
Big Data Infrastructure

Week 5: Analyzing Graphs (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

February 4, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/



Source: Wikipedia (Wave) 

Single Source Shortest Path



Visualizing Parallel BFS

n0 

n3 
n2 

n1 

n7 

n6 

n5 

n4 

n9 

n8 



From Intuition to Algorithm
¢  Data representation:

l  Key: node n
l  Value: d (distance from start), adjacency list (nodes reachable from n)

l  Initialization: for all nodes except for start node, d = ∞

¢  Mapper:
l  ∀m ∈ adjacency list: emit (m, d + 1)

l  Remember to also emit distance to yourself

¢  Sort/Shuffle
l  Groups distances by reachable nodes

¢  Reducer:
l  Selects minimum distance path for each reachable node

l  Additional bookkeeping needed to keep track of actual path



Multiple Iterations Needed
¢  Each MapReduce iteration advances the “frontier” by one hop

l  Subsequent iterations include more and more reachable nodes as 
frontier expands

l  Multiple iterations are needed to explore entire graph

¢  Preserving graph structure:
l  Problem: Where did the adjacency list go?

l  Solution: mapper emits (n, adjacency list) as well

Ugh! This is u
gly!



Implementation Practicalities

reduce

map

HDFS

HDFS

Convergence?



Application: Social Search

Source: Wikipedia (Crowd) 



Social Search
¢  When searching, how to rank friends named “John”?

l  Assume undirected graphs
l  Rank matches by distance to user

¢  Naïve implementations:
l  Precompute all-pairs distances

l  Compute distances at query time

¢  Can we do better?



All-Pairs?
¢  Floyd-Warshall Algorithm: difficult to MapReduce-ify…

¢  Multiple-source shortest paths in MapReduce: run multiple 
parallel BFS simultaneously
l  Assume source nodes {s0, s1, … sn}

l  Instead of emitting a single distance, emit an array of distances, with 
respect to each source

l  Reducer selects minimum for each element in array

¢  Does this scale?



Landmark Approach (aka sketches)
¢  Select n seeds {s0, s1, … sn}

¢  Compute distances from seeds to every node:

l  What can we conclude about distances?

l  Insight: landmarks bound the maximum path length

¢  Lots of details:

l  How to more tightly bound distances
l  How to select landmarks (random isn’t the best…)

¢  Use multi-source parallel BFS implementation in MapReduce!

A = [2, 1, 1]
B = [1, 1, 2]
C = [4, 3, 1]
D = [1, 2, 4]

Nodes Distances to seeds



Graphs and MapReduce
¢  A large class of graph algorithms involve:

l  Performing computations at each node: based on node features, edge 
features, and local link structure

l  Propagating computations: “traversing” the graph

¢  Generic recipe:
l  Represent graphs as adjacency lists

l  Perform local computations in mapper

l  Pass along partial results via outlinks, keyed by destination node

l  Perform aggregation in reducer on inlinks to a node
l  Iterate until convergence: controlled by external “driver”

l  Don’t forget to pass the graph structure between iterations



PageRank
(The original “secret sauce” for evaluating the importance of web pages)

(What’s the “Page” in PageRank?)



Random Walks Over the Web
¢  Random surfer model:

l  User starts at a random Web page
l  User randomly clicks on links, surfing from page to page

¢  PageRank
l  Characterizes the amount of time spent on any given page

l  Mathematically, a probability distribution over pages

¢  PageRank captures notions of page importance
l  Correspondence to human intuition?

l  One of thousands of features used in web search



Given page x with inlinks t1…tn, where
l  C(t) is the out-degree of t
l  α is probability of random jump

l  N is the total number of nodes in the graph

PageRank: Defined

X

t1

t2

tn
…

PR(x) = ↵

✓
1

N

◆
+ (1� ↵)

nX

i=1

PR(ti)

C(ti)



Computing PageRank
¢  Properties of PageRank

l  Can be computed iteratively
l  Effects at each iteration are local

¢  Sketch of algorithm:
l  Start with seed PRi values

l  Each page distributes PRi “credit” to all pages it links to

l  Each target page adds up “credit” from multiple in-bound links to 
compute PRi+1

l  Iterate until values converge



Simplified PageRank
¢  First, tackle the simple case:

l  No random jump factor
l  No dangling nodes

¢  Then, factor in these complexities…
l  Why do we need the random jump?

l  Where do dangling nodes come from?



Sample PageRank Iteration (1)

n1 (0.2) 

n4 (0.2) 

n3 (0.2) 
n5 (0.2) 

n2 (0.2) 

0.1 

0.1 

0.2 0.2 

0.1 0.1 

0.066 0.066 
0.066 

n1 (0.066) 

n4 (0.3) 

n3 (0.166) 
n5 (0.3) 

n2 (0.166) Iteration 1 



Sample PageRank Iteration (2)

n1 (0.066) 

n4 (0.3) 

n3 (0.166) 
n5 (0.3) 

n2 (0.166) 

0.033 

0.033 

0.3 0.166 

0.083 0.083 

0.1 0.1 
0.1 

n1 (0.1) 

n4 (0.2) 

n3 (0.183) 
n5 (0.383) 

n2 (0.133) Iteration 2 



PageRank in MapReduce

n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5] 

n2 n4 n3 n5 n1 n2 n3 n4 n5 

n2 n4 n3 n5 n1 n2 n3 n4 n5 

n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5] 

Map 

Reduce 



PageRank Pseudo-Code



PageRank vs. BFS

Map

Reduce

PageRank BFS

PR/N d+1

sum min



Complete PageRank
¢  Two additional complexities

l  What is the proper treatment of dangling nodes?
l  How do we factor in the random jump factor?

¢  Solution: 
l  Second pass to redistribute “missing PageRank mass” and account for 

random jumps

l  p is PageRank value from before, p' is updated PageRank value
l  N is the number of nodes in the graph

l  m is the missing PageRank mass

¢  Additional optimization: make it a single pass!

p0 = ↵

✓
1

N

◆
+ (1� ↵)

⇣m
N

+ p
⌘



Implementation Practicalities

Convergence?
reduce

map

HDFS

HDFS

map

HDFS

Ugh. Spark to the rescue?



PageRank Convergence
¢  Alternative convergence criteria

l  Iterate until PageRank values don’t change
l  Iterate until PageRank rankings don’t change

l  Fixed number of iterations

¢  Convergence for web graphs?
l  Not a straightforward question

¢  Watch out for link spam and the perils of SEO:
l  Link farms

l  Spider traps

l  …



Beyond PageRank
¢  Variations of PageRank

l  Weighted edges
l  Personalized PageRank

¢  Variants on graph random walks
l  Hubs and authorities (HITS)

l  SALSA



Applications
¢  Static prior for web ranking

¢  Identification of “special nodes” in a network

¢  Link recommendation

¢  Additional feature in any machine learning problem



More Implementation Practicalities
¢  How do you actually extract the webgraph?

¢  Lots of details…



Source: http://www.flickr.com/photos/fusedforces/4324320625/ 



MapReduce Sucks
¢  Java verbosity

¢  Hadoop task startup time

¢  Stragglers

¢  Needless graph shuffling

¢  Checkpointing at each iteration

Spark to the rescue?



Implementation Practicalities

Convergence?
reduce

map

HDFS

HDFS

map

HDFS



Iterative Algorithms

Source: Wikipedia (Water wheel) 



In-Mapper Combining
¢  Use combiners

l  Perform local aggregation on map output
l  Downside: intermediate data is still materialized

¢  Better: in-mapper combining
l  Preserve state across multiple map calls, aggregate messages in buffer, 

emit buffer contents at end
l  Downside: requires memory management

setup

map

cleanup

buffer

Emit all key-value pairs at once



Better Partitioning
¢  Default: hash partitioning

l  Randomly assign nodes to partitions

¢  Observation: many graphs exhibit local structure
l  E.g., communities in social networks

l  Better partitioning creates more opportunities for local aggregation

¢  Unfortunately, partitioning is hard!
l  Sometimes, chick-and-egg… 

l  But cheap heuristics sometimes available

l  For webgraphs: range partition on domain-sorted URLs



Schimmy Design Pattern
¢  Basic implementation contains two dataflows:

l  Messages (actual computations)
l  Graph structure (“bookkeeping”)

¢  Schimmy: separate the two dataflows, shuffle only the messages
l  Basic idea: merge join between graph structure and messages

S T 

both relations sorted by join key 

S1 T1 S2 T2 S3 T3 

both relations consistently partitioned and sorted by join key 



S1 T1 

Do the Schimmy!
¢  Schimmy = reduce side parallel merge join between graph 

structure and messages
l  Consistent partitioning between input and intermediate data

l  Mappers emit only messages (actual computation)

l  Reducers read graph structure directly from HDFS

S2 T2 S3 T3 

Reducer Reducer Reducer 

intermediate data 
(messages) 

intermediate data 
(messages) 

intermediate data 
(messages) 

from HDFS 
(graph structure) 

from HDFS 
(graph structure) 

from HDFS 
(graph structure) 



Experiments
¢  Cluster setup:

l  10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk
l  Hadoop 0.20.0 on RHELS 5.3

¢  Dataset:
l  First English segment of ClueWeb09 collection

l  50.2m web pages (1.53 TB uncompressed, 247 GB compressed)

l  Extracted webgraph: 1.4 billion links, 7.0 GB

l  Dataset arranged in crawl order

¢  Setup:

l  Measured per-iteration running time (5 iterations)
l  100 partitions

From: Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph Algorithms in MapReduce. 
Proceedings of the Eighth Workshop on Mining and Learning with Graphs Workshop (MLG-2010)



Results

“Best Practices” 

From: Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph Algorithms in MapReduce. 
Proceedings of the Eighth Workshop on Mining and Learning with Graphs Workshop (MLG-2010)



Results

+18% 
1.4b 

674m 

From: Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph Algorithms in MapReduce. 
Proceedings of the Eighth Workshop on Mining and Learning with Graphs Workshop (MLG-2010)



Results

+18% 

-15% 

1.4b 

674m 

From: Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph Algorithms in MapReduce. 
Proceedings of the Eighth Workshop on Mining and Learning with Graphs Workshop (MLG-2010)



Results

+18% 

-15% 

-60% 

1.4b 

674m 

86m 

From: Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph Algorithms in MapReduce. 
Proceedings of the Eighth Workshop on Mining and Learning with Graphs Workshop (MLG-2010)



Results

+18% 

-15% 

-60% 
-69% 

1.4b 

674m 

86m 

From: Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph Algorithms in MapReduce. 
Proceedings of the Eighth Workshop on Mining and Learning with Graphs Workshop (MLG-2010)



MapReduce Sucks
¢  Java verbosity

¢  Hadoop task startup time

¢  Stragglers

¢  Needless graph shuffling

¢  Checkpointing at each iteration

What have we fixed?



Let’s Spark!

reduce

HDFS

(omitting the second MapReduce job for simplicity; no handling of dangling links)

…

map

HDFS

reduce

map

HDFS

reduce

map

HDFS



reduce

HDFS

…

map

reduce

map

reduce

map



reduce

HDFS

map

reduce

map

reduce

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…



join

HDFS

map

join

map

join

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!



MapReduce vs. SparkPageRank'Performance'

17
1&

80
&

72
&

28
&

0&
20&
40&
60&
80&
100&
120&
140&
160&
180&

30& 60&

T
im

e
'p
e
r'
It
e
ra
ti
o
n
'(
s)
'

Number'of'machines'

Hadoop&

Spark&

Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf 



Spark to the Rescue!
¢  Java verbosity

¢  Hadoop task startup time

¢  Stragglers

¢  Needless graph shuffling

¢  Checkpointing at each iteration

What have we fixed?



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!

Still not particularly satisfying?



Source: https://www.flickr.com/photos/smuzz/4350039327/ 

Stay Tuned!



Source: Wikipedia (Japanese rock garden) 

Questions?

Remember: Assignment 4 due next Tuesday at 8:30am


