1

zN,1

z1,2

z2,2

z3,3

zN,2

z1,K

z2,K

z3,K

zN,K

…

…x1

x2

x3

xN

Map

Reduce

What about Spark?

K-Means vs. GMMs

Map

Reduce

K-Means GMM

Compute distance of
points to centroids

Recompute new centroids

E-step: compute expectation
of z indicator variables

M-step: update values of
model parameters

Source: Wikipedia (k-means clustering)

Source: Wikipedia (Japanese rock garden)

Questions?

