
Big Data Infrastructure

Week 8: Data Mining (1/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

March 1, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

Structure of the Course

“Core” framework features  
and algorithm design

An
al

yz
in

g
Te

xt

An
al

yz
in

g
G

ra
ph

s

An
al

yz
in

g
Re

la
tio

na
l D

at
a

Da
ta

 M
in

in
g

Supervised Machine Learning

The generic problem of function induction given sample
instances of input and output

Classification: output draws from finite discrete labels

Regression: output is a continuous value

This is not meant to be an exhaustive
treatment of machine learning!

Focus today

Source: Wikipedia (Sorting)

Classification

Applications

Spam detection

Sentiment analysis

Content (e.g., genre) classification

Link prediction

Document ranking

Object recognition

And much much more!

Fraud detection

training

Model

training data

Machine Learning Algorithm

testing/deployment

?

Supervised Machine Learning

Objects are represented in terms of features:
“Dense” features: sender IP, timestamp, # of recipients,
length of message, etc.

“Sparse” features: contains the term “viagra” in message,
contains “URGENT” in subject, etc.

Who comes up with the features?

How?

Feature Representations

Applications

Spam detection

Sentiment analysis

Content (e.g., genre) classification

Link prediction

Document ranking

Object recognition

And much much more!

Fraud detection

Features are highly

application-specific!

Components of a ML Solution

Data
Features
Model

Optimization

What “matters” the most?

logistic regression, naïve Bayes, SVM, random forests, perceptrons, neural network, etc.
gradient descent, stochastic

gradient descent, L-BFGS, etc.

No data like more data!

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

s/knowledge/data/g;

Limits of Supervised Classification?
¢  Why is this a big data problem?

l  Isn’t gathering labels a serious bottleneck?

¢  Solution: crowdsourcing

¢  Solution: bootstrapping, semi-supervised techniques

¢  Solution: user behavior logs
l  Learning to rank

l  Computational advertising
l  Link recommendation

¢  The virtuous cycle of data-driven products

Supervised Binary Classification
¢  Restrict output label to be binary

l  Yes/No
l  1/0

¢  Binary classifiers form a primitive building block for multi-class
problems
l  One vs. rest classifier ensembles

l  Classifier cascades

¢  Induce
l  Such that loss is minimized

f : X ! Y

1

n

nX

i=0

`(f(xi), yi)

¢  Given D = {(xi, yi)}ni

¢  Typically, consider functions of a parametric form:

argmin
✓

1

n

nX

i=0

`(f(xi; ✓), yi)

xi = [x1, x2, x3, . . . , xd]

y 2 {0, 1}

The Task

(sparse) feature vector

label

loss function

model parameters

Key insight: machine learning as an optimization problem!
(closed form solutions generally not possible)

Gradient Descent: Preliminaries
¢  Rewrite:

¢  Compute gradient:
l  “Points” to fastest increasing “direction”

¢  So, at any point:

rL(✓) =


@L(✓)

@w0
,
@L(✓)

@w1
, . . .

@L(✓)

@wd

�

b = a� �rL(a)

L(a) � L(b)

*

* caveats

argmin
✓

L(✓)
argmin

✓

1

n

nX

i=0

`(f(xi; ✓), yi)

Gradient Descent: Iterative Update
¢  Start at an arbitrary point, iteratively update:

¢  We have:

¢  Lots of details:
l  Figuring out the step size

l  Getting stuck in local minima

l  Convergence rate

l  …

✓(t+1) ✓(t) � �(t)rL(✓(t))

L(✓(0)) � L(✓(1)) � L(✓(2)) . . .

Gradient Descent
Repeat until convergence:

✓(t+1) ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

Intuition behind the math…

Old weights
Update based on gradient

New weights

✓(t+1) ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

`(x)

r`
d

dx

`

Gradient Descent

Source: Wikipedia (Hills)

✓(t+1) ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

Lots More Details…
¢  Gradient descent is a “first order” optimization technique

l  Often, slow convergence
l  Conjugate techniques accelerate convergence

¢  Newton and quasi-Newton methods:
l  Intuition: Taylor expansion

l  Requires the Hessian (square matrix of second order partial derivatives):
impractical to fully compute

f(x+�x) = f(x) + f

0(x)�x+
1

2
f

00(x)�x

2

Source: Wikipedia (Hammer)

Logistic Regression

Logistic Regression: Preliminaries
¢  Given

¢  Let’s define:

¢  Interpretation:

D = {(xi, yi)}ni
xi = [x1, x2, x3, . . . , xd]

y 2 {0, 1}

ln


Pr (y = 1|x)
Pr (y = 0|x)

�
= w · x

ln


Pr (y = 1|x)

1� Pr (y = 1|x)

�
= w · x

f(x; w) : Rd ! {0, 1}

f(x; w) =

⇢
1 if w · x � t

0 if w · x < t

Relation to the Logistic Function
¢  After some algebra:

¢  The logistic function:

Pr (y = 1|x) = e

w·x

1 + e

w·x

Pr (y = 0|x) = 1

1 + e

w·x

f(z) =
ez

ez + 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

lo
gi

st
ic

(z
)

z

Training an LR Classifier
¢  Maximize the conditional likelihood:

¢  Define the objective in terms of conditional log likelihood:

l  We know so:

l  Substituting:

argmax

w

nY

i=1

Pr(yi|xi,w)

L(w) =
nX

i=1

ln Pr(yi|xi,w)

y 2 {0, 1}

L(w) =
nX

i=1

⇣
yi ln Pr(yi = 1|xi,w) + (1� yi) lnPr(yi = 0|xi,w)

⌘

Pr(y|x,w) = Pr(y = 1|x,w)yPr(y = 0|x,w)(1�y)

LR Classifier Update Rule
¢  Take the derivative:

¢  General form for update rule:

¢  Final update rule:

L(w) =
nX

i=1

⇣
yi ln Pr(yi = 1|xi,w) + (1� yi) lnPr(yi = 0|xi,w)

⌘

@

@w
L(w) =

nX

i=0

xi

⇣
yi � Pr(yi = 1|xi,w)

⌘

w(t+1) w(t) + �(t)rwL(w
(t))

rL(w) =


@L(w)

@w0
,
@L(w)

@w1
, . . .

@L(w)

@wd

�

w

(t+1)
i w

(t)
i + �

(t)
nX

j=0

xj,i

⇣
yj � Pr(yj = 1|xj ,w(t)

)

⌘

Lots more details…
¢  Regularization

¢  Different loss functions

¢  …

Want more details? ���
Take a real machine-learning course!

mapper mapper mapper mapper

reducer

compute partial gradient

single reducer

mappers

update model
iterate until convergence

✓(t+1) ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

MapReduce Implementation

Shortcomings
¢  Hadoop is bad at iterative algorithms

l  High job startup costs
l  Awkward to retain state across iterations

¢  High sensitivity to skew
l  Iteration speed bounded by slowest task

¢  Potentially poor cluster utilization
l  Must shuffle all data to a single reducer

¢  Some possible tradeoffs
l  Number of iterations vs. complexity of computation per iteration

l  E.g., L-BFGS: faster convergence, but more to compute

Spark Implementation
val points = spark.textFile(...).map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
 val gradient = points.map{ p =>
 p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
 }.reduce((a,b) => a+b)
 w -= gradient
}

mapper mapper mapper mapper

reducer

compute partial gradient

update model

What’s the difference?

Source: Wikipedia (Japanese rock garden)

Questions?

