Big Data Infrastructure
 CS 489/698 Big Data Infrastructure (Winter 2016)

Week 9: Data Mining (3/4) March 8, 2016

Jimmy Lin
David R. Cheriton School of Computer Science University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2016w/

Structure of the Course

What's the Problem?

O Finding similar items with respect to some distance metric

- Two variants of the problem:
- Offline: extract all similar pairs of objects from a large collection
- Online: is this object similar to something l've seen before?

Literature Note

- Many communities have tackled similar problems:
- Theoretical computer science
- Information retrieval
- Data mining
- Databases
- Issues
- Slightly different terminology
- Results not easy to compare

Four Steps

- Specify distance metric
- Jaccard, Euclidean, cosine, etc.
- Compute representation
- Shingling, tf.idf, etc.
- "Project"
- Minhash, random projections, etc.
- Extract
- Bucketing, sliding windows, etc.

Distances

Distance Metrics

।. Non-negativity:

$$
d(x, y) \geq 0
$$

2. Identity:

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=0 \Longleftrightarrow \mathrm{x}=\mathrm{y}
$$

3. Symmetry:

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})
$$

4. Triangle Inequality

$$
\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})
$$

Distance: Jaccard

- Given two sets A, B
- Jaccard similarity:

$$
\begin{aligned}
\mathrm{J}(A, B) & =\frac{|A \cap B|}{|A \cup B|} \\
\mathrm{d}(A, B) & =1-\mathrm{J}(A, B)
\end{aligned}
$$

Distance: Norms

- Given: $\quad \mathrm{x}=\left[x_{1}, x_{2}, \ldots x_{n}\right]$

$$
\mathrm{y}=\left[y_{1}, y_{2}, \ldots y_{n}\right]
$$

- Euclidean distance (L_{2}-norm)

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\sqrt{\sum_{i=0}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

- Manhattan distance (L_{1}-norm)

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\sum_{i=0}^{n}\left|x_{i}-y_{i}\right|
$$

- L_{r}-norm

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\left[\sum_{i=0}^{n}\left|x_{i}-y_{i}\right|^{r}\right]^{1 / r}
$$

Distance: Cosine

- Given: $\quad \mathrm{x}=\left[x_{1}, x_{2}, \ldots x_{n}\right]$

$$
\mathbf{y}=\left[y_{1}, y_{2}, \ldots y_{n}\right]
$$

- Idea: measure distance between the vectors

$$
\cos \theta=\frac{\mathrm{x} \cdot \mathrm{y}}{|\mathrm{x}||\mathrm{y}|}
$$

o Thus:

$$
\begin{aligned}
& \operatorname{sim}(\mathrm{x}, \mathrm{y})=\frac{\sum_{i=0}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=0}^{n} x_{i}^{2}} \sqrt{\sum_{i=0}^{n} y_{i}^{2}}} \\
& \mathrm{~d}(\mathrm{x}, \mathrm{y})=1-\operatorname{sim}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Distance: Hamming

- Given two bit vectors
- Hamming distance: number of elements which differ

Representations

Representations: Text

- Unigrams (i.e., words)
- Shingles $=n$-grams
- At the word level
- At the character level
- Feature weights
- boolean
- tf.idf
- BM25

Representations: Beyond Text

- For recommender systems:
- Items as features for users
- Users as features for items
- For graphs:
- Adjacency lists as features for vertices
- With log data:
- Behaviors (clicks) as features

Near-Duplicate Detection of Webpages

- What's the source of the problem?
- Mirror pages (legit)
- Spam farms (non-legit)
- Additional complications (e.g., nav bars)
- Naïve algorithm:
- Compute cryptographic hash for webpage (e.g., MD5)
- Insert hash values into a big hash table
- Compute hash for new webpage: collision implies duplicate
o What's the issue?
- Intuition:
- Hash function needs to be tolerant of minor differences
- High similarity implies higher probability of hash collision

Minhash

- Naïve approach: N^{2} comparisons: Can we do better?
- Seminal algorithm for near-duplicate detection of webpages
- Used by AltaVista
- For details see Broder et al. (1997)
- Setup:
- Documents (HTML pages) represented by shingles (n-grams)
- Jaccard similarity: dups are pairs with high similarity

Preliminaries: Representation

- Sets:
- $A=\left\{e_{1}, e_{3}, e_{7}\right\}$
- $B=\left\{e_{3}, e_{5}, e_{7}\right\}$
- Can be equivalently expressed as matrices:

Element	A	B
e_{1}	l	0
e_{2}	0	0
e_{3}	l	l
e_{4}	0	0
e_{5}	0	1
e_{6}	0	0
e_{7}	l	l

Preliminaries: Jaccard

Element	A	B	
e_{1}	I	0	
e_{2}	0	0	Let:
e_{3}	I	I	$M_{00}=\#$ rows where both elements are 0
e_{4}	0	0	$M_{11}=\#$ rows where both elements are I
e_{5}	0	l	$M_{01}=\#$ rows where $A=0, B=1$
e_{6}	0	0	$M_{10}=\#$ rows where $A=I, B=0$
e_{7}	l	l	

$$
\mathrm{J}(A, B)=\frac{M_{11}}{M_{01}+M_{10}+M_{11}}
$$

Minhash

- Computing minhash
- Start with the matrix representation of the set
- Randomly permute the rows of the matrix
- minhash is the first row with a "one"
o Example:

$$
h(A)=e_{3} h(B)=e_{5}
$$

Element	A	B
e_{1}	l	0
e_{2}	0	0
e_{3}	I	I
e_{4}	0	0
e_{5}	0	I
e_{6}	0	0
e_{7}	l	l

Element	A	B
e_{6}	0	0
e_{2}	0	0
e_{5}	0	1
e_{3}	1	1
e_{7}	I	1
e_{4}	0	0
e_{1}	l	0

Minhash and Jaccard

Element	A	B	
e_{6}	0	0	M_{00}
e_{2}	0	0	M_{00}
e_{5}	0	I	M_{01}
e_{3}	1	1	M_{11}
e_{7}	1	1	$M_{1 /}$
e_{4}	0	0	M_{00}
e_{1}	1	0	M_{10}
$P[h(A)=h(B)]=\mathrm{J}(A, B)$			
M_{11}			M_{11}
$\overline{M_{01}+M_{10}+M_{11}}$			$+M_{10}$

To Permute or Not to Permute?

- Permutations are expensive
- Interpret the hash value as the permutation
- Only need to keep track of the minimum hash value
- Can keep track of multiple minhash values at once

Extracting Similar Pairs

- Task: discover all pairs with similarity greater than S
- Naïve approach: N^{2} comparisons: Can we do better?
- Tradeoffs:
- False positives: discovered pairs that have similarity less than s
- False negatives: pairs with similarity greater than s not discovered

The errors (and costs) are asymmetric!

Extracting Similar Pairs (LSH)

- We know: $\quad P[h(A)=h(B)]=\mathrm{J}(A, B)$
- Task: discover all pairs with similarity greater than s
- Algorithm:
- For each object, compute its minhash value
- Group objects by their hash values
- Output all pairs within each group
- Analysis:
- If $J(A, B)=s$, then probability we detect it is s

2 Minhash Signatures

- Task: discover all pairs with similarity greater than S
- Algorithm:
- For each object, compute 2 minhash values and concatenate together into a signature
- Group objects by their signatures
- Output all pairs within each group
- Analysis:
- If $J(A, B)=s$, then probability we detect it is s^{2}

3 Minhash Signatures

- Task: discover all pairs with similarity greater than S
- Algorithm:
- For each object, compute 3 minhash values and concatenate together into a signature
- Group objects by their signatures
- Output all pairs within each group
- Analysis:
- If $\mathrm{J}(\mathrm{A}, \mathrm{B})=s$, then probability we detect it is s^{3}

k Minhash Signatures

- Task: discover all pairs with similarity greater than S
- Algorithm:
- For each object, compute k minhash values and concatenate together into a signature
- Group objects by their signatures
- Output all pairs within each group
- Analysis:
- If $\mathrm{J}(\mathrm{A}, \mathrm{B})=s$, then probability we detect it is s^{k}
k Minhash Signatures concatenated together

n different k Minhash Signatures

- Task: discover all pairs with similarity greater than s
- Algorithm:
- For each object, compute n sets k minhash values
- For each set, concatenate k minhash values together
- Within each set:
- Group objects by their signatures
- Output all pairs within each group
- De-dup pairs
- Analysis:
- If $\mathrm{J}(\mathrm{A}, \mathrm{B})=s, \mathrm{P}($ none of the n collide $)=\left(1-s^{k}\right)^{n}$
- If $J(A, B)=s$, then probability we detect it is $I-\left(I-s^{k}\right)^{n}$
k Minhash Signatures concatenated together

6 Minhash Signatures concatenated together

n different sets of 6 Minhash Signatures

n different k Minhash Signatures

- Example: $J(A, B)=0.8,10$ sets of 6 minhash signatures
- $P(k$ minhash signatures match $)=(0.8)^{6}=0.262$
- $P(k$ minhash signature doesn't match in any of the 10 sets $)=$ $\left(I-(0.8)^{6}\right)^{10}=0.0478$
- Thus, we should find $\mathrm{I}-\left(\mathrm{I}-(0.8)^{6}\right)^{10}=0.952$ of all similar pairs
- Example: $J(A, B)=0.4,10$ sets of 6 minhash signatures
- $P(k$ minhash signatures match $)=(0.4)^{6}=0.004 \mathrm{I}$
- $P(k$ minhash signature doesn't match in any of the 10 sets $)=$ $\left(I-(0.4)^{6}\right)^{10}=0.9598$
- Thus, we should find I $-(I-0.262 I 44)^{10}=0.040$ of all similar pairs

n different k Minhash Signatures

s	$I-\left(I-s^{6}\right)^{10}$
0.2	0.0006
0.3	0.0073
0.4	0.040
0.5	0.146
0.6	0.380
0.7	0.714
0.8	0.952
0.9	0.999

What's the issue?

Practical Notes

- Common implementation:
- Generate M minhash values, select k of them n times
- Reduces amount of hash computations needed
- Determining "authoritative" version is non-trivial

MapReduce/Spark Implementation

- Map over objects:
- Generate M minhash values, select k of them n times
- Each draw yields a signature, emit: key = (p, signature), where $p=[\mathrm{I} \ldots n]$ value $=$ object id
o Shuffle/sort:
- Reduce:
- Receive all object ids with same (n, signature), emit clusters
- Second pass to de-dup and group clusters
- (Optional) Third pass to eliminate false positives

Offline Extraction vs. Online Querying

- Batch formulation of the problem:
- Discover all pairs with similarity greater than s
- Useful for post-hoc batch processing of web crawl
- Online formulation of the problem:
- Given new webpage, is it similar to one l've seen before?
- Useful for incremental web crawl processing

Online Similarity Querying

- Preparing the existing collection:
- For each object, compute n sets of k minhash values
- For each set, concatenate k minhash values together
- Keep each signature in hash table (in memory)
- Note: can parallelize across multiple machines
- Querying and updating:
- For new webpage, compute signatures and check for collisions
- Collisions imply duplicate (determine which version to keep)
- Update hash tables

Limitations of Minhash

- Minhash is great for near-duplicate detection
- Set high threshold for Jaccard similarity
- Limitations:
- Jaccard similarity only
- Set-based representation, no way to assign weights to features
o Random projections:
- Works with arbitrary vectors using cosine similarity
- Same basic idea, but details differ
- Slower but more accurate: no free lunch!

Random Projection Hashing

- Generate a random vector r of unit length
- Draw from univariate Gaussian for each component
- Normalize length
- Define:

$$
h_{r}(\mathrm{u})= \begin{cases}1 & \text { if } \mathrm{r} \cdot \mathrm{u} \geq 0 \\ 0 & \text { if } \mathrm{r} \cdot \mathrm{u}<0\end{cases}
$$

- Physical intuition?

RP Hash Collisions

- It can be shown that:

$$
P\left[h_{r}(\mathrm{u})=h_{r}(\mathrm{v})\right]=1-\frac{\theta(\mathrm{u}, \mathrm{v})}{\pi}
$$

- Proof in (Goemans and Williamson, 1995)
o Thus:

$$
\cos (\theta(\mathrm{u}, \mathrm{v}))=\cos \left(\left(1-P\left[h_{r}(\mathrm{u})=h_{r}(\mathrm{v})\right]\right) \pi\right)
$$

- Physical intuition?

Random Projection Signature

- Given D random vectors:

$$
\left[\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}, \ldots \mathrm{r}_{D}\right]
$$

- Convert each object into a D bit signature

$$
\mathrm{u} \rightarrow\left[h_{r_{1}}(\mathrm{u}), h_{r_{2}}(\mathrm{u}), h_{r_{3}}(\mathrm{u}), \ldots h_{r_{D}}(\mathrm{u})\right]
$$

- Since:

$$
\cos (\theta(\mathrm{u}, \mathrm{v}))=\cos \left(\left(1-P\left[h_{r}(\mathrm{u})=h_{r}(\mathrm{v})\right]\right) \pi\right)
$$

- We can derive:

$$
\cos (\theta(\mathrm{u}, \mathrm{v}))=\cos \left(\frac{\operatorname{hamming}\left(\mathrm{s}_{\mathrm{u}}, \mathrm{~s}_{\mathrm{v}}\right)}{D} \cdot \pi\right)
$$

- Thus: similarity boils down to comparison of hamming distances between signatures

One-RP Signature

- Task: discover all pairs with cosine similarity greater than s
- Algorithm:
- Compute D-bit RP signature for every object
- Take first bit, bucket objects into two sets
- Perform brute force pairwise (hamming distance) comparison in each bucket, retain those below hamming distance threshold
- Analysis:
- Probability we will discover all pairs:*

$$
1-\frac{\cos ^{-1}(s)}{\pi}
$$

- Efficiency:

$$
N^{2} \quad \text { vs. } \quad 2\left(\frac{N}{2}\right)^{2}
$$

* Note, this is actually a simplification: see Ture et al. (SIGIR 20II) for details.

Two-RP Signature

- Task: discover all pairs with cosine similarity greater than s
- Algorithm:
- Compute D-bit RP signature for every object
- Take first two bits, bucket objects into four sets
- Perform brute force pairwise (hamming distance) comparison in each bucket, retain those below hamming distance threshold
- Analysis:
- Probability we will discover all pairs:

$$
\left[1-\frac{\cos ^{-1}(s)}{\pi}\right]^{2}
$$

- Efficiency:

$$
N^{2} \quad \text { vs. } \quad 4\left(\frac{N}{4}\right)^{2}
$$

K-RP Signature

- Task: discover all pairs with cosine similarity greater than s
- Algorithm:
- Compute D-bit RP signature for every object
- Take first k bits, bucket objects into 2^{k} sets
- Perform brute force pairwise (hamming distance) comparison in each bucket, retain those below hamming distance threshold
- Analysis:
- Probability we will discover all pairs:

$$
\left[1-\frac{\cos ^{-1}(s)}{\pi}\right]^{k}
$$

- Efficiency:

$$
N^{2} \quad \text { vs. } \quad 2^{k}\left(\frac{N}{2^{k}}\right)^{2}
$$

m Sets of $\boldsymbol{k}-$ RP Signature

- Task: discover all pairs with cosine similarity greater than s
- Algorithm:
- Compute D-bit RP signature for every object
- Choose m sets of k bits
- For each set, use k selected bits to partition objects into 2^{k} sets
- Perform brute force pairwise (hamming distance) comparison in each bucket (of each set), retain those below hamming distance threshold
- Analysis:
- Probability we will discover all pairs:

$$
1-\left[1-\left[1-\frac{\cos ^{-1}(s)}{\pi}\right]^{k}\right]^{m}
$$

- Efficiency: $N^{2} \quad$ vs. $m \cdot 2^{k}\left(\frac{N}{2^{k}}\right)^{2}$

MapReduce/Spark Implementation

- Map over objects:
- Compute D-bit RP signature for every object
- Choose m sets of k bits and use to bucket; for each, emit: key = (p, k bits), where $p=[\mathrm{I} \ldots \mathrm{m}$] value $=$ (object id, rest of signature bits)
- Shuffle/sort:
- Reduce:
- Receive (p, k bits)
- Perform brute force pairwise (hamming distance) comparison for each key, retain those below hamming distance threshold
- Second pass to de-dup and group clusters
- (Optional) Third pass to eliminate false positives

Online Querying

- Preprocessing:
- Compute D-bit RP signature for every object
- Choose m sets of k bits and use to bucket
- Store signatures in memory (across multiple machines)
- Querying
- Compute D-bit signature of query object, choose m sets of k bits in same way
- Perform brute-force scan of correct bucket (in parallel)

Additional Issues to Consider

- Emphasis on recall, not precision
- Two sources of error:
- From LSH
- From using hamming distance as proxy for cosine similarity
- Load imbalance
- Parameter tuning

"Sliding Window" Algorithm

- Compute D-bit RP signature for every object
- For each object, permute bit signature m times
- For each permutation, sort bit signatures
- Apply sliding window of width B over sorted
- Compute hamming distances of bit signatures within window

MapReduce Implementation

- Mapper:
- Process each individual object in parallel
- Load in random vectors as side data
- Compute bit signature
- Permute m times, for each emit: key $=(p$, signature $)$, where $p=[1 \ldots m]$
value $=$ object id
- Reduce
- Keep FIFO queue of B bit signatures
- For each newly-encountered bit signature, compute hamming distance wrt all bit signatures in queue
- Add new bit signature to end of queue, displacing oldest

Four Steps to Finding Similar Items

- Specify distance metric
- Jaccard, Euclidean, cosine, etc.
- Compute representation
- Shingling, tf.idf, etc.
- "Project"
- Minhash, random projections, etc.
- Extract
- Bucketing, sliding windows, etc.

