

Big Data Infrastructure

CS 489/698 Big Data Infrastructure (Winter 2016)

Week 8: Data Mining (2/4) March 3, 2016

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

The Task

• Given $D = \{(x_i, y_i)\}_i^n$ (sparse) feature vector $x_i = [x_1, x_2, x_3, \dots, x_d]$ $y \in \{0, 1\}$

- Induce $f: X \to Y$
 - Such that loss is minimized

$$\frac{1}{n} \sum_{i=0}^{n} \ell(f(\mathbf{x}_i), y_i)$$

• Typically, consider functions of a parametric form:

$$\arg\min_{\theta} \frac{1}{n} \sum_{i=0}^{n} \ell(f(x_i; \theta), y_i) \qquad \qquad \text{model parameters}$$

Gradient Descent

 $\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(\mathbf{x}_i; \theta^{(t)}), y_i)$

MapReduce Implementation

Spark Implementation

Gradient Descent

Source: Wikipedia (Hills)

Stochastic Gradient Descent

rce: Wikipedia (Water Slide)

Batch vs. Online

Gradient Descent

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(\mathbf{x}_i; \theta^{(t)}), y_i)$$

"batch" learning: update model after considering all training instances

Stochastic Gradient Descent (SGD)

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \nabla \ell(f(\mathbf{x}; \theta^{(t)}), y)$$

"online" learning: update model after considering *each* (randomly-selected) training instance

In practice... just as good! Opportunity to interleaving prediction and learning!

Practical Notes

- Order of the instances important!
- Most common implementation:
 - Randomly shuffle training instances
 - Stream instances through learner
- Single vs. multi-pass approaches
- "Mini-batching" as a middle ground between batch and stochastic gradient descent

We've solved the iteration problem! What about the single reducer problem?

Ensembles

-

THE OWNER WATER

Ensemble Learning

- Learn multiple models, combine results from different models to make prediction
- Why does it work?
 - If errors uncorrelated, multiple classifiers being wrong is less likely
 - Reduces the variance component of error
- A variety of different techniques:
 - Majority voting
 - Simple weighted voting:

$$y = \arg \max_{y \in Y} \sum_{k=1}^{n} \alpha_k p_k(y|\mathbf{x})$$

Model averaging

Practical Notes

- Common implementation:
 - Train classifiers on different input partitions of the data
 - Embarrassingly parallel!
- Contrast with other ensemble techniques, e.g., boosting

MapReduce Implementation

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \nabla \ell(f(\mathbf{x}; \theta^{(t)}), y)$$

MapReduce Implementation

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \nabla \ell(f(\mathbf{x}; \theta^{(t)}), y)$$

What about Spark?

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \nabla \ell(f(\mathbf{x}; \theta^{(t)}), y)$$

MapReduce Implementation: Details

- Two possible implementations:
 - Write model out as "side data"
 - Emit model as intermediate output

Case Study: Link Recommendation

Lin and Kolcz. Large-Scale Machine Learning at Twitter. SIGMOD 2012.

Classifier Training

store training into 'model/'

using FeaturesLRClassifierBuilder();

Logistic regression + SGD (L2 regularization) Pegasos variant (fully SGD or sub-gradient)

Want an ensemble?

Making Predictions

Want an ensemble?

define Classify ClassifyWithEnsemble('model/', 'classifier.LR', 'vote');

Sentiment Analysis Case Study

Lin and Kolcz, SIGMOD 2012

• Binary polarity classification: {positive, negative} sentiment

- Independently interesting task
- Illustrates end-to-end flow
- Use the "emoticon trick" to gather data
- o Data
 - Test: 500k positive/500k negative tweets from 9/1/2011
 - Training: {Im, I0m, I00m} instances from before (50/50 split)
- Features: Sliding window byte-4grams
- Models:
 - Logistic regression with SGD (L2 regularization)
 - Ensembles of various sizes (simple weighted voting)

Diminishing returns...

Supervised Machine Learning

Applied ML in Academia

- Download interesting dataset (comes with the problem)
- Run baseline model
 - Train/test
- Build better model
 - Train/test
- Does new model beat baseline?
 - Yes: publish a paper!
 - No: try again!

Three Commandants of Machine Learning

Thou shalt not mix training and testing data Thou shalt not mix training and testing data Thou shalt not mix training and testing data

Applied ML in Academia

- Download interesting dataset (comes with the problem)
- Run baseline model
 - Train/test
- Build better model
 - Train/test
- Does new model beat baseline?
 - Yes: publish a paper!
 - No: try again!

DATA

Data Scientist: The Sexiest Job of the 21st Century

by Thomas H. Davenport and D.J. Patil

FROM THE OCTOBER 2012 ISSUE

Fantasy

Extract features

Develop cool ML technique

#Profit

Reality

What's the task?

Where's the data?

What's in this dataset?

What's all the f#\$!* crap?

Clean the data

Extract features

"Do" machine learning

Fail, iterate...

It's impossible to overstress this: 80% of the work in any data project is in cleaning the data. – DJ Patil "Data Jujitsu"

On finding things...

On finding things...

On feature extraction...

```
^(\\w+\\s+\\d+\\s+\\d+:\\d+:\\d+)\\s+
([^@]+?)@(\\S+)\\s+(\\S+):\\s+(\\S+)\\s+(\\S+)
\\s+((?:\\S+?,\\s+)*(?:\\S+?))\\s+(\\S+)\\s+(\\S+)
\\s+\\[([^\\]]+)\\]\\s+\"(\\w+)\\s+([^\\"\\\]*
(?:\\\\.[^\\"\\\]*)*)\\s+(\\S+)\\\s+(\\S+)\\s+
(\\S+)\\s+\"([^\\"\\\]*(?:\\\\.[^\\"\\\]*)*)
\\\s+\"([^\\"\\\]*(?:\\\\.[^\\"\\\]*)*)\\\s*
(\\d*-[\\d-]*)?\\s*(\\d+)?\\s*(\\d*\\.[\\d\\.]*)?
(\\s+[-\\w]+)?.*$
```

An actual Java regular expression used to parse log message at Twitter circa 2010

Friction is cumulative!

Data Plumbing...

[scene: consumer internet company in the Bay Area...]

It's over here...

Well, it wouldn't fit, so we had to shoehorn...

Okay, let's get going... where's the click data?

Gone Wrong!

Well, that's kinda non-intuitive, but okay...

Hang on, I don't remember...

Uh, bad news. Looks like we forgot to log it...

Frontend Engineer

Develops new feature, adds logging code to capture clicks

Oh, BTW, where's the timestamp of the click?

[grumble, grumble, grumble]

Data Scientist

Analyze user behavior, extract insights to improve feature

Fantasy

Extract features

Develop cool ML technique

#Profit

Reality

What's the task?

Where's the data?

What's in this dataset?

What's all the f#\$!* crap?

Clean the data

Extract features

"Do" machine learning

Fail, iterate...

Finally works!

Congratulations, you're halfway there...

Source: Wikipedia (Hills)

Congratulations, you're halfway there...

Does it actually work? A/B testing

Is it fast enough?

Good, you're two thirds there...

Productionize

Productionize

What are your jobs' dependencies?How/when are your jobs scheduled?Are there enough resources?How do you know if it's working?Who do you call if it stops working?

Infrastructure is critical here! (plumbing)

Takeaway lesson: Plumbing matters!

Questions?

Source: Wikipedia (Japanese rock garden)