
Big Data Infrastructure

Week 9: Data Mining (3/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

March 8, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

Structure of the Course

“Core” framework features  
and algorithm design

An
al

yz
in

g
Te

xt

An
al

yz
in

g
G

ra
ph

s

An
al

yz
in

g
Re

la
tio

na
l D

at
a

Da
ta

 M
in

in
g

What’s the Problem?
¢  Finding similar items with respect to some distance metric

¢  Two variants of the problem:

l  Offline: extract all similar pairs of objects from a large collection
l  Online: is this object similar to something I’ve seen before?

Literature Note
¢  Many communities have tackled similar problems:

l  Theoretical computer science
l  Information retrieval

l  Data mining

l  Databases

l  …

¢  Issues

l  Slightly different terminology
l  Results not easy to compare

Four Steps
¢  Specify distance metric

l  Jaccard, Euclidean, cosine, etc.

¢  Compute representation
l  Shingling, tf.idf, etc.

¢  “Project”
l  Minhash, random projections, etc.

¢  Extract
l  Bucketing, sliding windows, etc.

Distances

Source: www.flickr.com/photos/thiagoalmeida/250190676/

Distance Metrics
1.  Non-negativity:

2.  Identity:

3.  Symmetry:

4.  Triangle Inequality

d(x, y) � 0

d(x, y) = 0 () x = y

d(x, y) = d(y, x)

d(x, y) d(x, z) + d(z, y)

Distance: Jaccard
¢  Given two sets A, B

¢  Jaccard similarity:

J(A,B) =
|A \B|
|A [B|

d(A,B) = 1� J(A,B)

Distance: Norms
¢  Given:

¢  Euclidean distance (L2-norm)

¢  Manhattan distance (L1-norm)

¢  Lr-norm

x = [x1, x2, . . . xn]

y = [y1, y2, . . . yn]

d(x, y) =

vuut
nX

i=0

(xi � yi)
2

d(x, y) =

nX

i=0

|xi � yi|

d(x, y) =

"
nX

i=0

|xi � yi|r
#1/r

Distance: Cosine
¢  Given:

¢  Idea: measure distance between the vectors

¢  Thus:

x = [x1, x2, . . . xn]

y = [y1, y2, . . . yn]

cos ✓ =

x · y
|x||y|

sim(x, y) =

Pn
i=0 xiyipPn

i=0 x
2
i

pPn
i=0 y

2
i

d(x, y) = 1� sim(x, y)

Distance: Hamming
¢  Given two bit vectors

¢  Hamming distance: number of elements which differ

Representations

Representations: Text
¢  Unigrams (i.e., words)

¢  Shingles = n-grams

l  At the word level
l  At the character level

¢  Feature weights
l  boolean

l  tf.idf

l  BM25

l  …

Representations: Beyond Text
¢  For recommender systems:

l  Items as features for users
l  Users as features for items

¢  For graphs:
l  Adjacency lists as features for vertices

¢  With log data:
l  Behaviors (clicks) as features

Minhash

Source: www.flickr.com/photos/rheinitz/6158837748/

Near-Duplicate Detection of Webpages
¢  What’s the source of the problem?

l  Mirror pages (legit)
l  Spam farms (non-legit)

l  Additional complications (e.g., nav bars)

¢  Naïve algorithm:
l  Compute cryptographic hash for webpage (e.g., MD5)

l  Insert hash values into a big hash table

l  Compute hash for new webpage: collision implies duplicate

¢  What’s the issue?

¢  Intuition:
l  Hash function needs to be tolerant of minor differences

l  High similarity implies higher probability of hash collision

Minhash
¢  Naïve approach: N2 comparisons: Can we do better?

¢  Seminal algorithm for near-duplicate detection of webpages

l  Used by AltaVista
l  For details see Broder et al. (1997)

¢  Setup:
l  Documents (HTML pages) represented by shingles (n-grams)

l  Jaccard similarity: dups are pairs with high similarity

Preliminaries: Representation
¢  Sets:

l  A = {e1, e3, e7}
l  B = {e3, e5, e7}

¢  Can be equivalently expressed as matrices:

Element A B

e1 1 0

e2 0 0

e3 1 1

e4 0 0

e5 0 1

e6 0 0

e7 1 1

Preliminaries: Jaccard

M00 = # rows where both elements are 0

Let:

M11 = # rows where both elements are 1

M01 = # rows where A=0, B=1

M10 = # rows where A=1, B=0

Element A B

e1 1 0

e2 0 0

e3 1 1

e4 0 0

e5 0 1

e6 0 0

e7 1 1

J(A,B) =
M11

M01 +M10 +M11

Minhash
¢  Computing minhash

l  Start with the matrix representation of the set
l  Randomly permute the rows of the matrix

l  minhash is the first row with a “one”

¢  Example:

Element A B

e1 1 0

e2 0 0

e3 1 1

e4 0 0

e5 0 1

e6 0 0

e7 1 1

Element A B

e6 0 0

e2 0 0

e5 0 1

e3 1 1

e7 1 1

e4 0 0

e1 1 0

h(A) = e3 h(B) = e5

Minhash and Jaccard

Element A B

e6 0 0

e2 0 0

e5 0 1

e3 1 1

e7 1 1

e4 0 0

e1 1 0

P [h(A) = h(B)] = J(A,B)

M00

M00

M01

M11

M11

M00

M10

M11

M01 +M10 +M11

M11

M01 +M10 +M11

Woah!

To Permute or Not to Permute?
¢  Permutations are expensive

¢  Interpret the hash value as the permutation

¢  Only need to keep track of the minimum hash value
l  Can keep track of multiple minhash values at once

Extracting Similar Pairs
¢  Task: discover all pairs with similarity greater than s

¢  Naïve approach: N2 comparisons: Can we do better?

¢  Tradeoffs:
l  False positives: discovered pairs that have similarity less than s

l  False negatives: pairs with similarity greater than s not discovered

The errors (and costs) are asymmetric!

Extracting Similar Pairs (LSH)
¢  We know:

¢  Task: discover all pairs with similarity greater than s

¢  Algorithm:
l  For each object, compute its minhash value

l  Group objects by their hash values
l  Output all pairs within each group

¢  Analysis:
l  If J(A,B) = s, then probability we detect it is s

P [h(A) = h(B)] = J(A,B)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

Threshold = 0.8

False Positives

False Negatives

What’s the issue?

2 Minhash Signatures
¢  Task: discover all pairs with similarity greater than s

¢  Algorithm:

l  For each object, compute 2 minhash values and concatenate together
into a signature

l  Group objects by their signatures
l  Output all pairs within each group

¢  Analysis:
l  If J(A,B) = s, then probability we detect it is s2

3 Minhash Signatures
¢  Task: discover all pairs with similarity greater than s

¢  Algorithm:

l  For each object, compute 3 minhash values and concatenate together
into a signature

l  Group objects by their signatures
l  Output all pairs within each group

¢  Analysis:
l  If J(A,B) = s, then probability we detect it is s3

k Minhash Signatures
¢  Task: discover all pairs with similarity greater than s

¢  Algorithm:

l  For each object, compute k minhash values and concatenate together
into a signature

l  Group objects by their signatures
l  Output all pairs within each group

¢  Analysis:
l  If J(A,B) = s, then probability we detect it is sk

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

Threshold = 0.8

False Positives

False Negatives

What’s the issue now?

k Minhash Signatures concatenated together

n different k Minhash Signatures
¢  Task: discover all pairs with similarity greater than s

¢  Algorithm:

l  For each object, compute n sets k minhash values
l  For each set, concatenate k minhash values together

l  Within each set:
•  Group objects by their signatures
•  Output all pairs within each group

l  De-dup pairs

¢  Analysis:
l  If J(A,B) = s, P(none of the n collide) = (1 – sk)n

l  If J(A,B) = s, then probability we detect it is 1 – (1 – sk)n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

k Minhash Signatures concatenated together

Threshold = 0.8

False Positives

False Negatives

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

6 Minhash Signatures concatenated together

Threshold = 0.8

False Positives

False Negatives

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

n different sets of 6 Minhash Signatures

Threshold = 0.8

False Positives

False Negatives

n different k Minhash Signatures
¢  Example: J(A,B) = 0.8, 10 sets of 6 minhash signatures

l  P(k minhash signatures match) = (0.8)6 = 0.262
l  P(k minhash signature doesn’t match in any of the 10 sets) =���

(1 – (0.8)6)10 = 0.0478
l  Thus, we should find 1 – (1 – (0.8)6)10 = 0.952 of all similar pairs

¢  Example: J(A,B) = 0.4, 10 sets of 6 minhash signatures
l  P(k minhash signatures match) = (0.4)6 = 0.0041

l  P(k minhash signature doesn’t match in any of the 10 sets) =���
(1 – (0.4)6)10 = 0.9598

l  Thus, we should find 1 – (1 – 0.262144)10 = 0.040 of all similar pairs

n different k Minhash Signatures

s 1 – (1 – s6)10

0.2 0.0006

0.3 0.0073

0.4 0.040

0.5 0.146

0.6 0.380

0.7 0.714

0.8 0.952

0.9 0.999

What’s the issue?

Practical Notes
¢  Common implementation:

l  Generate M minhash values, select k of them n times
l  Reduces amount of hash computations needed

¢  Determining “authoritative” version is non-trivial

MapReduce/Spark Implementation
¢  Map over objects:

l  Generate M minhash values, select k of them n times
l  Each draw yields a signature, emit: ���

key = (p, signature), where p = [1 … n]���
value = object id

¢  Shuffle/sort:

¢  Reduce:

l  Receive all object ids with same (n, signature), emit clusters

¢  Second pass to de-dup and group clusters

¢  (Optional) Third pass to eliminate false positives

Offline Extraction vs. Online Querying
¢  Batch formulation of the problem:

l  Discover all pairs with similarity greater than s
l  Useful for post-hoc batch processing of web crawl

¢  Online formulation of the problem:
l  Given new webpage, is it similar to one I’ve seen before?

l  Useful for incremental web crawl processing

Online Similarity Querying
¢  Preparing the existing collection:

l  For each object, compute n sets of k minhash values
l  For each set, concatenate k minhash values together

l  Keep each signature in hash table (in memory)

l  Note: can parallelize across multiple machines

¢  Querying and updating:
l  For new webpage, compute signatures and check for collisions

l  Collisions imply duplicate (determine which version to keep)
l  Update hash tables

Random Projections

Source: www.flickr.com/photos/roj/4179478228/

Limitations of Minhash
¢  Minhash is great for near-duplicate detection

l  Set high threshold for Jaccard similarity

¢  Limitations:
l  Jaccard similarity only

l  Set-based representation, no way to assign weights to features

¢  Random projections:
l  Works with arbitrary vectors using cosine similarity

l  Same basic idea, but details differ

l  Slower but more accurate: no free lunch!

Random Projection Hashing
¢  Generate a random vector r of unit length

l  Draw from univariate Gaussian for each component
l  Normalize length

¢  Define:

¢  Physical intuition?

hr(u) =

⇢
1 if r · u � 0
0 if r · u < 0

RP Hash Collisions
¢  It can be shown that:

l  Proof in (Goemans and Williamson, 1995)

¢  Thus:

¢  Physical intuition?

P [hr(u) = hr(v)] = 1� ✓(u, v)

⇡

cos(✓(u, v)) = cos((1� P [hr(u) = hr(v)])⇡)

Random Projection Signature
¢  Given D random vectors:

¢  Convert each object into a D bit signature

l  Since:

l  We can derive:

¢  Thus: similarity boils down to comparison of hamming distances
between signatures

[r1, r2, r3, . . . rD]

u ! [hr1(u), hr2(u), hr3(u), . . . hrD (u)]

cos(✓(u, v)) = cos((1� P [hr(u) = hr(v)])⇡)

cos(✓(u, v)) = cos

✓
hamming(su, sv)

D
· ⇡

◆

One-RP Signature
¢  Task: discover all pairs with cosine similarity greater than s

¢  Algorithm:

l  Compute D-bit RP signature for every object
l  Take first bit, bucket objects into two sets

l  Perform brute force pairwise (hamming distance) comparison in each
bucket, retain those below hamming distance threshold

¢  Analysis:
l  Probability we will discover all pairs:

l  Efficiency:

N2 vs. 2

✓
N

2

◆2

1� cos

�1
(s)

⇡

*

* Note, this is actually a simplification: see Ture et al. (SIGIR 2011) for details.

Two-RP Signature
¢  Task: discover all pairs with cosine similarity greater than s

¢  Algorithm:

l  Compute D-bit RP signature for every object
l  Take first two bits, bucket objects into four sets

l  Perform brute force pairwise (hamming distance) comparison in each
bucket, retain those below hamming distance threshold

¢  Analysis:
l  Probability we will discover all pairs:

l  Efficiency:

N2 vs. 4

✓
N

4

◆2

1� cos

�1
(s)

⇡

�2

k-RP Signature
¢  Task: discover all pairs with cosine similarity greater than s

¢  Algorithm:

l  Compute D-bit RP signature for every object
l  Take first k bits, bucket objects into 2k sets

l  Perform brute force pairwise (hamming distance) comparison in each
bucket, retain those below hamming distance threshold

¢  Analysis:
l  Probability we will discover all pairs:

l  Efficiency:

1� cos

�1
(s)

⇡

�k

N2 vs. 2k
✓
N

2k

◆2

m Sets of k-RP Signature
¢  Task: discover all pairs with cosine similarity greater than s

¢  Algorithm:

l  Compute D-bit RP signature for every object
l  Choose m sets of k bits

l  For each set, use k selected bits to partition objects into 2k sets

l  Perform brute force pairwise (hamming distance) comparison in each
bucket (of each set), retain those below hamming distance threshold

¢  Analysis:
l  Probability we will discover all pairs:

l  Efficiency:

1�
"
1�

1� cos

�1
(s)

⇡

�k#m

N2 vs. m · 2k
✓
N

2k

◆2

MapReduce/Spark Implementation
¢  Map over objects:

l  Compute D-bit RP signature for every object
l  Choose m sets of k bits and use to bucket; for each, emit: ���

key = (p, k bits), where p = [1 … m]���
value = (object id, rest of signature bits)

¢  Shuffle/sort:

¢  Reduce:

l  Receive (p, k bits)
l  Perform brute force pairwise (hamming distance) comparison for each

key, retain those below hamming distance threshold

¢  Second pass to de-dup and group clusters

¢  (Optional) Third pass to eliminate false positives

Online Querying
¢  Preprocessing:

l  Compute D-bit RP signature for every object
l  Choose m sets of k bits and use to bucket

l  Store signatures in memory (across multiple machines)

¢  Querying
l  Compute D-bit signature of query object, choose m sets of k bits in

same way
l  Perform brute-force scan of correct bucket (in parallel)

Additional Issues to Consider
¢  Emphasis on recall, not precision

¢  Two sources of error:

l  From LSH
l  From using hamming distance as proxy for cosine similarity

¢  Load imbalance

¢  Parameter tuning

“Sliding Window” Algorithm
¢  Compute D-bit RP signature for every object

¢  For each object, permute bit signature m times

¢  For each permutation, sort bit signatures
l  Apply sliding window of width B over sorted

l  Compute hamming distances of bit signatures within window

MapReduce Implementation
¢  Mapper:

l  Process each individual object in parallel
l  Load in random vectors as side data

l  Compute bit signature

l  Permute m times, for each emit: ���
key = (p, signature), where p = [1 … m]���
value = object id

¢  Reduce
l  Keep FIFO queue of B bit signatures

l  For each newly-encountered bit signature, compute hamming distance
wrt all bit signatures in queue

l  Add new bit signature to end of queue, displacing oldest

Four Steps to Finding Similar Items
¢  Specify distance metric

l  Jaccard, Euclidean, cosine, etc.

¢  Compute representation
l  Shingling, tf.idf, etc.

¢  “Project”
l  Minhash, random projections, etc.

¢  Extract
l  Bucketing, sliding windows, etc.

Source: Wikipedia (Japanese rock garden)

Questions?

