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Count. Search!

Source: http://www.flickr.com/photos/guvnah/7861418602/
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Doc 1 Doc 2 Doc 3

Doc 4
one fish, two fish red fish, blue fish cat in the hat

green eggs and ham

blue | What goes in each cell?

cat | bOOIGan
egg | count
fish N POSItlonS

green I

ham I

hat I

one I

red I

two I




Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish  red fish, blue fish cat in the hat green eggs and ham

I 2 3 4
blue I blue — 2
cat I cat — 3
egg I egg — 4
fish - fish —> | —» 2
green I green — 4
ham I ham — 4
hat I hat — 3
one I one — |
red I red — 2
two I two — |




Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish  red fish, blue fish cat in the hat green eggs and ham

tf
I 2 3 4 df
blue I I blue = | =2 |
cat I I cat > | > 3 |
egg I 1 egg ™1 ™48l
fish 2] 2 2 fish > 2> 22 2
green | | | green ™1 ™4 M
ham || | ham > | > 4 |
hat I I hat = | = 3 |
one I I one > | =~ |
red I I red > | —» 2 |
two I I two > | = | |
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Inverted Indexing with MapReduce

Doc | Doc 2 Doc 3
one fish, two fish red fish, blue fish cat in the hat
one | ] red 2 | cat 3 |
M ap two || | blue |2 | hat 3]
fish | 2 fish 2 2

Shuffle and Sort: aggregate values by keys

cat 3 |
blue 2 |
Reduce fish | 22 2
hat 3 1
one |
two |

red 2 |



Inverted Indexing: Pseudo-Code

: class MAPPER
method MAP(docid n,doc d)
H < new ASSOCIATIVEARRAY > histogram to hold term frequencies
for all term ¢ € doc d do > processes the doc, e.g., tokenization and stopword removal

H{t} < H{t} +1
for all term ¢t € H do
EMIT(term t, posting (n, H{t})) > emits individual postings

class REDUCER
method REDUCE(term ¢, postings [(n1, f1)...])
P < new LIST
for all (n, f) € postings [(ni, f1)...] do
P.APPEND((n, f)) > appends postings unsorted

P.Sort() > sorts for compression
EMIT(term t, postingsList P)



Positional Indexes

Doc |

one fish, two fish

Map two
fish
Reduce

I
2]

Shuffle and Sort: aggregate values by keys

cat

fish

one

red

[l

[3]

[24]

Doc 2
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Inverted Indexing: Pseudo-Code

: class MAPPER
method MAP(docid n,doc d)
H < new ASSOCIATIVEARRAY > histogram to hold term frequencies
for all term ¢ € doc d do > processes the doc, e.g., tokenization and stopword removal

H{t} < H{t} +1
for all term ¢t € H do
EMIT(term t, posting (n, H{t})) > emits individual postings

class REDUCER
method REDUCE(term ¢, postings [(n1, f1)...])
P < new LIST
for all (n, f) € postings [(ni, f1)...] do

,_.E-_A.PPEND(<n,f>) the Prob\em.

)
(: P.SORT(T) WWhats
“ByE et t, postingsList P)

> appends postings unsorted

> sorts for compression



Another Try...

(key) (values) (keys) (values)
fish | Z [2.4] fish | | [2.4]
34 I [23] fish | 9 [9]
21 Z [1,8,22] fish | 2] [1,8,22]
35 Z [8.41] :> fish | 34 [23]
80 z [2,9,76] fish | 35 [8,41]
9 I [9] fish | 80 [2,9,76]

How is this different?

* Let the framework do the sorting
* Term frequency implicitly stored

Where have we seen this before?



Inverted Indexing: Pseudo-Code

class MAPPER
method MApr(docid n,doc d)
H < new ASSOCIATIVEARRAY

H{t} « H{t} +1
for all term ¢t € H do

1:
2
3
4: for all term ¢ € doc d do > builds a histogram of term frequencies
)
6
7

Emit(tuple (¢,n), tf H{t}) > emits individual postings, with a tuple as the key

class PARTITIONER
method PARTITION(tuple (¢, n), tf f)

A

class REDUCER
method INITIALIZE
tprev A\ @
P <+ new POSTINGSLIST
method REDUCE(tuple (t,n), tf [f])
if ¢ # tprev A tprev # () then

P.RESET()

10: tprev < 1t
11: method CLOSE

return HASH(¢) mod NumOfReducers > keys of same term are sent to same reducer

EMIT(term ¢, postings P) > emits postings list of term t,,¢,

P.APPEND((n, f)) > appends postings in sorted order

12: EMIT(term ¢, postings P) > emits last postings list from this reducer



Postings Encoding

Conceptually:

fish (2] 9 1ll21 1334 135 2/ 803

In Practice:

* Don’t encode docnos, encode gaps (or d-gaps)
* But it’s not obvious that this save space...

fish 2 8 I 12 3 13 1 | 2 45 3

= delta encoding, delta compression, gap compression



Overview of Integer Compression

O Byte-aligned technique
e VByte

O Bit-aligned
e Unary codes

e v/d codes

® Golomb codes (local Bernoulli model)

O Word-aligned

e Simple family

e Bit packing family (PForDelta, etc.)



VByte

O Simple idea: use only as many bytes as needed

e Need to reserve one bit per byte as the “continuation bit”

e Use remaining bits for encoding value

7 bits |0

|4 bits | | 0

21| bits | | I 0

O Works okay, easy to implement...

Beware of branch mispredicts!



Simple-9
O How many different ways can we divide up 28 bits?

CEEEEEEEEEEEEE 28 1-bit numbers
(] () ) e Y Y [ [

(SIS (S (S () (U] (i) [ |4 2-bit numbers
g e

[CTTICTT T[T TTICTTT]
“selectors” NI IR RTIIN

(9 total ways)

9 3-bit numbers

7 4-bit numbers

e Efficient decompression with hard-coded decoders

O Simple Family — general idea applies to 64-bit words, etc.

Beware of branch mispredicts?



Bit Packing

O What’s the smallest number of bits we need to code a block
(=128) of integers!?

3

4

5

e Efficient decompression with hard-coded decoders

O PForDelta — bit packing + separate storage of “overflow” bits

Beware of branch mispredicts?



Golomb Codes

O x = |, parameter b:

e g+ | inunary, whereq=|[(x-1)/b]

e rin binary, wherer=x-qgb - |, in |log b| or [log b] bits
O Example:

e b=3,r=0,1,2(0, 10, 1)

e b=6,r=0,1,23,4,5(00,0l, 100, IOI, 110, I'11)

e x=9b=3:q=2,r=2,code=110:11

e x=9b=6:g=1,r=2, code=10:100
o Optimal b ~ 0.69 (N/df)

e Different b for every term!



Chicken and Egg?

(key)

fish

fish

fish

fish

fish

fish

21

34

35

80

(value)

[24]

[9]

[1,8,22]

[23]

[8,41]

[2,9,76]

v
Write postings

But wait! How do we set
the Golomb parameter b?

Recall: optimal b = 0.69 (N/df)
We need the df to set b...

But we don’t know the df until
we've seen all postings!

Sound familiar?



Getting the df

O In the mapper:

e Emit “special” key-value pairs to keep track of df

O In the reducer:

e Make sure “special” key-value pairs come first: process them to
determine df

O Remember: proper partitioning!



Getting the df: Modified Mapper

Doc |
one fish, two fish Input document...
(key) (value)
fish | | [2:4] Emit normal key-value pairs...
one | | [l
two | | [3]
fish | * [1] Emit “special” key-value pairs to keep track of df...
one | % [1]

two | % [1]



Getting the df: Modified Reducer

(key)

fish

fish

fish

fish

fish

fish

fish

*

21

34

35

80

(value)

[63]

[2.4]
[9]
[1,822]
[23]
[8,41]

[2,9,76]

2 21 First, compute the df by summing contributions
from all “special” key-value pair...

Compute b from df

Important: properly define sort order to
make sure “special” key-value pairs come first!

v Write postings

Where have we seen this before?



Inverted Indexing: IP

. class M APPER
method MApr(docid n,doc d)
H < new ASSOCIATIVEARRAY

H{t} « H{t} +1
for all term ¢t € H do

1
2
3
4: for all term ¢ € doc d do > builds a histogram of term frequencies
)
6
7

Emit(tuple (¢,n), tf H{t}) > emits individual postings, with a tuple as the key

class PARTITIONER
method PARTITION(tuple (¢, n), tf f)

A

class REDUCER
method INITIALIZE
tprev A\ @
P < new POSTINGSLIST
method REDUCE(tuple (t,n), tf [f])
if ¢ # tprev A tprev # () then
EMIT(term ¢, postings P)
- s tiont
{ PAPPEND((n f})

: I tm——" g the ?
10 = Ewh at \s it okayY

11: method CLOS

return HASH(¢) mod NumOfReducers > keys of same term are sent to same reducer

> emits postings list of term tp,¢,

assump > appends postings in sorted order

12: EMIT(term ¢, postings P) > emits last postings list from this reducer



Merging Postings
O Let’s define an operation © on postings lists P:

Postings(l, 15,22, 39, 54) ® Postings(2, 46)
= Postings(1, 2, 15,22, 39, 46, 54)

O Then we can rewrite our indexing algorithm!

e flatMap: emit singleton postings
e reduceByKey: @



What’s the issue?

Postings, ® Postings, = Postingsy

Solution: apply compression as needed!



Inverted Indexing: LP

Slightly less elegant implementation... but uses same idea

1: class MAPPER

2 method INITIALIZE

3 M <+ new ASSOCIATIVEARRAY > holds partial lists of postings
4 method Map(docid n,doc d)

5: H < new ASSOCIATIVEARRAY > builds a histogram of term frequencies
6 for all term t € doc d do

7 H{t} + H{t} +1

8 for all term t € H do

9 M{t}.App(posting (n, H{t})) > adds a posting to partial postings lists
10: if MEMORYFULL() then
11: FLUSH()
12: method FLUSH > flushes partial lists of postings as intermediate output
13: for all term t € M do
14: P <+ SORTANDENCODEPOSTINGS(M{t})
15: EMIT(term ¢, postingsList P)
16: M.CLEAR()
17: method CLOSE

18: FLUSH()



Inverted Indexing: LP

1: class REDUCER

2 method REDUCE(term t, postingsLists [Py, Pa,...])

3 Py < new LIST > temporarily stores partial lists of postings
4: R < new LIST > stores merged partial lists of postings
5: for all P € postingsLists [P, Ps,...] do

6 P;.ApD(P)

7 if MEMORYNEARLYFULL() then

8 R.ADD(MERGELISTS(FPy))

9 P;.CLEAR()

10: R.ADD(MERGELISTS(FP))
11: EMIT(term ¢, postingsList MERGELISTS(R)) > emits fully merged postings list of term ¢



IP vs. LP?

Indexing Time (minutes)

80

70

60

50

40

30

20

10

Experiments on ClueWeb09 collection: segments | + 2
101.8m documents (472 GB compressed, 2.97 TB uncompressed)

IP algorithm @
LP algorithm ¢
2‘0 4‘10 (;O 8;0 160
Number of Documents (millions)
Alg. | Time Intermediate Pairs | Intermediate Size
IP | 38.5 min 13 x 107 | 306 x 10Y bytes
LP | 29.6 min 614 x 106 85 x 10? bytes

From: Elsayed et al., Brute-Force Approaches to Batch Retrieval:

Scalable Indexing with MapReduce, or Why Bother? 2010



Another Look at LP ,
nything in SParic

. a

1: class MAPPER Rem‘nd YOU Of

2 method INITIALIZE

3 M < new ASSOCIATIVEARRAY > holds partial lists of postings

4 method Map(docid n,doc d)

5: H + new ASSOCIATIVEARRAY > builds a histogram of term frequencies

6 for all term ¢ € doc d do

7 H{t} « H{t} +1

8 for all term ¢t € H do

9 M{t}.App(posting (n, H{t})) > adds a posting to partial postings lists

10: if MEMORYFULL() then

11: FrusH()

12: method FLUSH > flushes partial lists of postings as intermediate output

13: for all term t € M do

14: P + SORTANDENCODEPOSTINGS(M {t}) RDDL (K, V)]
15: EMIT(term ¢, postingsList P)
16: M .CLEAR()
17: method CLOSE
18: FrusH()

1: class REDUCER

2 method REDUCE(term ¢, postingsLists [Py, Py, .. .]) aggregateByKey
3 Pf < new LI1ST > temporarily storej partia} iist S erp : ( U , V) = U ,
4: R < new LisT > stores merged partial list .

5: for all P € postingsLists [Py, P»,...] do Combop . (U ) U) = U
6: P;.App(P)

7 if MEMORYNEARLYFULL() then

8 R.ApD(MERGELISTS(Py))

9 P¢.CLEAR()
10: R.ADpD(MERGELISTS(Py))

11: EMIT(term ¢, postingsList MERGELISTS(R)) > emits fully merged postings list of term ¢ RDD [ ( K U ) ]
’
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Source: Wikipedia (Walnut)
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Doc 1 Doc 2 Doc 3

Doc 4
one fish, two fish red fish, blue fish cat in the hat

green eggs and ham

blue | Indexing: building this structure

cat I

Retrieval: manipulating this structure

fish I 1

green I

ham I

hat I

one I

red I

two I




MapReduce it?

O The indexing problem

e Scalability is critical Perfect for MaPR

e Must be relatively fast, but need not be real time €duce!
e Fundamentally a batch operation

® Incremental updates may or may not be important
o

For the web, crawling is a challenge in itself
O The retrieval problem

® Must have sub-second response time

e For the web, only need relatively few results

Uh... not sO good...



Assume everything fits in memory on a single machine...
(For now)



Boolean Retrieval

O Users express queries as a Boolean expression
e AND, OR, NOT
e Can be arbitrarily nested

O Retrieval is based on the notion of sets

e Any given query divides the collection into two sets:
retrieved, not-retrieved

® Pure Boolean systems do not define an ordering of the results



Boolean Retrieval

O To execute a Boolean query:

e Build query syntax tree

OR
/\
( blue AND fish ) OR ham ham AND
® For each clause, look up postings blue fish
blue —» 2 —+>5—>9
fish — 1 —>2—>3—>5—>6—>7 —>8—>09
ham M1 "3r"M4 "5

e Traverse postings and apply Boolean operator



Term-=-at-a-Time

OR blue —» 2 —» 5 —>9
/\
ham AND fish ~—»1—>2—>3—>5—>6—>7 >89
N ham 1 >3 alsls
blue fish

AND — 2 —>5—9

/\
blue fish

Efficiency analysis?
OR —» 1 —> 2 —>3 > 4 —>»>5 —>»9
/\
ham AND

/\
blue fish

What’s RPN?



Document-at-a-Time

OR blue —» 2 —» 5 —>9
/\
ham AND fish ~—»1—>2—>3—>5—>6—>7 >89
N ham 1345
blue fish
blue > 2 » 5 » 9
fish —» 1 —»2 >3 —>5—>06—>7 8 —>»9
ham —» 1 —» 3 —» 4 —» 5
Tradeoffs!?

Efficiency analysis?



Strengths and Weaknesses

O Strengths

Precise, if you know the right strategies
Precise, if you have an idea of what you’re looking for

Implementations are fast and efficient

O Weaknesses

Users must learn Boolean logic

Boolean logic insufficient to capture the richness of language

No control over size of result set: either too many hits or none
When do you stop reading? All documents in the result set are
considered “equally good”

What about partial matches? Documents that “don’t quite match” the
query may be useful also



Ranked Retrieval

O Order documents by how likely they are to be relevant

e Estimate relevance(q, d))
e Sort documents by relevance

e Display sorted results

o0 User model

e Present hits one screen at a time, best results first

e At any point, users can decide to stop looking

O How do we estimate relevance!?

e Assume document is relevant if it has a lot of query terms
e Replace relevance(q, d)) with sim(q, d)
e Compute similarity of vector representations



Vector Space Model

Assumption: Documents that are “close together” in vector
space “talk about” the same things

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~“closeness”)



Similarity Metric

O Use “angle” between the vectors:

dj = |wj1,wj2,wj3,. .. Wjn]
di = Wk 1, W2, Wk 3, - - - W.n]
d: - d,
cosf = —2
dj|d|
d: - d W WL
Sim(dj,dk) _ J kE Zz—O J,t Wk,1

Ailldd Y w [T,
O Or, more generally, inner products:

sim(d;,di) = d; - di, = ij,iwk,i
i=0



Term Weighting

O Term weights consist of two components

® Local: how important is the term in this document!?

e Global: how important is the term in the collection?

O Here’s the intuition:

e Terms that appear often in a document should get high weights

® Terms that appear in many documents should get low weights

O How do we capture this mathematically?

e Term frequency (local)

e Inverse document frequency (global)



TF.IDF Term Weighting

N
W, =tfi’j-log;

l

W; i weight assigned to term i in document j
tfi’j number of occurrence of term i in document j
N number of documents in entire collection

n number of documents with term i



Retrieval in a Nutshell

O Look up postings lists corresponding to query terms
O Traverse postings for each query term
O Store partial query-document scores in accumulators

O Select top k results to return



Retrieval: Document-at-a-Time

O Evaluate documents one at a time (score all query terms)

blue 9 2 21 | 35 |

fish Il 2 9 | 21 3 34 | 35 2 80 3

Document score in top k?

Accumulators

Yes: Insert document score, extract-min if heap too large
(e.g. min heap)

No: Do nothing

O Tradeoffs

e Small memory footprint (good)
e Skipping possible to avoid reading all postings (good)

® More seeks and irregular data accesses (bad)



Retrieval: Term-At-A-Time

O Evaluate documents one query term at a time

e Usually, starting from most rare term (often with tf-sorted postings)

blue 9 2 21 | 35 |

Accumulators

Scorey,.,,(doc n) = (e.g. hash)

fish Il 2 9 1 21 3 34 | 35 2 80 3

O Tradeoffs

e Early termination heuristics (good)
e lLarge memory footprint (bad), but filtering heuristics possible



Assume everything fits in memory on a single machine...
Okay, let’s relax this assumption now



Important Ideas

O Partitioning (for scalability)

O Replication (for redundancy)
O Caching (for speed)

O Routing (for load balancing)

The rest is just details!



Term vs. Document Partitioning

Term
Partitioning

Document
Partitioning

D
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Important Ideas

O Partitioning (for scalability)
O Replication (for redundancy)
O Caching (for speed)

O Routing (for load balancing)






