

Big Data Infrastructure

CS 489/698 Big Data Infrastructure (Winter 2016)

Week 5: Analyzing Graphs (2/2) February 4, 2016

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

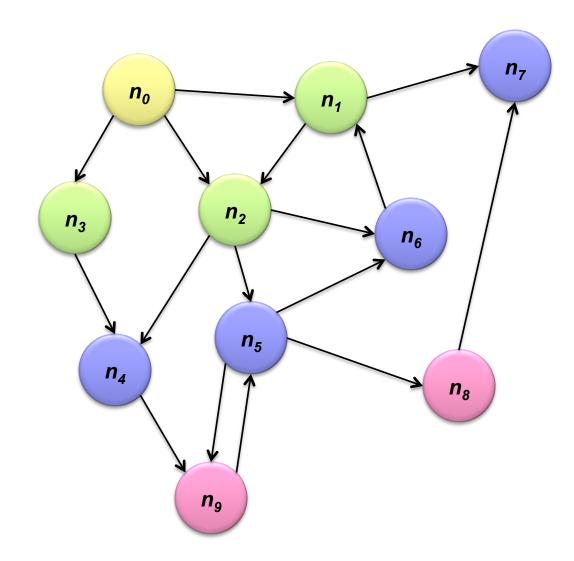
These slides are available at http://lintool.github.io/bigdata-2016w/

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Single Source Shortest Path

Source: Wikipedia (Wave)

Visualizing Parallel BFS



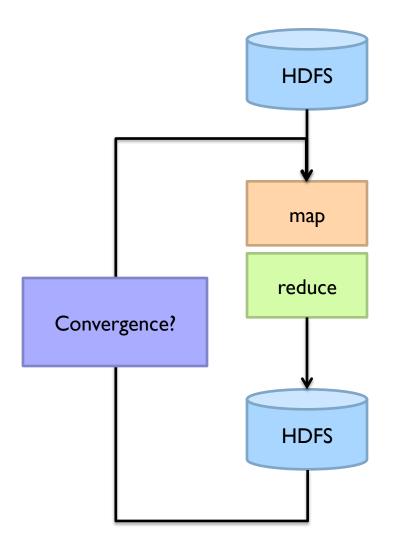
From Intuition to Algorithm

- Data representation:
 - Key: node *n*
 - Value: *d* (distance from start), adjacency list (nodes reachable from *n*)
 - Initialization: for all nodes except for start node, $d = \infty$
- Mapper:
 - $\forall m \in adjacency \ list: emit \ (m, d + 1)$
 - Remember to also emit distance to yourself
- Sort/Shuffle
 - Groups distances by reachable nodes
- Reducer:
 - Selects minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "frontier" by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - Multiple iterations are needed to explore entire graph
- Preserving graph structure:
 - Problem: Where did the adjacency list go?
 - Solution: mapper emits (*n*, adjacency list) as well

Implementation Practicalities



Application: Social Search

mb & cafe

次即

食屋

为家佐居

adles M

迎散

Social Search

- When searching, how to rank friends named "John"?
 - Assume undirected graphs
 - Rank matches by distance to user
- Naïve implementations:
 - Precompute all-pairs distances
 - Compute distances at query time
- Can we do better?

All-Pairs?

- Floyd-Warshall Algorithm: difficult to MapReduce-ify...
- Multiple-source shortest paths in MapReduce: run multiple parallel BFS simultaneously
 - Assume source nodes $\{s_0, s_1, \dots, s_n\}$
 - Instead of emitting a single distance, emit an array of distances, with respect to each source
 - Reducer selects minimum for each element in array

• Does this scale?

Landmark Approach (aka sketches)

- Select *n* seeds $\{s_0, s_1, \dots, s_n\}$
- Compute distances from seeds to every node:

- What can we conclude about distances?
- Insight: landmarks bound the maximum path length
- Lots of details:
 - How to more tightly bound distances
 - How to select landmarks (random isn't the best...)
- Use multi-source parallel BFS implementation in MapReduce!

Graphs and MapReduce

- A large class of graph algorithms involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Generic recipe:
 - Represent graphs as adjacency lists
 - Perform local computations in mapper
 - Pass along partial results via outlinks, keyed by destination node
 - Perform aggregation in reducer on inlinks to a node
 - Iterate until convergence: controlled by external "driver"
 - Don't forget to pass the graph structure between iterations

PageRank

(The original "secret sauce" for evaluating the importance of web pages)

(What's the "Page" in PageRank?)

Random Walks Over the Web

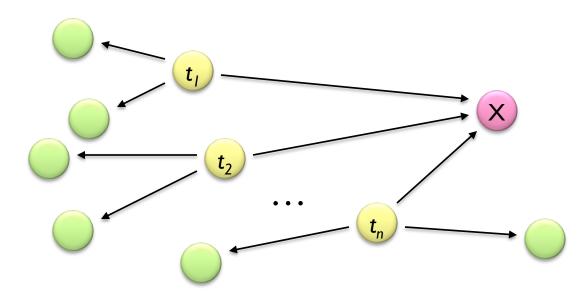
- Random surfer model:
 - User starts at a random Web page
 - User randomly clicks on links, surfing from page to page
- o PageRank
 - Characterizes the amount of time spent on any given page
 - Mathematically, a probability distribution over pages
- PageRank captures notions of page importance
 - Correspondence to human intuition?
 - One of thousands of features used in web search

PageRank: Defined

Given page x with inlinks $t_1 \dots t_n$, where

- C(t) is the out-degree of t
- α is probability of random jump
- N is the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1-\alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$



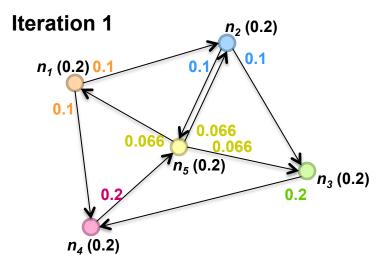
Computing PageRank

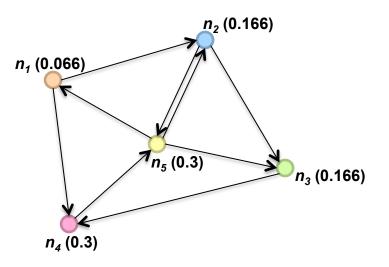
- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration are local
- Sketch of algorithm:
 - Start with seed PR_i values
 - Each page distributes *PR*, "credit" to all pages it links to
 - Each target page adds up "credit" from multiple in-bound links to compute PR_{i+1}
 - Iterate until values converge

Simplified PageRank

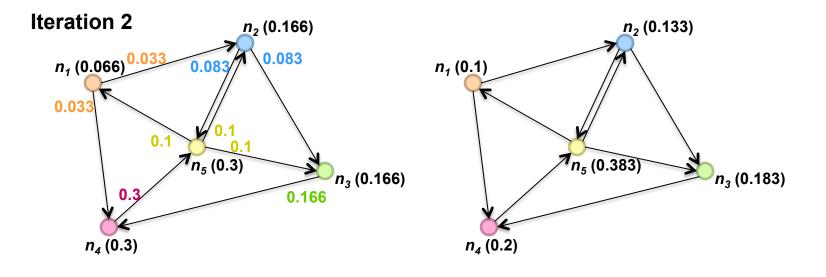
- First, tackle the simple case:
 - No random jump factor
 - No dangling nodes
- Then, factor in these complexities...
 - Why do we need the random jump?
 - Where do dangling nodes come from?

Sample PageRank Iteration (I)

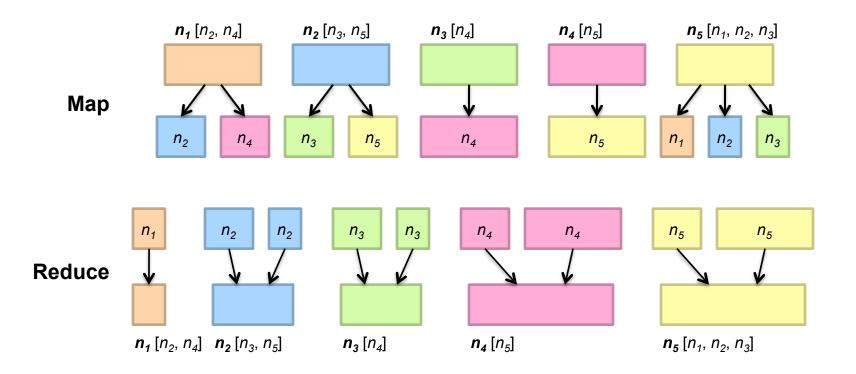




Sample PageRank Iteration (2)



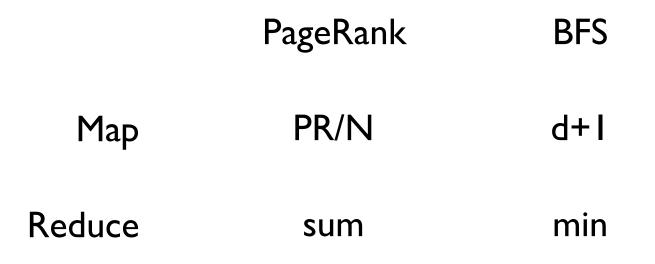
PageRank in MapReduce



PageRank Pseudo-Code

```
1: class Mapper
       method MAP(nid n, node N)
2:
           p \leftarrow N.PageRank/|N.AdjacencyList|
3:
           E_{MIT}(nid n, N)
                                                               ▷ Pass along graph structure
4:
           for all nodeid m \in N. ADJACENCYLIST do
 5:
              E_{MIT}(nid m, p)
                                                       ▷ Pass PageRank mass to neighbors
6:
1: class Reducer.
       method REDUCE(nid m, [p_1, p_2, \ldots])
2:
           M \leftarrow \emptyset
3:
           for all p \in \text{counts} [p_1, p_2, \ldots] do
4:
               if IsNode(p) then
5:
                  M \leftarrow p
                                                                  ▷ Recover graph structure
6:
               else
7:
                                                ▷ Sums incoming PageRank contributions
                  s \leftarrow s + p
8:
           M.PageRank \leftarrow s
9:
           E_{MIT}(nid m, node M)
10:
```

PageRank vs. BFS



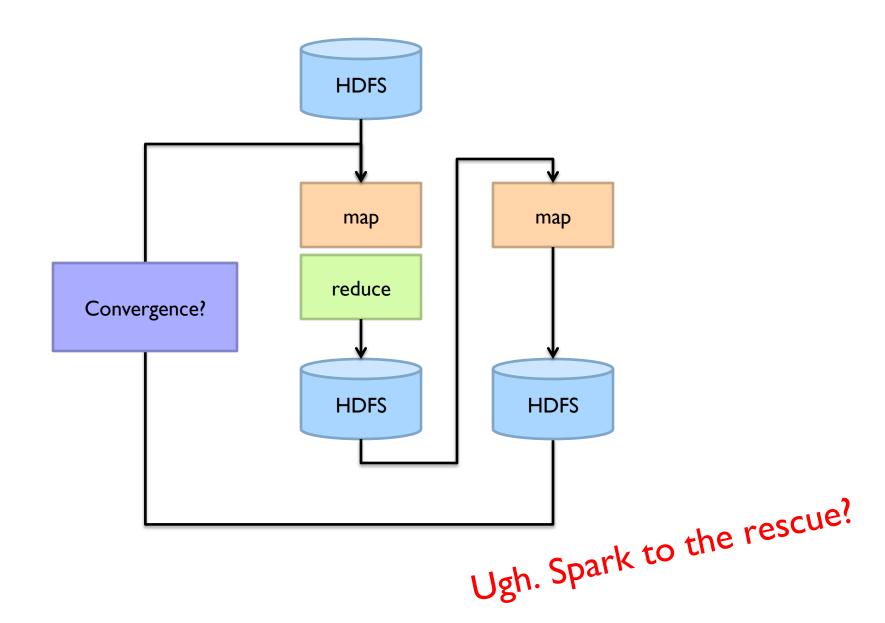
Complete PageRank

- Two additional complexities
 - What is the proper treatment of dangling nodes?
 - How do we factor in the random jump factor?
- Solution:
 - Second pass to redistribute "missing PageRank mass" and account for random jumps

$$p' = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \left(\frac{m}{N} + p\right)$$

- *p* is PageRank value from before, *p*' is updated PageRank value
- N is the number of nodes in the graph
- *m* is the missing PageRank mass
- Additional optimization: make it a single pass!

Implementation Practicalities



PageRank Convergence

- Alternative convergence criteria
 - Iterate until PageRank values don't change
 - Iterate until PageRank rankings don't change
 - Fixed number of iterations
- o Convergence for web graphs?
 - Not a straightforward question
- Watch out for link spam and the perils of SEO:
 - Link farms
 - Spider traps
 - ...

Beyond PageRank

- Variations of PageRank
 - Weighted edges
 - Personalized PageRank
- Variants on graph random walks
 - Hubs and authorities (HITS)
 - SALSA

Applications

- Static prior for web ranking
- Identification of "special nodes" in a network
- Link recommendation
- Additional feature in any machine learning problem

More Implementation Practicalities

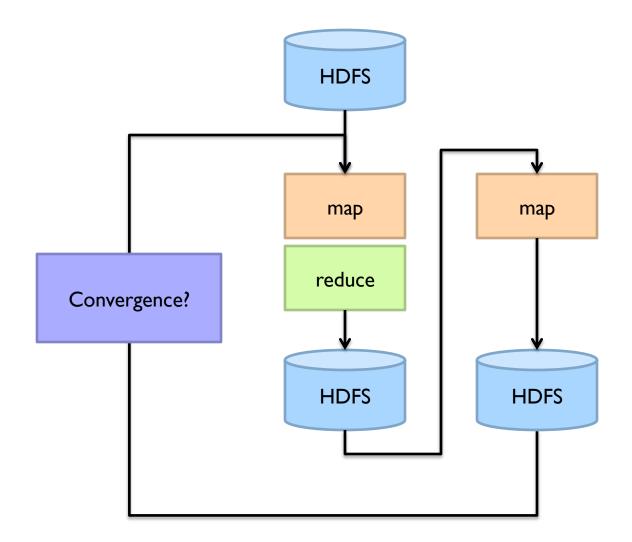
- How do you actually extract the webgraph?
- Lots of details...

Source: http://www.flickr.com/photos/fusedforces/4324320625/

MapReduce Sucks

- Java verbosity
- Hadoop task startup time
- Stragglers
- Needless graph shuffling
- Checkpointing at each iteration

Implementation Practicalities

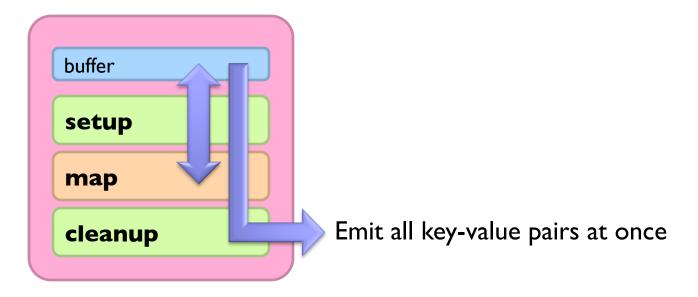


Iterative Algorithms

Source: Wikipedia (Water wheel)

In-Mapper Combining

- Use combiners
 - Perform local aggregation on map output
 - Downside: intermediate data is still materialized
- Better: in-mapper combining
 - Preserve state across multiple map calls, aggregate messages in buffer, emit buffer contents at end
 - Downside: requires memory management

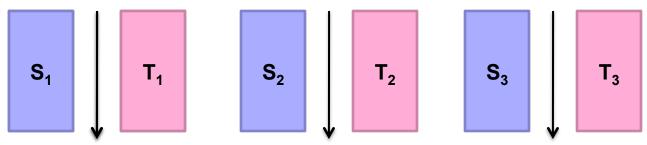


Better Partitioning

- Default: hash partitioning
 - Randomly assign nodes to partitions
- Observation: many graphs exhibit local structure
 - E.g., communities in social networks
 - Better partitioning creates more opportunities for local aggregation
- Unfortunately, partitioning is **hard**!
 - Sometimes, chick-and-egg...
 - But cheap heuristics sometimes available
 - For webgraphs: range partition on domain-sorted URLs

Schimmy Design Pattern

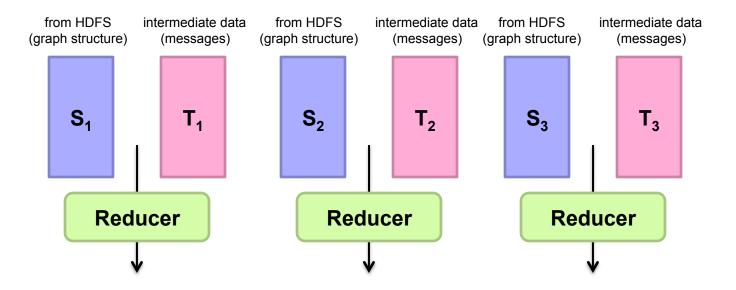
- Basic implementation contains two dataflows:
 - Messages (actual computations)
 - Graph structure ("bookkeeping")
- Schimmy: separate the two dataflows, shuffle only the messages
 - Basic idea: merge join between graph structure and messages



both relationshorter tidays join kisyently partitioned and sorted by join key

Do the Schimmy!

- Schimmy = reduce side parallel merge join between graph structure and messages
 - Consistent partitioning between input and intermediate data
 - Mappers emit only messages (actual computation)
 - Reducers read graph structure directly from HDFS

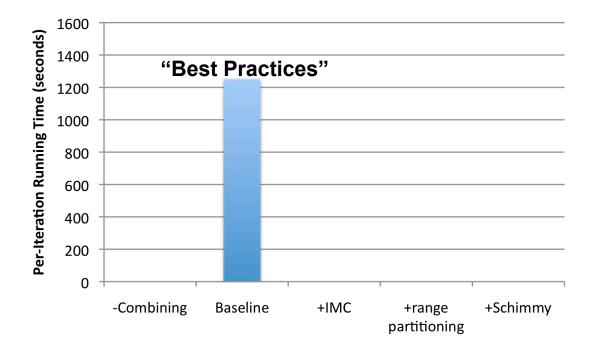


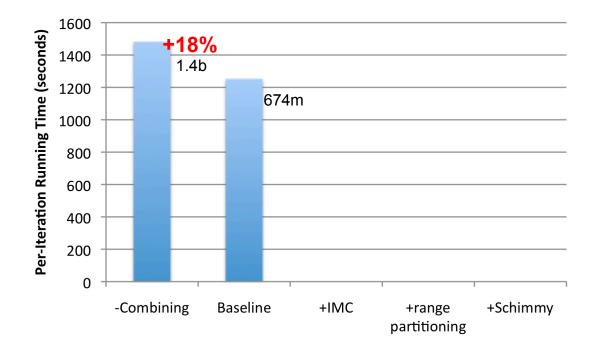
Experiments

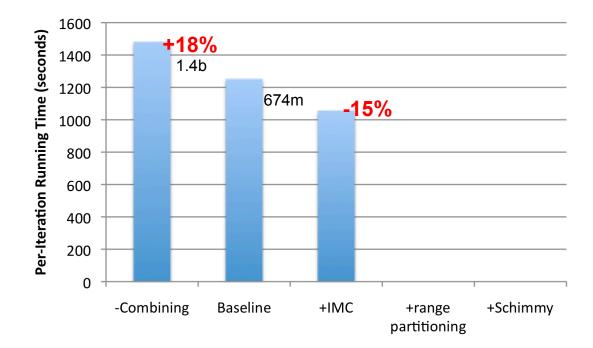
• Cluster setup:

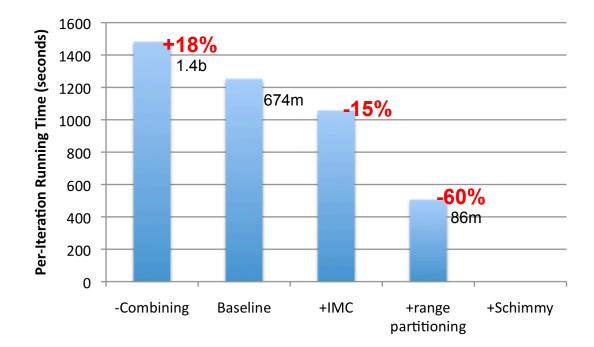
- 10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk
- Hadoop 0.20.0 on RHELS 5.3
- Dataset:
 - First English segment of ClueWeb09 collection
 - 50.2m web pages (1.53 TB uncompressed, 247 GB compressed)
 - Extracted webgraph: I.4 billion links, 7.0 GB
 - Dataset arranged in crawl order
- Setup:
 - Measured per-iteration running time (5 iterations)
 - 100 partitions

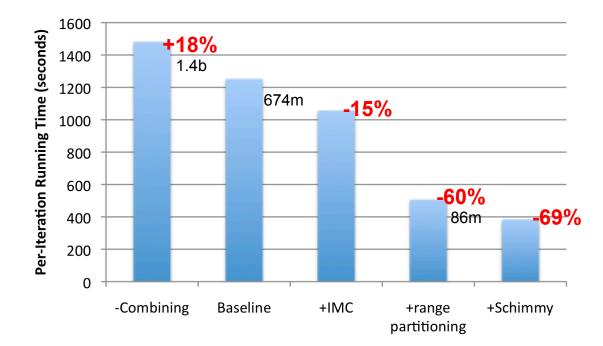
From: Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph Algorithms in MapReduce. Proceedings of the Eighth Workshop on Mining and Learning with Graphs Workshop (MLG-2010)







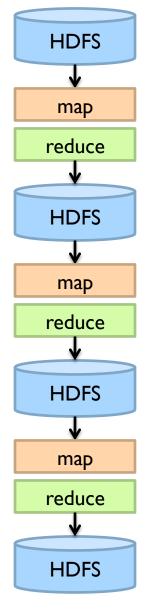




MapReduce Sucks

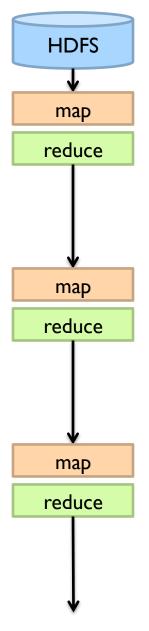
- Java verbosity
- Hadoop task startup time
- Stragglers
- Needless graph shuffling
- Checkpointing at each iteration

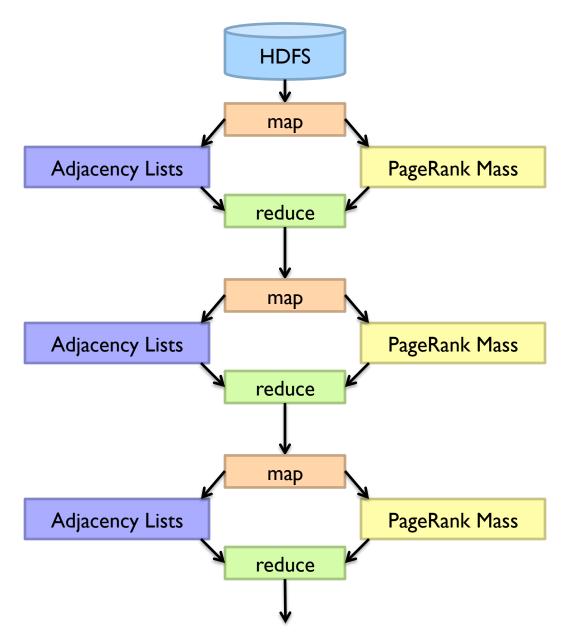
Let's Spark!



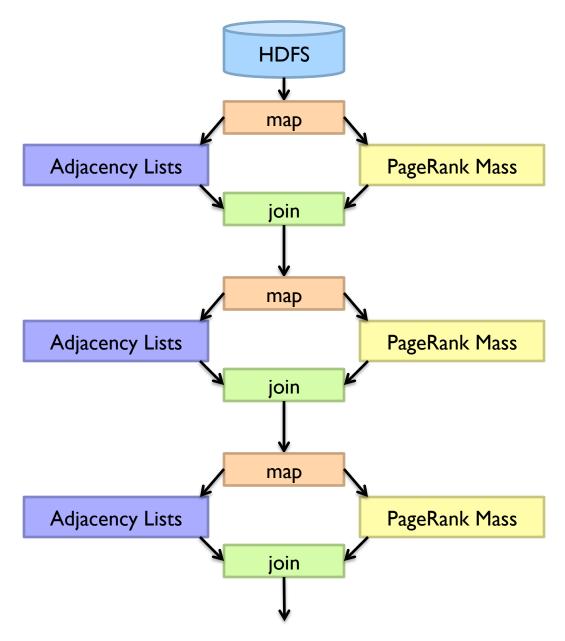
•••

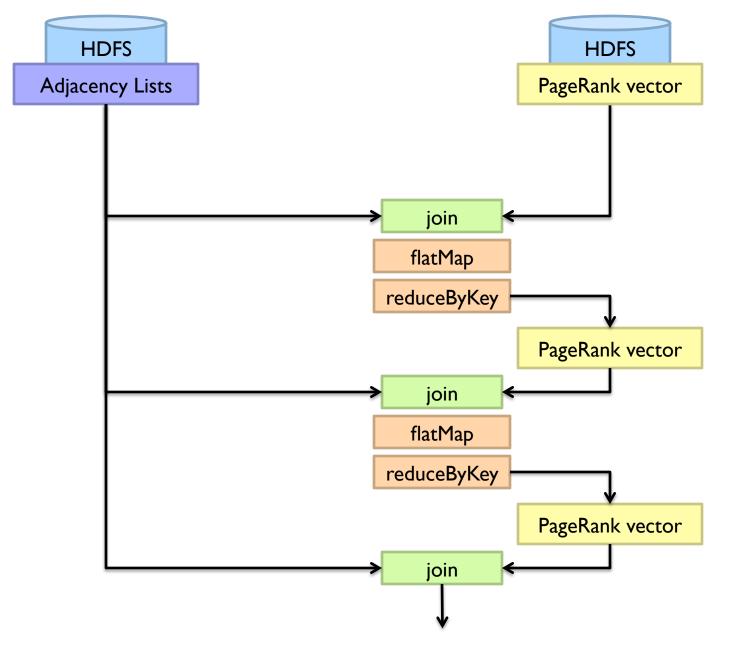
(omitting the second MapReduce job for simplicity; no handling of dangling links)

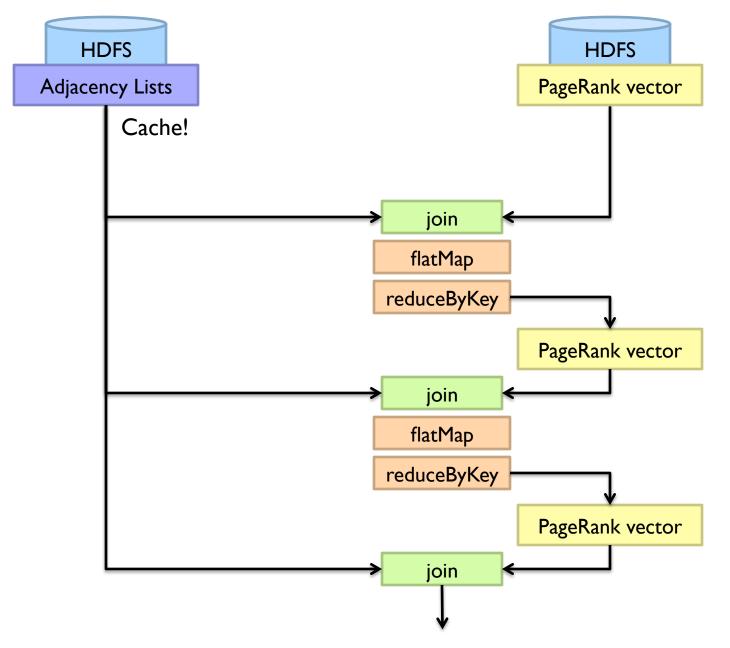




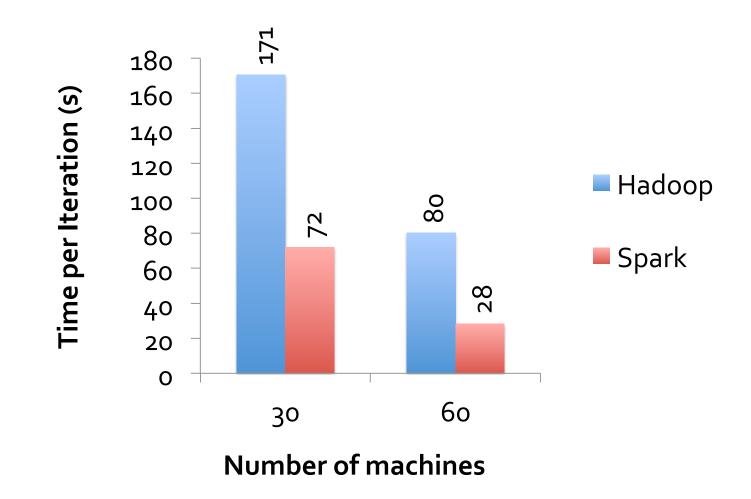
...







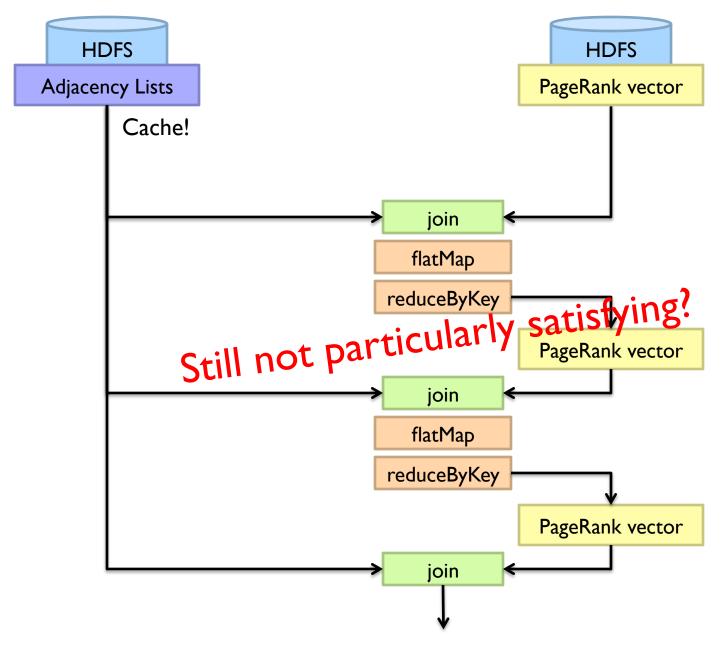
MapReduce vs. Spark



Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

Spark to the Rescue!

- Java verbosity
- Hadoop task startup time
- Stragglers
- Needless graph shuffling
- Checkpointing at each iteration



Source: https://www.flickr.com/photos/smuzz/4350039327/

Questions?

Remember: Assignment 4 due next Tuesday at 8:30am

Source: Wikipedia (Japanese rock garden)