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Inverted Indexing: Pseudo-Code

1: class Mapper
2: method Map(docid n, doc d)
3: H  new AssociativeArray . histogram to hold term frequencies
4: for all term t 2 doc d do . processes the doc, e.g., tokenization and stopword removal
5: H{t} H{t}+ 1

6: for all term t 2 H do

7: Emit(term t, posting hn,H{t}i) . emits individual postings

1: class Reducer
2: method Reduce(term t, postings [hn1, f1i . . .])
3: P  new List
4: for all hn, fi 2 postings [hn1, f1i . . .] do
5: P.Append(hn, fi) . appends postings unsorted

6: P.Sort() . sorts for compression
7: Emit(term t, postingsList P )

Figure 2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce.

Given an existing single-machine indexer, one simple way to take advantage of MapReduce is to
leverage reducers to merge indexes built on local disk. This might proceed as follows: an existing
indexer is embedded inside the mapper, and mappers are applied over the entire document collection.
Each indexer operates independently and builds an index on local disk for the documents it encounters.
Once the local indexes have been built, compressed postings are emitted as values, keyed by the term.
In the reducer, postings from each locally-built index are merged into a final index.3

Another relatively straightforward adaptation of a single-machine indexer is demonstrated by
Nutch.4 Its algorithm processes documents in the map phase, and emits pairs consisting of docids
and analyzed document contents. The sort and shu✏e phase in MapReduce is used essentially for doc-
ument partitioning, and the reducers build each individual index partition independently. In contrast
with the above approach, Nutch basically embeds a traditional indexer in the reducers, instead of the
mappers. With this approach, the number of reducers specifies the number of document partitions—
which limits the degree of parallelization that can be achieved.

We decided not to pursue the two approaches discussed above since they seemed like incremental
improvements over existing indexing methods. Instead, we implemented and evaluated two distinct
algorithms that make fuller use of the MapReduce programming model. The first is a scalable variant of
the baseline inverted indexing algorithm in MapReduce, in which the mappers emit individual postings.
The second is an algorithm in which the mappers emit partial lists of postings. The algorithms primarily
di↵er in how postings are sorted: by the execution framework (in the first algorithm) or by the indexing
code itself (in the second algorithm). Detailed descriptions of both are provided below, followed by a
general discussion of their relative merits.

3.2 Emitting Individual Postings

The starting point of our first algorithm, based on mappers emitting individual postings, is an obser-
vation about a significant bottleneck in the baseline algorithm in Figure 2: it assumes that there is
su�cient memory to hold all postings associated with the same term before sorting them. Since the
MapReduce execution framework makes no guarantees about the ordering of values associated with
the same key, the reducer must first bu↵er all postings and then perform an in-memory sort before the

3Indri is capable of distributed indexing using exactly this approach, albeit outside of the MapReduce framework.
4http://lucene.apache.org/nutch/
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Inverted Indexing: Pseudo-Code

1: class Mapper
2: method Map(docid n, doc d)
3: H  new AssociativeArray . histogram to hold term frequencies
4: for all term t 2 doc d do . processes the doc, e.g., tokenization and stopword removal
5: H{t} H{t}+ 1

6: for all term t 2 H do

7: Emit(term t, posting hn,H{t}i) . emits individual postings

1: class Reducer
2: method Reduce(term t, postings [hn1, f1i . . .])
3: P  new List
4: for all hn, fi 2 postings [hn1, f1i . . .] do
5: P.Append(hn, fi) . appends postings unsorted

6: P.Sort() . sorts for compression
7: Emit(term t, postingsList P )

Figure 2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce.

Given an existing single-machine indexer, one simple way to take advantage of MapReduce is to
leverage reducers to merge indexes built on local disk. This might proceed as follows: an existing
indexer is embedded inside the mapper, and mappers are applied over the entire document collection.
Each indexer operates independently and builds an index on local disk for the documents it encounters.
Once the local indexes have been built, compressed postings are emitted as values, keyed by the term.
In the reducer, postings from each locally-built index are merged into a final index.3

Another relatively straightforward adaptation of a single-machine indexer is demonstrated by
Nutch.4 Its algorithm processes documents in the map phase, and emits pairs consisting of docids
and analyzed document contents. The sort and shu✏e phase in MapReduce is used essentially for doc-
ument partitioning, and the reducers build each individual index partition independently. In contrast
with the above approach, Nutch basically embeds a traditional indexer in the reducers, instead of the
mappers. With this approach, the number of reducers specifies the number of document partitions—
which limits the degree of parallelization that can be achieved.

We decided not to pursue the two approaches discussed above since they seemed like incremental
improvements over existing indexing methods. Instead, we implemented and evaluated two distinct
algorithms that make fuller use of the MapReduce programming model. The first is a scalable variant of
the baseline inverted indexing algorithm in MapReduce, in which the mappers emit individual postings.
The second is an algorithm in which the mappers emit partial lists of postings. The algorithms primarily
di↵er in how postings are sorted: by the execution framework (in the first algorithm) or by the indexing
code itself (in the second algorithm). Detailed descriptions of both are provided below, followed by a
general discussion of their relative merits.

3.2 Emitting Individual Postings

The starting point of our first algorithm, based on mappers emitting individual postings, is an obser-
vation about a significant bottleneck in the baseline algorithm in Figure 2: it assumes that there is
su�cient memory to hold all postings associated with the same term before sorting them. Since the
MapReduce execution framework makes no guarantees about the ordering of values associated with
the same key, the reducer must first bu↵er all postings and then perform an in-memory sort before the

3Indri is capable of distributed indexing using exactly this approach, albeit outside of the MapReduce framework.
4http://lucene.apache.org/nutch/
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Inverted Indexing: Pseudo-Code
1: class Mapper
2: method Map(docid n, doc d)
3: H  new AssociativeArray
4: for all term t 2 doc d do . builds a histogram of term frequencies
5: H{t} H{t}+ 1

6: for all term t 2 H do

7: Emit(tuple ht, ni, tf H{t}) . emits individual postings, with a tuple as the key

1: class Partitioner
2: method Partition(tuple ht, ni, tf f)
3: return Hash(t) mod NumOfReducers . keys of same term are sent to same reducer

1: class Reducer
2: method Initialize
3: tprev  ;
4: P  new PostingsList
5: method Reduce(tuple ht, ni, tf [f ])
6: if t 6= tprev ^ tprev 6= ; then
7: Emit(term t, postings P ) . emits postings list of term tprev
8: P.Reset()

9: P.Append(hn, fi) . appends postings in sorted order
10: tprev  t

11: method Close
12: Emit(term t, postings P ) . emits last postings list from this reducer

Figure 3: Pseudo-code of the inverted indexing algorithm based on emitting individual postings (IP).

postings can be written out to disk. Of course, as collections grow in size there may not be su�cient
memory to perform this sort (bound by the term with the largest df).

Since the MapReduce programming model guarantees that keys arrive at each reducer in sorted
order, we can overcome the scalability bottleneck by letting the execution framework do the sorting.
Instead of emitting key-value pairs of the form:

(term t, posting hdocid, fi)

we emit intermediate key-value pairs of the form:

(tuple ht, docidi, tf f)

In other words, the key is a tuple containing the term and the document number, while the value is
the term frequency. We need to redefine the sort order so that keys are sorted first by term t, and then
by docid n. Additionally, we need a custom partitioner to ensure that all tuples with the same term
are shu✏ed to the same reducer. Having implemented these two changes, the MapReduce execution
framework ensures that the postings arrive in the correct order. This, combined with the fact that
reducers can hold state across multiple keys, allows compressed postings to be written with minimal
memory usage.

The revised MapReduce inverted indexing algorithm is shown in Figure 3. The mapper remains
unchanged for the most part, other than di↵erences in the intermediate key-value pairs. The key space
of the intermediate output is partitioned by term; that is, all keys with the same term are sent to the
same reducer. This is guaranteed by the partitioner. The reducer contains two additional methods:

6
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Conceptually:

In Practice:
•  Don’t encode docnos, encode gaps (or d-gaps) 
•  But it’s not obvious that this save space…

= delta encoding, delta compression, gap compression



Overview of Integer Compression
¢  Byte-aligned technique

l  VByte

¢  Bit-aligned
l  Unary codes

l  γ/δ codes

l  Golomb codes (local Bernoulli model)

¢  Word-aligned
l  Simple family

l  Bit packing family (PForDelta, etc.) 



VByte
¢  Simple idea: use only as many bytes as needed

l  Need to reserve one bit per byte as the “continuation bit”
l  Use remaining bits for encoding value

¢  Works okay, easy to implement…

0

1 0

1 1 0

7 bits

14 bits

21 bits

Beware of branch mispredicts!



Simple-9
¢  How many different ways can we divide up 28 bits?

l  Efficient decompression with hard-coded decoders

¢  Simple Family – general idea applies to 64-bit words, etc.

28 1-bit numbers

14 2-bit numbers

9 3-bit numbers

7 4-bit numbers

(9 total ways)

“selectors”

Beware of branch mispredicts?



Bit Packing
¢  What’s the smallest number of bits we need to code a block 

(=128) of integers?

l  Efficient decompression with hard-coded decoders

¢  PForDelta – bit packing + separate storage of “overflow” bits

3 …

4 …

5 …

Beware of branch mispredicts?



Golomb Codes
¢  x ≥ 1, parameter b:

l  q + 1 in unary, where q = ⎣( x - 1 ) / b⎦ 
l  r in binary, where r = x - qb - 1, in ⎣log b⎦ or ⎡log b⎤ bits

¢  Example:
l  b = 3, r = 0, 1, 2 (0, 10, 11)

l  b = 6, r = 0, 1, 2, 3, 4, 5 (00, 01, 100, 101, 110, 111)

l  x = 9, b = 3: q = 2, r = 2, code = 110:11

l  x = 9, b = 6: q = 1, r = 2, code = 10:100

¢  Optimal b ≈ 0.69 (N/df)

l  Different b for every term!



Chicken and Egg?
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Sound familiar?

But wait! How do we set 
the Golomb parameter b?

We need the df to set b…

But we don’t know the df until 
we’ve seen all postings!

Recall: optimal b ≈ 0.69 (N/df)



Getting the df
¢  In the mapper:

l  Emit “special” key-value pairs to keep track of df

¢  In the reducer:
l  Make sure “special” key-value pairs come first: process them to 

determine df

¢  Remember: proper partitioning!



Getting the df: Modified Mapper

one fish, two fish
Doc 1

1fish [2,4]

(value)(key)

1one [1]

1two [3]

«fish [1]

«one [1]

«two [1]

Input document…

Emit normal key-value pairs…

Emit “special” key-value pairs to keep track of df…



Getting the df: Modified Reducer
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«fish [63] [82] [27] …

…

First, compute the df by summing contributions 
from all “special” key-value pair…

Compute b from df

Important: properly define sort order to 
make sure “special” key-value pairs come first!

Where have we seen this before?



Inverted Indexing: IP
1: class Mapper
2: method Map(docid n, doc d)
3: H  new AssociativeArray
4: for all term t 2 doc d do . builds a histogram of term frequencies
5: H{t} H{t}+ 1

6: for all term t 2 H do

7: Emit(tuple ht, ni, tf H{t}) . emits individual postings, with a tuple as the key

1: class Partitioner
2: method Partition(tuple ht, ni, tf f)
3: return Hash(t) mod NumOfReducers . keys of same term are sent to same reducer

1: class Reducer
2: method Initialize
3: tprev  ;
4: P  new PostingsList
5: method Reduce(tuple ht, ni, tf [f ])
6: if t 6= tprev ^ tprev 6= ; then
7: Emit(term t, postings P ) . emits postings list of term tprev
8: P.Reset()

9: P.Append(hn, fi) . appends postings in sorted order
10: tprev  t

11: method Close
12: Emit(term t, postings P ) . emits last postings list from this reducer

Figure 3: Pseudo-code of the inverted indexing algorithm based on emitting individual postings (IP).

postings can be written out to disk. Of course, as collections grow in size there may not be su�cient
memory to perform this sort (bound by the term with the largest df).

Since the MapReduce programming model guarantees that keys arrive at each reducer in sorted
order, we can overcome the scalability bottleneck by letting the execution framework do the sorting.
Instead of emitting key-value pairs of the form:

(term t, posting hdocid, fi)

we emit intermediate key-value pairs of the form:

(tuple ht, docidi, tf f)

In other words, the key is a tuple containing the term and the document number, while the value is
the term frequency. We need to redefine the sort order so that keys are sorted first by term t, and then
by docid n. Additionally, we need a custom partitioner to ensure that all tuples with the same term
are shu✏ed to the same reducer. Having implemented these two changes, the MapReduce execution
framework ensures that the postings arrive in the correct order. This, combined with the fact that
reducers can hold state across multiple keys, allows compressed postings to be written with minimal
memory usage.

The revised MapReduce inverted indexing algorithm is shown in Figure 3. The mapper remains
unchanged for the most part, other than di↵erences in the intermediate key-value pairs. The key space
of the intermediate output is partitioned by term; that is, all keys with the same term are sent to the
same reducer. This is guaranteed by the partitioner. The reducer contains two additional methods:

6
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Merging Postings
¢  Let’s define an operation ⊕ on postings lists P:

¢  Then we can rewrite our indexing algorithm!

l  flatMap: emit singleton postings
l  reduceByKey: ⊕

Postings(1, 15, 22, 39, 54) ⊕ Postings(2, 46)
= Postings(1, 2, 15, 22, 39, 46, 54)

What exactly is this operation?���

What have we created?



What’s the issue?

Postings1 ⊕ Postings2 = PostingsM

Solution: apply compression as needed!



Inverted Indexing: LP

1: class Mapper
2: method Initialize
3: M  new AssociativeArray . holds partial lists of postings

4: method Map(docid n, doc d)
5: H  new AssociativeArray . builds a histogram of term frequencies
6: for all term t 2 doc d do

7: H{t} H{t}+ 1

8: for all term t 2 H do

9: M{t}.Add(posting hn,H{t}i) . adds a posting to partial postings lists

10: if MemoryFull() then
11: Flush()

12: method Flush . flushes partial lists of postings as intermediate output
13: for all term t 2M do

14: P  SortAndEncodePostings(M{t})
15: Emit(term t, postingsList P )

16: M.Clear()

17: method Close
18: Flush()

1: class Reducer
2: method Reduce(term t, postingsLists [P1, P2, . . .])
3: Pf  new List . temporarily stores partial lists of postings
4: R new List . stores merged partial lists of postings
5: for all P 2 postingsLists [P1, P2, . . .] do
6: Pf .Add(P )
7: if MemoryNearlyFull() then
8: R.Add(MergeLists(Pf ))
9: Pf .Clear()

10: R.Add(MergeLists(Pf ))
11: Emit(term t, postingsList MergeLists(R)) . emits fully merged postings list of term t

Figure 4: Pseudo-code of the inverted indexing algorithm based on emitting lists of postings (LP).

documents). These partial postings lists are emitted as values, keyed by the terms. In our actual
implementation, positional information is also encoded in the postings lists, but this detail is omitted
from the pseudo-code for presentation purposes.

In the reduce phase, all partial postings lists associated with the same term are brought together by
the execution framework. The reducer must then merge all these partial lists (arbitrarily ordered) into
a final postings list. For this, we adopted a two-pass approach. In the first pass, the algorithm reads
postings lists (let’s call them p1, p2, . . .) into memory until memory is nearly exhausted. These are then
merged to create a new postings list (let’s call this pa). The partial postings lists are in compressed
form, which means we can store quite a few of them in memory. The memory needed for merging
is relatively modest for two reasons: First, we know how many postings are in p1, p2, . . ., so we can
compress pa incrementally—very few postings are actually materialized. Second, the d-gaps in pa are
smaller post-merging, so compression becomes more e�cient. At the end of the first pass, we obtain a
smaller number of partial postings lists (pa, pb, . . . in R), which are then merged in a second pass into
a single postings list. This is emitted as the final value, keyed by the term, and written to disk. As
in the previous algorithm, the key space is partitioned by term. The final index will be split across r

8

Slightly less elegant implementation… but uses same idea



Inverted Indexing: LP

1: class Mapper
2: method Initialize
3: M  new AssociativeArray . holds partial lists of postings

4: method Map(docid n, doc d)
5: H  new AssociativeArray . builds a histogram of term frequencies
6: for all term t 2 doc d do

7: H{t} H{t}+ 1

8: for all term t 2 H do

9: M{t}.Add(posting hn,H{t}i) . adds a posting to partial postings lists

10: if MemoryFull() then
11: Flush()

12: method Flush . flushes partial lists of postings as intermediate output
13: for all term t 2M do

14: P  SortAndEncodePostings(M{t})
15: Emit(term t, postingsList P )

16: M.Clear()

17: method Close
18: Flush()

1: class Reducer
2: method Reduce(term t, postingsLists [P1, P2, . . .])
3: Pf  new List . temporarily stores partial lists of postings
4: R new List . stores merged partial lists of postings
5: for all P 2 postingsLists [P1, P2, . . .] do
6: Pf .Add(P )
7: if MemoryNearlyFull() then
8: R.Add(MergeLists(Pf ))
9: Pf .Clear()

10: R.Add(MergeLists(Pf ))
11: Emit(term t, postingsList MergeLists(R)) . emits fully merged postings list of term t

Figure 4: Pseudo-code of the inverted indexing algorithm based on emitting lists of postings (LP).

documents). These partial postings lists are emitted as values, keyed by the terms. In our actual
implementation, positional information is also encoded in the postings lists, but this detail is omitted
from the pseudo-code for presentation purposes.

In the reduce phase, all partial postings lists associated with the same term are brought together by
the execution framework. The reducer must then merge all these partial lists (arbitrarily ordered) into
a final postings list. For this, we adopted a two-pass approach. In the first pass, the algorithm reads
postings lists (let’s call them p1, p2, . . .) into memory until memory is nearly exhausted. These are then
merged to create a new postings list (let’s call this pa). The partial postings lists are in compressed
form, which means we can store quite a few of them in memory. The memory needed for merging
is relatively modest for two reasons: First, we know how many postings are in p1, p2, . . ., so we can
compress pa incrementally—very few postings are actually materialized. Second, the d-gaps in pa are
smaller post-merging, so compression becomes more e�cient. At the end of the first pass, we obtain a
smaller number of partial postings lists (pa, pb, . . . in R), which are then merged in a second pass into
a single postings list. This is emitted as the final value, keyed by the term, and written to disk. As
in the previous algorithm, the key space is partitioned by term. The final index will be split across r

8



IP vs. LP?
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Figure 5: Running time of the LP and IP algorithms on the first two English segments of ClueWeb09.

as soon as memory was 90% full, or when the mapper had processed 50k documents; on the reducer
end, the memory threshold was set to 90% as well. The correctness of the constructed indexes was
verified using the 50 queries from the TREC 2009 web track. We had previously participated in the
evaluation, reporting competitive results, which we were able to replicate.

Scaling characteristics of both indexing algorithms are presented in Figure 5; in addition to plot-
ting the above results, we also show running times for half of the first ClueWeb09 segment (25.1m
documents), the first and half of the second segment (76.0m documents), and the first two segments
(101.8m documents). We emphasize that in all cases we are constructing a single monolithic (i.e., non-
partitioned) index. The figure shows three trials each for the IP and LP algorithms. The graph also
shows linear regressions through the running times: very high R2 values demonstrate that both algo-
rithms scale linearly with collection size, which is a very desirable property. We did not examine even
larger collections because real-world retrieval engines adopt a document-partitioned architecture [2, 36],
such that the bottleneck is in building the index for a single partition—building multiple partitions
is parallelizable. Partition sizes, of course, are collection specific, but we find it unrealistic that one
would in reality want to build even larger partitions (since query evaluation time would be dominated
by traversal of the longest posting).

5 To Seek or Not To Seek?

Having indexed the document collection, researchers can proceed to focus on the central problem in IR:
ranking documents in response to a user’s query based on a particular retrieval model. An empirical
discipline built around test collections is at the core of our field. The basic experimental cycle consists
of developing or modifying the retrieval model, running a batch of ad hoc queries, and evaluating the
quality of results based on some standard metric such as mean average precision. Traditionally, batch
evaluation is performed sequentially, one query at a time, and the evaluation of each query consists of
fetching postings that correspond to the query terms and traversing the postings to compute query–
document scores.

How long does a retrieval experiment take? We started with an index of the first ClueWeb09 segment
(50.2 million documents), copied it out of Hadoop’s distributed file system (HDFS) onto the local disk
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Alg. Time Intermediate Pairs Intermediate Size

IP 38.5 min 13⇥ 109 306⇥ 109 bytes
LP 29.6 min 614⇥ 106 85⇥ 109 bytes

Table 1: Comparison of the IP and LP indexing algorithms on the first ClueWeb09 segment.

(totaling 1.53 TB uncompressed, 247 GB compressed) and the second contains 51.6m documents (to-
taling 1.44 TB uncompressed, 225 GB compressed).

4.2 Preprocessing

Prior to indexing, we first preprocessed the collection. This consisted of three major stages, all conceived
as MapReduce jobs implemented in Java. In the first stage, all documents were parsed into document
vectors (with stemming and stopword removal), represented as associative arrays from terms to term
frequencies. At the same time we built a table of document lengths, necessary for retrieval later. In
the second stage, we constructed a mapping from terms to integers (term ids), sorted by ascending
document frequency, i.e., term 1 was the term with the highest df, term 2 was the term with the
second highest df, etc. In this process, we discarded all terms that occurred ten or fewer times in the
collection, since these rare terms are mostly misspelled words and are unlikely to be part of real-world
user queries. The resulting dictionary was then compressed with front-coding [34]. Finally, in the third
stage a new set of document vectors were generated in which terms were replaced with the integer
term ids. Furthermore, within each document the terms were sorted in increasing term id, so that we
were able to encode gap di↵erences (using � codes). The final result is a compact representation of the
original document collection. The first and third stages are parallel operations with mappers and no
reducers; the second stage uses a single reducer to build the term id mapping.

There were three primary reasons for building and separately storing this compressed representation
of the document collection. First, for evaluating indexing performance, we wished to factor out the
time taken to process the documents: parsing, tokenization, stemming, etc. Second, materializing
the document vectors is necessary if the retrieval model performs relevance feedback. Third, this
representation serves as the input to the brute force query-evaluation algorithm we describe in Section 6.

For the first English segment of ClueWeb09, the entire preprocessing pipeline took 54.3 minutes
(averaged over two trials): 19.6 minutes for the first stage, 8.0 minutes for the second stage, and 26.7
minutes for the third. The parsed document vectors were 115 GB; replacing terms with term ids and
gap compression reduced the size down to 64 GB.

4.3 E�ciency Results

We have implemented both the IP and LP indexing algorithms in Java. Starting from the compact
representation of the collection, the running times of the IP and LP algorithms on the first English
segment of ClueWeb09 are shown in Table 1, each averaged over three trials (cf. Figure 5). The third
and fourth columns of the table show the number of intermediate key-value pairs and the total size
of the intermediate data generated by the two approaches. The final size of postings lists is 64 GB,
containing full positional information. Both algorithms construct a single, monolithic index (i.e., the
document collection is not partitioned). We can see that the LP algorithm is relatively space e�cient,
generating only about a third more intermediate data than the final size of the postings, whereas the
IP algorithm generates nearly five times more intermediate data.

For both algorithms, the MapReduce job decomposed into 2901 map tasks and 200 reduce tasks,
each utilizing an allocated maximum heap size of 2 GB. Note that in the reduce phase we do not take
advantage of all available cluster capacity. For the LP algorithm, mappers were set to flush postings
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From: Elsayed et al., Brute-Force Approaches to Batch Retrieval: 
Scalable Indexing with MapReduce, or Why Bother? 2010

Experiments on ClueWeb09 collection: segments 1 + 2
101.8m documents (472 GB compressed, 2.97 TB uncompressed)



Another Look at LP
1: class Mapper
2: method Initialize
3: M  new AssociativeArray . holds partial lists of postings

4: method Map(docid n, doc d)
5: H  new AssociativeArray . builds a histogram of term frequencies
6: for all term t 2 doc d do

7: H{t} H{t}+ 1

8: for all term t 2 H do

9: M{t}.Add(posting hn,H{t}i) . adds a posting to partial postings lists

10: if MemoryFull() then
11: Flush()

12: method Flush . flushes partial lists of postings as intermediate output
13: for all term t 2M do

14: P  SortAndEncodePostings(M{t})
15: Emit(term t, postingsList P )

16: M.Clear()

17: method Close
18: Flush()

1: class Reducer
2: method Reduce(term t, postingsLists [P1, P2, . . .])
3: Pf  new List . temporarily stores partial lists of postings
4: R new List . stores merged partial lists of postings
5: for all P 2 postingsLists [P1, P2, . . .] do
6: Pf .Add(P )
7: if MemoryNearlyFull() then
8: R.Add(MergeLists(Pf ))
9: Pf .Clear()

10: R.Add(MergeLists(Pf ))
11: Emit(term t, postingsList MergeLists(R)) . emits fully merged postings list of term t

Figure 4: Pseudo-code of the inverted indexing algorithm based on emitting lists of postings (LP).

documents). These partial postings lists are emitted as values, keyed by the terms. In our actual
implementation, positional information is also encoded in the postings lists, but this detail is omitted
from the pseudo-code for presentation purposes.

In the reduce phase, all partial postings lists associated with the same term are brought together by
the execution framework. The reducer must then merge all these partial lists (arbitrarily ordered) into
a final postings list. For this, we adopted a two-pass approach. In the first pass, the algorithm reads
postings lists (let’s call them p1, p2, . . .) into memory until memory is nearly exhausted. These are then
merged to create a new postings list (let’s call this pa). The partial postings lists are in compressed
form, which means we can store quite a few of them in memory. The memory needed for merging
is relatively modest for two reasons: First, we know how many postings are in p1, p2, . . ., so we can
compress pa incrementally—very few postings are actually materialized. Second, the d-gaps in pa are
smaller post-merging, so compression becomes more e�cient. At the end of the first pass, we obtain a
smaller number of partial postings lists (pa, pb, . . . in R), which are then merged in a second pass into
a single postings list. This is emitted as the final value, keyed by the term, and written to disk. As
in the previous algorithm, the key space is partitioned by term. The final index will be split across r
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implementation, positional information is also encoded in the postings lists, but this detail is omitted
from the pseudo-code for presentation purposes.

In the reduce phase, all partial postings lists associated with the same term are brought together by
the execution framework. The reducer must then merge all these partial lists (arbitrarily ordered) into
a final postings list. For this, we adopted a two-pass approach. In the first pass, the algorithm reads
postings lists (let’s call them p1, p2, . . .) into memory until memory is nearly exhausted. These are then
merged to create a new postings list (let’s call this pa). The partial postings lists are in compressed
form, which means we can store quite a few of them in memory. The memory needed for merging
is relatively modest for two reasons: First, we know how many postings are in p1, p2, . . ., so we can
compress pa incrementally—very few postings are actually materialized. Second, the d-gaps in pa are
smaller post-merging, so compression becomes more e�cient. At the end of the first pass, we obtain a
smaller number of partial postings lists (pa, pb, . . . in R), which are then merged in a second pass into
a single postings list. This is emitted as the final value, keyed by the term, and written to disk. As
in the previous algorithm, the key space is partitioned by term. The final index will be split across r
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Remind you of anything in Spark?

RDD[(K, V)] 

aggregateByKey
seqOp: (U, V) ⇒ U, 
combOp: (U, U) ⇒ U 

RDD[(K, U)] 



Exploit associativity and commutativity 
via commutative monoids (if you can)

Algorithm design in a nutshell…

Source: Wikipedia (Walnut) 

Exploit framework-based sorting to 
sequence computations (if you can’t)



Abstract IR Architecture
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one fish, two fish 
Doc 1 

red fish, blue fish 
Doc 2 

cat in the hat 
Doc 3 

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

green eggs and ham 
Doc 4 

1red

1two

Indexing: building this structure

Retrieval: manipulating this structure



MapReduce it?
¢  The indexing problem

l  Scalability is critical
l  Must be relatively fast, but need not be real time

l  Fundamentally a batch operation

l  Incremental updates may or may not be important

l  For the web, crawling is a challenge in itself

¢  The retrieval problem

l  Must have sub-second response time
l  For the web, only need relatively few results

Perfect for MapReduce!

Uh… not so good…



Assume everything fits in memory on a single machine…
(For now)



Boolean Retrieval
¢  Users express queries as a Boolean expression

l  AND, OR, NOT
l  Can be arbitrarily nested

¢  Retrieval is based on the notion of sets
l  Any given query divides the collection into two sets: ���

retrieved, not-retrieved
l  Pure Boolean systems do not define an ordering of the results



Boolean Retrieval
¢  To execute a Boolean query:

l  Build query syntax tree

l  For each clause, look up postings

l  Traverse postings and apply Boolean operator

( blue AND fish ) OR ham 

blue fish 

AND ham 

OR 

1 

2 blue 

fish 2 

1 ham 3 

3 5 6 7 8 9 

4 5 

5 9 



Term-at-a-Time

blue fish 

AND ham 

OR 

1 

2 blue 

fish 2 

1 ham 3 

3 5 6 7 8 9 

4 5 

5 9 

2 5 9 

blue fish 

AND 

blue fish 

AND ham 

OR 1 2 3 4 5 9 

What’s RPN?

Efficiency analysis?



Document-at-a-Time

blue fish 

AND ham 

OR 

1 

2 blue 

fish 2 

1 ham 3 

3 5 6 7 8 9 

4 5 

5 9 

1 

2 blue 

fish 2 

1 ham 3 

3 5 6 7 8 9 

4 5 

5 9 

Tradeoffs?
Efficiency analysis?



Strengths and Weaknesses
¢  Strengths

l  Precise, if you know the right strategies
l  Precise, if you have an idea of what you’re looking for

l  Implementations are fast and efficient

¢  Weaknesses
l  Users must learn Boolean logic

l  Boolean logic insufficient to capture the richness of language

l  No control over size of result set: either too many hits or none
l  When do you stop reading? All documents in the result set are 

considered “equally good”
l  What about partial matches? Documents that “don’t quite match” the 

query may be useful also



Ranked Retrieval
¢  Order documents by how likely they are to be relevant

l  Estimate relevance(q, di)
l  Sort documents by relevance

l  Display sorted results

¢  User model
l  Present hits one screen at a time, best results first

l  At any point, users can decide to stop looking

¢  How do we estimate relevance?
l  Assume document is relevant if it has a lot of query terms

l  Replace relevance(q, di) with sim(q, di)
l  Compute similarity of vector representations



Vector Space Model

Assumption: Documents that are “close together” in vector 
space “talk about” the same things

t1 

d2 

d1 

d3 

d4 

d5 

t3 

t2 

θ
φ

Therefore, retrieve documents based on how close the 
document is to the query (i.e., similarity ~ “closeness”)



Similarity Metric
¢  Use “angle” between the vectors:

¢  Or, more generally, inner products:

dj = [wj,1, wj,2, wj,3, . . . wj,n]
dk = [wk,1, wk,2, wk,3, . . . wk,n]

cos ✓ =

dj · dk
|dj ||dk|

sim(dj , dk) =
dj · dk
|dj ||dk|

=

Pn
i=0 wj,iwk,iqPn

i=0 w
2
j,i

qPn
i=0 w

2
k,i

sim(dj , dk) = dj · dk =
nX

i=0

wj,iwk,i



Term Weighting
¢  Term weights consist of two components

l  Local: how important is the term in this document?
l  Global: how important is the term in the collection? 

¢  Here’s the intuition:
l  Terms that appear often in a document should get high weights

l  Terms that appear in many documents should get low weights

¢  How do we capture this mathematically?
l  Term frequency (local)

l  Inverse document frequency (global)



TF.IDF Term Weighting

i
jiji n

Nw logtf ,, ⋅=

jiw , 

ji ,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i



Retrieval in a Nutshell
¢  Look up postings lists corresponding to query terms

¢  Traverse postings for each query term

¢  Store partial query-document scores in accumulators

¢  Select top k results to return



Retrieval: Document-at-a-Time
¢  Evaluate documents one at a time (score all query terms)

¢  Tradeoffs
l  Small memory footprint (good)

l  Skipping possible to avoid reading all postings (good)

l  More seeks and irregular data accesses (bad)

fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …

Accumulators
(e.g. min heap)

Document score in top k?

Yes: Insert document score, extract-min if heap too large
No: Do nothing



Retrieval: Term-At-A-Time
¢  Evaluate documents one query term at a time 

l  Usually, starting from most rare term (often with tf-sorted postings)

¢  Tradeoffs

l  Early termination heuristics (good)
l  Large memory footprint (bad), but filtering heuristics possible

fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …
Accumulators���

(e.g., hash)
Score{q=x}(doc n) = s



Assume everything fits in memory on a single machine…
Okay, let’s relax this assumption now



Important Ideas
¢  Partitioning (for scalability)

¢  Replication (for redundancy)

¢  Caching (for speed)

¢  Routing (for load balancing) 

The rest is just details!



Term vs. Document Partitioning
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Partitioning

Document���
Partitioning
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Important Ideas
¢  Partitioning (for scalability)

¢  Replication (for redundancy)

¢  Caching (for speed)

¢  Routing (for load balancing) 



Source: Wikipedia (Japanese rock garden) 

Questions?

Remember: Assignment 3 due next Tuesday at 8:30am


