24 WATERLOO

Big Data Infrastructure
CS 489/698 Big Data Infrastructure (Winter 2016)

Week 7:Analyzing Relational Data (2/3)
February 23,2016

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo

These slides are available at http://lintool.github.io/bigdata-20 | 6w/

‘@ ®®@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

facebook.

Jeff Hammerbacher, Information Platforms and the Rise of the Data Scientist.
In, Beautiful Data, O’Reilly, 2009.

“On the first day of logging the Facebook clickstream, more than 400 gigabytes of data
was collected. The load, index, and aggregation processes for this data set really taxed the
Oracle data warehouse. Even after significant tuning, we were unable to aggregate a day of
clickstream data in less than 24 hours.”

SQL-on-Hadoop

ELT
“OLTP” > Hadoop

What not just use a
database to begin with?

Cost + Scalability

Databases are great...

If your data has structure (and you know what the structure is)
If your data is reasonably clean
If you know what queries you're going to run ahead of time

Databases are not so great...

If your data has little structure (or you don’t know the structure)
If your data is messy and noisy
If you don’t know what you’re looking for

What’s the selling point of SQL-on-Hadoop!?

Trade (a little?) performance for flexibility

SQL other
tools tools
OLTP olbe
Databases
> HDFS

SQL-on-Hadoop

Hive: Example

O Relational join on two tables:

e Table of word counts from Shakespeare collection
e Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445

is 8882 6884

Source: Material drawn from Cloudera training VM

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1

ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

Hive: Behind the Scenes

STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
s
TableScan
alias: s
Filter Operator
predicate:
expr: (freq >= 1)
type: boolean
Reduce Output Operator
key expressions:
expr: word
type: string
sort order: +

Map-reduce partition columns:

expr: word
type: string
tag: 0
value expressions:
expr: freq
type: int
expr: word
type: string
k
TableScan
alias: k
Filter Operator
predicate:
expr: (freq >=1)
type: boolean
Reduce Output Operator
key expressions:
expr: word
type: string
sort order: +

Map-reduce partition columns:

expr: word
type: string
tag: 1
value expressions:
expr: freq
type: int

Reduce Operator Tree:
Join Operator
condition map:
Inner Join 0 to 1
condition expressions:

0 {VALUE._col0} {VALUE._col1}

1 {VALUE._col0}
outputColumnNames: _col0, _col1, _col2
Filter Operator

predicate:

expr: ((_col0 >=1) and (_col2 >= 1))
type: boolean

Select Operator

expressions:
expr: _col1
type: string
expr: _col0
type: int
expr: _col2
type: int
outputColumnNames: _col0, _col1, _col2
File Output Operator
compressed: false
GlobalTableld: 0
table:

Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:
hdfs://localhost:8022/tmp/hive-training/364214370/10002
Reduce Output Operator
key expressions:
expr: _col1
type: int
sort order: -
tag: -1
value expressions:
expr: _col0
type: string
expr: _col1
type: int
expr: _col2
type: int
Reduce Operator Tree:
Extract
Limit
File Output Operator
compressed: false
GlobalTableld: 0
table:

input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HivelgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator
limit: 10

input format: org.apache.hadoop.mapred.SequenceFilelnputFormat
output format: org.apache.hadoop.hive.gl.io.HiveSequenceFileOutputFormat

Hive Architecture

s

HADOOP
(MAP-REDUCE + HDFS)

Job

3

Y,

Hive Implementation

O Metastore holds metadata

e Databases, tables
e Schemas (field names, field types, etc.)

® Permission information (roles and users)

O Hive data stored in HDFS

e Tables in directories
e Partitions of tables in sub-directories

e Actual data in files (plain text or binary encoded)

SQL other

tools tools OLAP

Lt Databases

> HDFS

PART (P_)
SF*200,000

PARTKEY

PARTSUPP (PS_)
SF*800,000

TPC-H Data Warehouse

NAME

PARTKEY

MFGR

SUPPKEY

BRAND

AVAILQTY

TYPE

SUPPLYCOST

COMMENT

SIZE

CONTAINER

CUSTOMER (C_)
SF*150,000

RETAILPRICE

CUSTKEY

COMMENT

NAME

SUPPLIER (S._)
SF*10,000

ADDRESS

NATIONKEY

SUPPKEY

PHONE

NAME

ACCTBAL

ADDRESS

MKTSEGMENT

NATIONKEY

COMMENT

PHONE

ACCTBAL

NATION (N_)
25

COMMENT

NATIONKEY

NAME

LINEITEM (L_)
SF*6,000,000

ORDERKEY

ORDERS (0_)
SF*1,500,000

PARTKEY

ORDERKEY

SUPPKEY

CUSTKEY

LINENUMBER

ORDERSTATUS

QUANTITY

TOTALPRICE

EXTENDEDPRICH

ORDERDATE

DISCOUNT

ORDER-
PRIORITY

TAX

CLERK

RETURNFLAG

SHIP-
PRIORITY

LINESTATUS

COMMENT

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

REGION (R_)
5

REGIONKEY

COMMENT

REGIONKEY

NAME

COMMENT

Relational Algebra

O Primitives

Projection (i)
Selection (0)
Cartesian product (x)
Set union (V)

Set difference (-)
Rename (p)

O Other operations
e Join (X)
e Group by... aggregation

Selection

IOV 2@

@O

Selection in MapReduce

O Easy!
e In mapper: process each tuple, only emit tuples that meet criteria
e Can be pipelined with projection

® No reducers necessary (unless to do something else)

O Performance mostly limited by HDFS throughput

e Speed of encoding/decoding tuples becomes important
e Take advantage of compression when available

e Semistructured data? No problem!

Projection

Projection in MapReduce

O Easy!

e In mapper: process each tuple, re-emit with only projected attributes
e Can be pipelined with selection

® No reducers necessary (unless to do something else)

O Implementation detail: bookkeeping required

® Need to keep track of attribute mappings after projection
e.g., name was r[4], becomes r[|] after projection

O Performance mostly limited by HDFS throughput

e Speed of encoding/decoding tuples becomes important
e Take advantage of compression when available

e Semistructured data? No problem!

Group by... Aggregation

O Aggregation functions:

O Ma

AVG
MAX
MIN
SUM
COUNT

pReduce implementation:

Map over dataset, emit tuples, keyed by group by attribute
Framework automatically groups values by group by attribute
Compute aggregation function in reducer

Optimize with combiners, in-mapper combining

o this!

+c?
mbeY chis:
Reme (we?\(2)

Combiner Design

0 Combiners and reducers share same method signature

e Sometimes, reducers can serve as combiners
e Often, not...

O Remember: combiner are optional optimizations

e Should not affect algorithm correctness

e May be run 0, |, or multiple times

O Example: find average of integers associated with the same key

cc?
member cni®
REMT™ week D SELECT key, AVG(value) FROM r GROUP BY key:

Combiner Design
o Combin . .
Computing the Mean: Version |
e Some
e Often
o Remem Computing the Mean: Version 2
e Shoul 1: class
° Mayb " Computing the Mean: Version 3
O Example 1: class 1: class
2: me
© " Computing the Mean: Version 4
.j 1: class
6: 2: me
7 3:
8 4:
&+ class 1: class MAPPER
2 md '_’: 2: method INITIALIZE
3: \ 3 S — new ASSOCIATIVEARRAY
a: ’ 4: C' — new ASSOCIATIVEARRAY
Vi 5 '7 class B method MAap(string ¢, integer r)
™ 6 S{t} — S{t} +r
. . " C{th = C{th+1
; 5: 8: method CLOSE
6: 9: for all term ¢ € S do
& 10: Emit(term ¢, pair (S{t},C{t}))

Are combiners still needed?

Relational Jo

I g e
hHOIO.AO””nHHU:OtA’J

ice Clip Art &

Relational Joins

Types of Relationships

>

Many-to-Many One-to-Many One-to-One

/A

Join Algorithms in MapReduce

O Reduce-side join

e aka repartition join
e aka shuffle join

O Map-side join
e aka sort-merge join
O Hash join

e aka broadcast join

e aka replicated join

Reduce-side join aka repartition join, shuffle join

O Basic idea: group by join key

e Map over both datasets
e Emit tuple as value with join key as the intermediate key
e Execution framework brings together tuples sharing the same key

e Perform join in reducer

O Two variants
e |-to-l joins

® |-to-many and many-to-many joins

Reduce-side Join: | -to-1

Map
keys values
R, i
R,)
S, :> :
S, 53
Remember tO “tag”’ the tuple
reduee 15 being from RorS...
keys values
R, ;
S, "

Note: no guarantee if R is going to come first or S

Reduce-side Join: | -to-many

Map
keys values
R, R,
S, : S
S; S3
Se S
Reduce
keys values
RI SZ SB
?
blem:
,S the pro

what

Quick Aside: Secondary Sorting

O MapReduce sorts input to reducers by key

e Values are arbitrarily ordered
O What if want to sort value also?

o Eg,k—=(v),r) (v3 ry)s (Vg r3), (Vg 1y)- -

Secondary Sorting: Solutions

o Solution I:

e Buffer values in memory, then sort
e Why is this a bad idea!?

o Solution 2:

e “Value-to-key conversion” design pattern:
form composite intermediate key, (k, v)

® Let execution framework do the sorting

® Preserve state across multiple key-value pairs to handle processing
e Anything else we need to do?

Value-to-Key Conversion

Before

k= (Vg r4)s (V15 1)y (Vi 13)s (V35 1)
Values arrive in arbitrary order...

After
(k,v)) = r,
(k,v3) = ry
(k,vy) =13
(k,vg) = 14

Values arrive in sorted order...
Process by preserving state across multiple keys
Remember to partition correctly!

Reduce-side Join: V-to-K Conversion

In reducer...

keys values
R €< New key encountered: hold in memory
S, Cross with records from other dataset
S3
S, ¥

R, € New key encountered: hold in memory

S, Cross with records from other dataset

Reduce-side Join: many-to-many

In reducer...

keys values

R,)
Rs > Hold in memory
Rg /
S, Cross with records from other dataset
S3
S, ! .

me

oble
,S the pr

what

Map-side jOiI‘I aka sort-merge join

Assume two datasets are sorted by the join key:

R, S

R, S3

R; S,
v

merge to join

Map-side jOiI‘I aka sort-merge join

Assume two datasets are sorted by the join key:

RI SZ RI
R, S4 R,
R4 S3 R,
R3 SI R3
v v
merge to join merge to join

How can we parallelize this? Co-partitioning

Map-side jOiI‘I aka sort-merge join

o Works if...

e Two datasets are co-partitioned
e Sorted by join key

O MapReduce implementation:

e Map over one dataset, read from other corresponding partition

® No reducers necessary (unless to do something else)

O Co-partitioned, sorted datasets: realistic to expect!?

Hash join aka broadcast join, replicated join

O Basic idea:

® Load one dataset into memory in a hashmap, keyed by join key
e Read other dataset, probe for join key

o Works if...

e R << S and R fits into memory

O MapReduce implementation:

e Distribute R to all nodes (e.g., DistributedCache)
e Map over S, each mapper loads R in memory and builds the hashmap
e For every tuple in S, probe join key in R

® No reducers necessary (unless to do something else)

Hash Join Variants

O Co-partitioned variant:

® R and S co-partitioned (but not sorted)?

e Only need to build hashmap on the corresponding partition
O Striped variant:

e R too big to fit into memory?
e Divide Rinto R}, Ry, R, ... s.t. each R, fits into memory
e Perform hash join: Vn, R, X 'S

e Take the union of all join results

O Use a global key-value store:

® Load R into memcached (or Redis)
® Probe global key-value store for join key

Which join to use?

O In-memory join > map-side join > reduce-side join

O Limitations of each?

e In-memory join: memory
® Map-side join: sort order and partitioning

e Reduce-side join: general purpose

SQL-on-Hadoop

Putting Everything Together

SELECT bigl.fx, big2,fy, small,fz
FROM bigl
JOIN big2 ON bigl.idl = big2.1idl
JOIN small ON bigl.id2 = small.id2
WHERE bigl.fx = 2015 AND

big2.fl < 40 AND

big2.f2 > 2;

Build logical plan
Optimize logical plan

Select physical plan

Note: generic SQL-on-Hadoop implementation; not exactly what Hive does, but pretty close.

Putting Everything Together

SELECT bigl.fx, big2,fy, small,fz
FROM bigl
JOIN big2 ON bigl.idl = big2.idl
JOIN small ON bigl.id2 = small.id2
WHERE bigl.fx = 2015 AND

big2.fl < 40 AND

big2.f2 > 2; project

select

join

Build logical plan ol

Optimize logical plan /\

Select physical plan
physical p bigl| big2 small

Putting Everything Together

SELECT bigl.fx, big2,fy, small,fz
FROM bigl
JOIN big2 ON bigl.idl = big2.1idl
JOIN small ON bigl.id2 = small.id2 project
WHERE bigl.fx 2015 AND
big2.fl < 40 AND
big2.f2 2;

v Al

join

join

N\

select select
Build logical plan | |
project project
I I
bigl big2 small

Optimize logical plan
Select physical plan

Putting Everything Together

SELECT bigl.fx, big2,fy, small,fz

FROM bigl
JOIN big2 ON bigl.idl = big2.idl
JOIN small ON bigl.id2 = small.id2 project
WHERE bigl.fx = 2015 AND
big2.fl < 40 AND "
big2.f2 > 2 Shuffle join?
Sort-merge join? join
Hash join?

Shuffle join?
Sort-merge join? join

Hash join? /\

select select

Build logical plan | |

project project
I I
bigl big2 small

Optimize logical plan

Select physical plan

Putting Everything Together

SELECT bigl.fx, big2,fy, small,fz

FROM bigl

JOIN big2 ON bigl.idl = big2.idl
JOIN small ON bigl.id2 = small.id2

WHERE bigl.fx = 2015 AND
big2.fl < 40 AND
big2.f2 > 2;

Build logical plan
Optimize logical plan

Select physical plan

sink

hash]

shuffle)

scan scan

| |
bigl big2 small

Putting Everything Together

SELECT bigl.fx, big2,fy, small,fz
FROM bigl

JOIN big2 ON bigl.idl = big2.id1l r :
JOIN small ON bigl.id2 = small.id>2 | sink .
WHERE bigl.fx = 2015 AND l |
big2.fl < 40 AND Map: | !
big2.f2 > 2; : :
I hashJ [
I |
F=-———- e e Ve

Reduce

====% shuffle]
Map |

scan

|
— bigl [T big2 T small

1
1
1
Build logical plan :
Optimize logical plan :

1

1

Select physical plan

Putting Everything Together

SELECT bigl.fx, big2,fy, small,fz
FROM bigl

JOIN big2 ON bigl.idl = big2.id1l i
JOIN small ON bigl.id2 = small.id2 sink
WHERE bigl.fx = 2015 AND |
big2.f1 < 40 AND l |
big2.f2 > 2; :
| hash]
|
|
Reduce |
- — = — ShufﬂeJ _—_—_—_\ . T T ===
Map

Build logical plan

Optimize logical plan

Select physical plan - bigl - big2 small

Now you understand

Hive: Behind the Scenes |, .. .o on here!

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1

ORDER BY s.freq DESC LIMIT 10;

4

(Abstract Syntax Tree)

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

4

(one or more of MapReduce jobs)

Hive: Behind the Scenes

STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
s
TableScan
alias: s
Filter Operator
predicate:
expr: (freq >= 1)
type: boolean
Reduce Output Operator
key expressions:
expr: word
type: string
sort order: +

Map-reduce partition columns:

expr: word
type: string
tag: 0
value expressions:
expr: freq
type: int
expr: word
type: string
k
TableScan
alias: k
Filter Operator
predicate:
expr: (freq >=1)
type: boolean
Reduce Output Operator
key expressions:
expr: word
type: string
sort order: +

Map-reduce partition columns:

expr: word
type: string
tag: 1
value expressions:
expr: freq
type: int

Reduce Operator Tree:
Join Operator
condition map:
Inner Join 0 to 1
condition expressions:

0 {VALUE._col0} {VALUE._col1}

1 {VALUE._col0}
outputColumnNames: _col0, _col1, _col2
Filter Operator

predicate:

expr: ((_col0 >=1) and (_col2 >= 1))
type: boolean

Select Operator

expressions:
expr: _col1
type: string
expr: _col0
type: int
expr: _col2
type: int
outputColumnNames: _col0, _col1, _col2
File Output Operator
compressed: false
GlobalTableld: 0
table:

Now you understand
what’s going on here!

Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:
hdfs://localhost:8022/tmp/hive-training/364214370/10002
Reduce Output Operator
key expressions:
expr: _col1
type: int
sort order: -
tag: -1
value expressions:
expr: _col0
type: string
expr: _col1
type: int
expr: _col2
type: int
Reduce Operator Tree:
Extract
Limit
File Output Operator
compressed: false
GlobalTableld: 0
table:
input format: org.apache.hadoop.mapred.TextInputFormat

output format: org.apache.hadoop.hive.ql.io.HivelgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator
limit: 10

input format: org.apache.hadoop.mapred.SequenceFilelnputFormat
output format: org.apache.hadoop.hive.gl.io.HiveSequenceFileOutputFormat

SQL-on-Hadoop

What about Spark SQL?

O Based on the DataFrame API:

e A distributed collection of data organized into named columns
O Two ways of specifying SQL queries:

e Directly:

val sqlContext = ... // An existing SQLContext
val df = sglContext.sql("SELECT * FROM table")
// df is a dataframe, can be further manipulated...

e Via DataFrame API:

// employees is a dataframe:

employees
.join(dept, employees ("deptId") === dept ("id"))
.Where(employees("gender") === "female")

.groupBy (dept("id"), dept ("name"))
.agg(count("name"))

Spark SQL: Query Planning

: Logical Physical Code
Analysis Optimization Planning Generation
SQL Query g
. Selected
Unresolved : Optimized Phvsical 2 :
Logical Plan}{mg'cal F)Ian]_{Logical Plan | + Prglzlrc]:al RDDs
o
DataFrame O
Catalog

At the end of the day... it’s transformations on RDDs

Spark SQL: Physical Execution

Narrow Dependencies: Wide Dependencies:

—)

- .

-)

- LA

map, filter (s groupByKey

—)

— Q

- —(gm

=1 -

)t (@
join with inputs

;/@ co-partitioned

join with inputs not
co-partitioned

= Reduce-side join

union = Map-side join

Hash join with broadcast variables

Hadoop Data Warehouse Design

O Observation:

® Joins are relatively expensive

e OLAP queries frequently involve joins

O Solution: denormalize

e What’s normalization again?
e Why normalize to begin with!?

e Fundamentally a time-space tradeoff
e How much to denormalize!?

o

What about consistency?

PART (P_)
SF*200,000

PARTKEY

PARTSUPP (PS_)
SF*800,000

Denormalization Opportunities?

NAME

PARTKEY

MFGR

SUPPKEY

BRAND

AVAILQTY

TYPE

SUPPLYCOST

COMMENT

SIZE

CONTAINER

CUSTOMER (C_)
SF*150,000

RETAILPRICE

CUSTKEY

COMMENT

NAME

SUPPLIER (S._)
SF*10,000

ADDRESS

NATIONKEY

SUPPKEY

PHONE

NAME

ACCTBAL

ADDRESS

MKTSEGMENT

NATIONKEY

COMMENT

PHONE

ACCTBAL

NATION (N_)
25

COMMENT

NATIONKEY

NAME

LINEITEM (L_)
SF*6,000,000

ORDERKEY

ORDERS (0_)
SF*1,500,000

PARTKEY

ORDERKEY

SUPPKEY

CUSTKEY

LINENUMBER

ORDERSTATUS

QUANTITY

TOTALPRICE

EXTENDEDPRICH

ORDERDATE

DISCOUNT

ORDER-
PRIORITY

TAX

CLERK

RETURNFLAG

SHIP-
PRIORITY

LINESTATUS

COMMENT

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

REGION (R_)
5

REGIONKEY

COMMENT

REGIONKEY

NAME

COMMENT

“Denormalizing the snowflake”

What’s the assighment?

SQL-on-Hadoop

SQL query interface
Execution Layer

Other Data
H D FS Sources

What’s the assighment?

SQL-on-Hadoop

PART (P_)
SF*200,000

PARTKEY

PARTSUPP (PS_)
SF*800,000

What’s the assighment?

NAME

PARTKEY

MFGR

SUPPKEY

BRAND

AVAILQTY

TYPE

SUPPLYCOST

COMMENT

SIZE

CONTAINER

CUSTOMER (C_)
SF*150,000

RETAILPRICE

CUSTKEY

COMMENT

NAME

SUPPLIER (S_)
SF*10,000

ADDRESS

NATIONKEY

SUPPKEY

PHONE

NAME

ACCTBAL

ADDRESS

MKTSEGMENT

NATIONKEY

COMMENT

PHONE

ACCTBAL

NATION (N_)
25

COMMENT

NATIONKEY

NAME

LINEITEM (L_)
SF*6,000,000

ORDERKEY

ORDERS (0_)
SF*1,500,000

PARTKEY

ORDERKEY

SUPPKEY

CUSTKEY

LINENUMBER

ORDERSTATUS

QUANTITY

TOTALPRICE

EXTENDEDPRICH

ORDERDATE

DISCOUNT

ORDER-
PRIORITY

TAX

CLERK

RETURNFLAG

SHIP-
PRIORITY

LINESTATUS

COMMENT

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

REGION (R_)
5

REGIONKEY

COMMENT

REGIONKEY

NAME

COMMENT

What’s the assighment?

select
1 returnflag,
1 _linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base price,
sum(1l_extendedprice*(1-1 _discount)) as sum _disc _price,
sum(l_extendedprice*(1-1 _discount)*(1+1 _tax)) as sum_charge,
avg(l _quantity) as avg_qty,
avg(l _extendedprice) as avg _price,
avg(l _discount) as avg disc,
count(*) as count_order
from lineitem
where input parameter
1 shipdate = "YYYY-MM-DD ' '===eeece e e e e e e e e e e e 1
group by 1 returnflag, 1 linestatus;

SQL query > Raw Spark program
Your task...

