
Big Data Infrastructure

Week 8: Data Mining (2/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

March 3, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

¢  Induce
l  Such that loss is minimized

f : X ! Y

1

n

nX

i=0

`(f(xi), yi)

¢  Given D = {(xi, yi)}ni

¢  Typically, consider functions of a parametric form:

argmin
✓

1

n

nX

i=0

`(f(xi; ✓), yi)

xi = [x1, x2, x3, . . . , xd]

y 2 {0, 1}

The Task

(sparse) feature vector

label

loss function

model parameters

Gradient Descent

Source: Wikipedia (Hills)

✓(t+1) ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

mapper mapper mapper mapper

reducer

compute partial gradient

single reducer

mappers

update model
iterate until convergence

✓(t+1) ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

MapReduce Implementation

Spark Implementation
val points = spark.textFile(...).map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
 val gradient = points.map{ p =>
 p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
 }.reduce((a,b) => a+b)
 w -= gradient
}

mapper mapper mapper mapper

reducer

compute partial gradient

update model

What’s the difference?

Gradient Descent

Source: Wikipedia (Hills)

Stochastic Gradient Descent

Source: Wikipedia (Water Slide)

Gradient Descent

Stochastic Gradient Descent (SGD)

“batch” learning: update model after considering all
training instances

“online” learning: update model after considering each
(randomly-selected) training instance

In practice… just as good!

✓(t+1) ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

✓(t+1) ✓(t) � �(t)r`(f(x; ✓(t)), y)

Batch vs. Online

Opportunity to interleaving prediction and learning!

Practical Notes
¢  Order of the instances important!

¢  Most common implementation:

l  Randomly shuffle training instances
l  Stream instances through learner

¢  Single vs. multi-pass approaches

¢  “Mini-batching” as a middle ground between batch and
stochastic gradient descent

We’ve solved the iteration problem!

What about the single reducer problem?

Source: Wikipedia (Orchestra)

Ensembles

Ensemble Learning
¢  Learn multiple models, combine results from different models

to make prediction

¢  Why does it work?
l  If errors uncorrelated, multiple classifiers being wrong is less likely

l  Reduces the variance component of error

¢  A variety of different techniques:
l  Majority voting

l  Simple weighted voting:

l  Model averaging

l  …

y = argmax

y2Y

nX

k=1

↵kpk(y|x)

Practical Notes
¢  Common implementation:

l  Train classifiers on different input partitions of the data
l  Embarrassingly parallel!

¢  Contrast with other ensemble techniques, e.g., boosting

MapReduce Implementation

✓(t+1) ✓(t) � �(t)r`(f(x; ✓(t)), y)

training data training data training data training data

mapper mapper mapper mapper
learner learner learner learner

MapReduce Implementation

✓(t+1) ✓(t) � �(t)r`(f(x; ✓(t)), y)

training data training data training data training data

mapper mapper mapper mapper

reducer reducer
learner learner

What about Spark?

✓(t+1) ✓(t) � �(t)r`(f(x; ✓(t)), y)

mapPartitions���
f: (Iterator[T])
⇒ Iterator[U]

RDD[T]

RDD[U]

learner

MapReduce Implementation: Details
¢  Two possible implementations:

l  Write model out as “side data”
l  Emit model as intermediate output

Candidate
Generation

Candidates Classification

Follow graph Retweet graph Other log data …

Final Results

Trained
Model

Case Study: Link Recommendation

Lin and Kolcz. Large-Scale Machine Learning at Twitter. SIGMOD 2012.

Classifier ���
Training

Making���
Predictions

Just like any other parallel Pig dataflow

label, feature vector

model UDF

feature vector

prediction

model UDF

feature vector

prediction

model

previous Pig dataflow

map

reduce

previous Pig dataflow

model model

Pig storage
function

Classifier Training

training = load ‘training.txt’ using SVMLightStorage()
as (target: int, features: map[]);

store training into ‘model/’
using FeaturesLRClassifierBuilder();

Want an ensemble?

training = foreach training generate
label, features, RANDOM() as random;

training = order training by random parallel 5;

Logistic regression + SGD (L2 regularization)
Pegasos variant (fully SGD or sub-gradient)

define Classify ClassifyWithLR(‘model/’);
data = load ‘test.txt’ using SVMLightStorage()

as (target: double, features: map[]);
data = foreach data generate target,

Classify(features) as prediction;

Making Predictions

Want an ensemble?

define Classify ClassifyWithEnsemble(‘model/’,
‘classifier.LR’, ‘vote’);

Sentiment Analysis Case Study

¢  Binary polarity classification: {positive, negative} sentiment

l  Independently interesting task
l  Illustrates end-to-end flow

l  Use the “emoticon trick” to gather data

¢  Data
l  Test: 500k positive/500k negative tweets from 9/1/2011

l  Training: {1m, 10m, 100m} instances from before (50/50 split)

¢  Features: Sliding window byte-4grams

¢  Models:
l  Logistic regression with SGD (L2 regularization)

l  Ensembles of various sizes (simple weighted voting)

Lin and Kolcz, SIGMOD 2012

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

1 1 1 3 5 7 9 11 13 15 17 19 3 5 11 21 31 41

A
cc

u
ra

cy

Number of Classifiers in Ensemble

1m instances
10m instances

100m instances

“for free”

Ensembles with 10m examples���
better than 100m single classifier!

Diminishing returns…

single classifier 10m ensembles 100m ensembles

training

Model

training data

Machine Learning Algorithm

testing/deployment

?

Supervised Machine Learning

Applied ML in Academia
¢  Download interesting dataset (comes with the problem)

¢  Run baseline model

l  Train/test

¢  Build better model
l  Train/test

¢  Does new model beat baseline?

l  Yes: publish a paper!
l  No: try again!

Three Commandants of Machine Learning

Thou shalt not mix training and testing data
Thou shalt not mix training and testing data
Thou shalt not mix training and testing data

Training/Testing Splits

Training

Test

What happens if you need more? Cross-Validation

Training/Testing Splits

Cross-Validation

Training/Testing Splits

Cross-Validation

Training/Testing Splits

Cross-Validation

Training/Testing Splits

Cross-Validation

Training/Testing Splits

Cross-Validation

Applied ML in Academia
¢  Download interesting dataset (comes with the problem)

¢  Run baseline model

l  Train/test

¢  Build better model
l  Train/test

¢  Does new model beat baseline?

l  Yes: publish a paper!
l  No: try again!

Fantasy
Extract features

Develop cool ML technique

#Profit

Reality
What’s the task?

Where’s the data?

What’s in this dataset?

What’s all the f#$!* crap?

Clean the data

Extract features

“Do” machine learning

Fail, iterate…

It’s impossible to overstress this: 80% of
the work in any data project is in cleaning

the data. – DJ Patil “Data Jujitsu”

Source: Wikipedia (Jujitsu)

On finding things…

CamelCase

smallCamelCase

snake_case

camel_Snake

dunder__snake

uid UserId

userId
userid

user_id user_Id

On finding things…

^(\\w+\\s+\\d+\\s+\\d+:\\d+:\\d+)\\s+
([^@]+?)@(\\S+)\\s+(\\S+):\\s+(\\S+)\\s+(\\S+)
\\s+((?:\\S+?,\\s+)*(?:\\S+?))\\s+(\\S+)\\s+(\\S+)
\\s+\\[([^\\]]+)\\]\\s+\"(\\w+)\\s+([^\"\\\\]*
(?:\\\\.[^\"\\\\]*)*)\\s+(\\S+)\"\\s+(\\S+)\\s+
(\\S+)\\s+\"([^\"\\\\]*(?:\\\\.[^\"\\\\]*)*)
\"\\s+\"([^\"\\\\]*(?:\\\\.[^\"\\\\]*)*)\"\\s*
(\\d*-[\\d-]*)?\\s*(\\d+)?\\s*(\\d*\\.[\\d\\.]*)?
(\\s+[-\\w]+)?.*$

An actual Java regular expression used to parse log
message at Twitter circa 2010

On feature extraction…

Friction is cumulative!

Frontend Engineer
Develops new feature, adds
logging code to capture clicks

Data Scientist
Analyze user behavior, extract
insights to improve feature

Okay, let’s get going… where’s the click data?

Well, that’s kinda non-intuitive, but okay…

Oh, BTW, where’s the timestamp of the click?

It’s over here…

Well, it wouldn’t fit, so we had to shoehorn…

Hang on, I don’t remember…

Uh, bad news. Looks like we forgot to log it…

[grumble, grumble, grumble]

…

Data Plumbing… Gone Wrong!
[scene: consumer internet company in the Bay Area…]

Extract features

Develop cool ML technique

#Profit

What’s the task?

Where’s the data?

What’s in this dataset?

What’s all the f#$!* crap?

Clean the data

Extract features

“Do” machine learning

Fail, iterate…

Finally works!

Fantasy Reality

Source: Wikipedia (Hills)

Congratulations, you’re halfway there…

Does it actually work?

Congratulations, you’re halfway there…

Is it fast enough?

Good, you’re two thirds there…

A/B testing

Source: Wikipedia (Oil refinery)

Productionize

What are your jobs’ dependencies?

Productionize

How/when are your jobs scheduled?

Infrastructure is critical here!

Are there enough resources?
How do you know if it’s working?

Who do you call if it stops working?

(plumbing)

Source: Wikipedia (Plumbing)

Plumbing matters!
Takeaway lesson:

Source: Wikipedia (Japanese rock garden)

Questions?

