24 WATERLOO

Big Data Infrastructure
CS 489/698 Big Data Infrastructure (Winter 2016)

Week 9: Data Mining (4/4)
March 10,2016

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at http://lintool.github.io/bigdata-20 | 6w/

‘@ ®®@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details




What’s the Problem?

O Arrange items into clusters

e High similarity (low distance) between items in the same cluster
e Low similarity (high distance) between items in different clusters

O Cluster labeling is a separate problem



Compare/Contrast

O Finding similar items
e Focus on individual items

O Clustering

e Focus on groups of items

e Relationship between items in a cluster is of interest



Evaluation?

O Classification
O Finding similar items

O Clustering



.
.

.,
. . 4
N
.
.
..
- - .
.
L o -
9 ‘-
. o
< -
. . .
~ .
.
.
- -
-
. -
N .
- . !
* .. Y ...
- -
.
.
e - .
- -
- L. -
.
.
-
-
.
. - L
.
v -
.
.
*
- ™ ‘-
b .
-
.
. .
-
© "
.
.
. P
-

X ..‘ b
. Source: Wikipedia (Star cluster)

. .
- o, -
. ' ..
-
- ' ‘.'
.
- .. -
. -
.

-
-
. e
- -
..‘
.l
-
.
.
.
‘'
-,
*
.
.



Clustering

O Specify distance metric

® Jaccard, Euclidean, cosine, etc.
O Compute representation

e Shingling, tf.idf, etc.
O Apply clustering algorithm



Distances

ickr.c

www.fl

Source



Distance Metrics
I. Non-negativity:
d(x,y) >0
2. ldentity:
d(x,y) =0 <= x=y
3. Symmetry:
d(x,y) = d(y,x)

4. Triangle Inequality

d(x,y) < d(x,2) + d(z,y)



Distance: Jaccard
o Given two sets A, B
O Jaccard similarity:

_|AnB|
- |AuU B|

d(A,B) =1 — J(A, B)

J(A, B)




Distance: Hamming

o Given two bit vectors

O Hamming distance: number of elements which differ



Distance: Norms

o Given: x=[11,70,...7,]
y = [y1,y2: - Yn]

O Euclidean distance (L,-norm)

n

d(x,y) = \ Z (73 — yi)2

1=0

O Manhattan distance (L,-norm)

d(x,y) = ) |z —ui
1=0

O L.-norm

n 1/r
d(x,y) = [Z z; — yz”T:|
1=0



Distance: Cosine

o Given: x=[11,70,...7,]
y = [y1,y2: - Yn]

O ldea: measure distance between the vectors

cos 0 = =
x|y
o Thus:
: Zn—o LiYi
sim(x,y) = =
\/Z?:o xf \/Z?zo %2

d(x,y) =1 —sim(x,y)

Advantages OVe

r others!






Representations: Text

O Unigrams (i.e., words)

O Shingles = n-grams

e At the word level
e At the character level

O Feature weights

e boolean
o tf.idf

e BM25
o



Representations: Beyond Text

O For recommender systems:

e |tems as features for users

e Users as features for items

O For graphs:

e Adjacency lists as features for vertices

O With log data:

e Behaviors (clicks) as features



General Clustering Approaches

O Hierarchical

O K-Means

O Gaussian Mixture Models



Hierarchical Agglomerative Clustering

o Start with each document in its own cluster

O Until there is only one cluster:

® Find the two clusters ¢; and ¢, that are most similar
® Replace ¢; and ¢; with a single cluster ¢; U ¢

O The history of merges forms the hierarchy



HAC in Action




Cluster Merging

O Which two clusters do we merge!?

O What's the similarity between two clusters!?

e Single Link: similarity of two most similar members
e Complete Link: similarity of two least similar members

e Group Average: average similarity between members



Link Functions

O Single link:
e Uses maximum similarity of pairs:
sim(ci,c;) = max sim(z,y)
TEC;,YEeC;

e Can result in “straggly” (long and thin) clusters due to chaining effect
o Complete link:
e Use minimum similarity of pairs:

sim(c;, ¢j) = melgmynec sim(z, y)
x J

e Makes more “tight” spherical clusters



MapReduce Implementation

O What's the inherent challenge?



K-Means Algorithm

O Let d be the distance between documents

O Define the centroid of a cluster to be:

u(C)Z‘%ZX

XEC

O Select k random instances {s, s,,... S} as seeds.

O Until clusters converge:

® Assign each instance x; to the cluster ¢ such that d(x, s;) is minimal
e Update the seeds to the centroid of each cluster

e For each cluster ¢, s; = u(c)



K-Means Clustering Example

Pick seeds

Reassign clusters
Compute centroids
Reassign clusters
Compute centroids

Reassign clusters

Converged!



Basic MapReduce Implementation

class MAPPER
method CONFIGURE()
¢ < LOADCLUSTERS()
method MAP(id i, point p)
n <— NEARESTCLUSTERID (clusters ¢, point p)

p < EXTENDPOINT(point p
EmIT(clusterid n p(gint p) ) S——___ (Just a clever way to keep
’ track of denominator)

class REDUCER
method REDUCE(clusterid n, points [p1, p2, - ..])
s < INITPOINTSUM()
for all point p € points do
S S+ p
m <— COMPUTECENTROID(point s)
EMiT(clusterid n, centroid m)



MapReduce Implementation w/ IMC

class MAPPER
method CONFIGURE()
¢ < LOADCLUSTERS()
H < INITASSOCIATIVEARRAY ()
method MAaPr(id ¢, point p)
n <— NEARESTCLUSTERID (clusters ¢, point p)
p < EXTENDPOINT(point p)
H{n} < H{n} + p
method CLOSE()
for all clusterid n € H do
EMIT(clusterid n, point H{n})
: class REDUCER
method REDUCE(clusterid n, points [p1, p2, . ..])
s <— INITPOINTSUM()
for all point p € points do
S S+ p
m <— COMPUTECENTROID(point s)
EMmIT (clusterid n, centroid m)

—_

What about Spark!



Implementation Notes

O Standard setup of iterative MapReduce algorithms

® Driver program sets up MapReduce job
e Waits for completion
e Checks for convergence

® Repeats if necessary

O Must be able keep cluster centroids in memory

e W/ith large k, large feature spaces, potentially an issue

e Memory requirements of centroids grow over time!

O Variant: k-medoids



Clustering w/ Gaussian Mixture Models

O Model data as a mixture of Gaussians

O Given data, recover model parameters

1

03

Source: Wikipedia (Cluster analysis)



Gaussian Distributions

O Univariate Gaussian (i.e., Normal):

1 1
° 2 p— I — 2
plaip,0?) = —— exp ( sz —p) )

e A random variable with such a distribution we write as:

z ~N(p,0%)

O Multivariate Gaussian:

p(X; Hy E) — (27’(’)”’/12‘2‘1/2 exXp (_%(X o M)Tz_l(x o M))

e A vector-value random variable with such a distribution we write as:

x ~ N(p, ¥)



Univariate Gaussian

1.0

0.0

0.8

0.2

Source: Wikipedia (Normal Distribution)




Multivariate Gaussians

Source: Lecture notes by Chuong B. Do (IIT Delhi)



Gaussian Mixture Models

O Model parameters

e Number of components: K
e “Mixing” weight vector: 7

e For each Gaussian, mean and covariance matrix: H1:K 2i{.x

O Varying constraints on co-variance matrices

e Spherical vs. diagonal vs. full

e Tied vs. untied

. ?
erative StOry"
a technica\ term)

The gen

(Yes, that’S



Learning for Simple Univariate Case

O Problem setup:

e Given number of components: K
e Given points: 1.

2
® Learn parameters: T, 41:K,071.

O Model selection criterion: maximize likelihood of data

® Introduce indicator variables:
1 if z,, is in cluster k
“n.k —

0 otherwise

e Likelihood of the data:

p(xlzNa Zl:N,l:K‘,LleK7 U%:Ka 7T)



EM to the Rescue!

O We're faced with this:
p(CL‘LN, Zl:N,l:K|M1:K7 U%;Ka 7T)
e |t’d be a lot easier if we knew the Z’s!

O Expectation Maximization

e Guess the model parameters

e E-step: Compute posterior distribution over latent (hidden) variables
given the model parameters

e M-step: Update model parameters using posterior distribution computed
in the E-step

® [terate until convergence



*T TINK Nou SHOULD & MORE
EXYLIUT HERZE N STEP TWOM



EM for Univariate GMMs

o 2
O Initialize: 7, p1.x,07. %

O lIterate:

e E-step: compute expectation of z variables

T Y N (@, o) - e

e M-step: compute new model parameters




MapReduce Implementation

X Zy Z; oo Zk
Map X3 Zy Z;, ZyK
ok S N(@n|por, 02)) - T X3 Z3 Z33 Z3k
XN ZN, | ZN2 ZN K
Reduce
1
T = N Z Zn,k
7 n
ark! |

VWhat about Sp




K-Means vs. GMMs

Map

Reduce

K-Means

Compute distance of
points to centroids

Recompute new centroids

GMM

E-step: compute expectation
of z indicator variables

M-step: update values of
model parameters



Different cluster analysis results on "mouse" data set:

Original Data k-Means Clustering EM Clustering
0.9 | 0.9
0.8 et 5 x 0.8
3"‘* ¥ 4 XXX, »
B o T
o alt %ég?g@sg@%:“’ N
0.6 00 OBy 5 - 0.6 |
S 8
er FX8ES oo, ]
0.5 o &Z%P o %Dcﬁ 0.5} x
0.4 & 8088 S 0.4
abosg) 8>Og 99%80
0.3 A 3%%?0 0.3
0.2 0.2
0.1 + x

+ + n 0.1 4 + 4 + 0.1 + + 4
0 01 0.2 03 04 05 06 07 08 09 1 0 0102 03 040506 0.7 0809 1 0 01 0.2 03 04 05 0.6 0.7 0.8 09

Source: Wikipedia (k-means clustering)






