

Big Data Infrastructure

CS 489/698 Big Data Infrastructure (Winter 2016)

Week 4: Analyzing Text (2/2) January 28, 2016

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2016w/

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Count. Search!

Source: http://www.flickr.com/photos/guvnah/7861418602/

Abstract IR Architecture

Doc 1 one fish, two fish red fish, blue fish cat in the hat

Doc 3

Doc 4 green eggs and ham

What goes in each cell? boolean count positions

Doc 1 Doc 2 one fish, two fish red fish, blue fish cat in the hat

Doc 4 green eggs and ham

Doc 4 one fish, two fish red fish, blue fish cat in the hat green eggs and ham

Doc 2

Doc 3

Doc 1

Doc 4

Inverted Indexing with MapReduce

Shuffle and Sort: aggregate values by keys

Inverted Indexing: Pseudo-Code

1: class Mapper				
2: method MAP(docid n , doc d)				
3: $H \leftarrow \text{new AssociativeArra}$	$\triangleright histogram to hold term frequencies$			
4: for all term $t \in \operatorname{doc} d$ do	\triangleright processes the doc, e.g., tokenization and stopword removal			
5: $H\{t\} \leftarrow H\{t\} + 1$				
6: for all term $t \in H$ do				
7: EMIT(term t , posting $\langle n, I \rangle$	$H\{t\}\rangle)$ \triangleright emits individual postings			
1: class Reducer				
2: method REDUCE(term t, postings $[\langle n_1, f_1 \rangle \dots])$				
3: $P \leftarrow \text{new List}$				
4: for all $\langle n, f \rangle \in \text{postings } [\langle n_1, f \rangle]$	$ f_1 angle \dots]$ do			
5: $P.APPEND(\langle n, f \rangle)$	\triangleright appends postings unsorted			
6: $P.SORT()$	\triangleright sorts for compression			
7: EMIT(term t , postingsList P))			

Positional Indexes

Shuffle and Sort: aggregate values by keys

Inverted Indexing: Pseudo-Code

	 histogram to hold term frequencies g., tokenization and stopword removal 	
5: $H\{t\} \leftarrow H\{t\} + 1$ 6: for all term $t \in H$ do		
7: EMIT(term t , posting $\langle n, H\{t\} \rangle$)	\triangleright emits individual postings	
1: class REDUCER 2: method REDUCE(term t, postings $[\langle n_1, f_1 \rangle \dots]$) 3: $P \leftarrow$ new LIST		
4: for all $\langle n, f \rangle \in \text{postings } [\langle n_1, f_1 \rangle \dots]$ do 5: $P.\text{APPEND}(\langle n, f \rangle)$	▷ appends postings unsorted	
5: $P.APPEND(\langle n, f \rangle)$ 6: $P.SORT()$ What's the problem? 7: $E_{MIT}(term t, postingsList P)$	▷ sorts for compression	

Another Try...

How is this different?

- Let the framework do the sorting
- Term frequency implicitly stored

Where have we seen this before?

Inverted Indexing: Pseudo-Code

1:	class Mapper		
2:	method MAP(docid n , doc d)		
3:	$H \leftarrow \text{new AssociativeArray}$		
4:	for all term $t \in \text{doc } d$ do	\triangleright builds a histogram of term frequencies	
5:	$H\{t\} \leftarrow H\{t\} + 1$		
6:	for all term $t \in H$ do		
7:	Emit(tuple $\langle t, n \rangle$, tf $H\{t\}$)	\triangleright emits individual postings, with a tuple as the key	
1:	1: class Partitioner		
2:	method PARTITION(tuple $\langle t, n \rangle$, tf f)		
3:	return $HASH(t) \mod NumOfReducers$	\triangleright keys of same term are sent to same reducer	
1: class Reducer			
2:	method Initialize		
3:	$t_{prev} \leftarrow \emptyset$		
4:	$P \leftarrow \text{new PostingsList}$		
5:	$\mathbf{method} \ \mathrm{Reduce}(\mathrm{tuple} \ \langle t,n\rangle,\mathrm{tf} \ [f])$		
6:	$\mathbf{if} \ t \neq t_{prev} \wedge t_{prev} \neq \emptyset \ \mathbf{then}$		
7:	EMIT(term t , postings P)	\triangleright emits postings list of term t_{prev}	
8:	$P.\mathrm{Reset}()$		
9:	P .Append $(\langle n, f angle)$	\triangleright appends postings in sorted order	
10:	$t_{prev} \leftarrow t$		
11:	method CLOSE		
12:	EMIT(term t , postings P)	\triangleright emits last postings list from this reducer	

Postings Encoding

Conceptually:

In Practice:

- Don't encode docnos, encode gaps (or d-gaps)
- But it's not obvious that this save space...

= delta encoding, delta compression, gap compression

Overview of Integer Compression

- Byte-aligned technique
 - VByte
- Bit-aligned
 - Unary codes
 - γ/δ codes
 - Golomb codes (local Bernoulli model)
- Word-aligned
 - Simple family
 - Bit packing family (PForDelta, etc.)

VByte

• Simple idea: use only as many bytes as needed

- Need to reserve one bit per byte as the "continuation bit"
- Use remaining bits for encoding value

• Works okay, easy to implement...

Beware of branch mispredicts!

Simple-9

• How many different ways can we divide up 28 bits?

(9 total ways)

- Efficient decompression with hard-coded decoders
- Simple Family general idea applies to 64-bit words, etc.

Beware of branch mispredicts?

Bit Packing

• What's the smallest number of bits we need to code a block (=128) of integers?

- Efficient decompression with hard-coded decoders
- PForDelta bit packing + separate storage of "overflow" bits

Beware of branch mispredicts?

Golomb Codes

- $x \ge 1$, parameter *b*:
 - q + I in unary, where $q = \lfloor (x I) / b \rfloor$
 - r in binary, where r = x qb 1, in $\lfloor \log b \rfloor$ or $\lceil \log b \rceil$ bits
- Example:
 - b = 3, r = 0, 1, 2 (0, 10, 11)
 - b = 6, r = 0, 1, 2, 3, 4, 5 (00, 01, 100, 101, 110, 111)
 - x = 9, b = 3: q = 2, r = 2, code = 110:11
 - x = 9, b = 6; q = 1, r = 2, code = 10:100
- Optimal $b \approx 0.69$ (N/df)
 - Different *b* for every term!

Chicken and Egg?

But wait! How do we set the Golomb parameter *b*?

Recall: optimal $b \approx 0.69$ (N/df) We need the df to set b... But we don't know the df until

we've seen all postings!

Sound familiar?

Getting the df

- In the mapper:
 - Emit "special" key-value pairs to keep track of df
- In the reducer:
 - Make sure "special" key-value pairs come first: process them to determine *df*
- Remember: proper partitioning!

Getting the df: Modified Mapper

Getting the df: Modified Reducer

Where have we seen this before?

Inverted Indexing: IP

Merging Postings

• Let's define an operation \oplus on postings lists *P*:

```
Postings(1, 15, 22, 39, 54) 
Postings(2, 46)
Postings(1, 2, 15, 22, 39, 46, 54)
What exactly is this operation?
What have we created?
```

• Then we can rewrite our indexing algorithm!

- flatMap: emit singleton postings
- reduceByKey: ⊕

What's the issue?

Postings₁ \oplus Postings₂ = Postings_M Solution: apply compression as needed!

Inverted Indexing: LP

Slightly less elegant implementation... but uses same idea

1:	class Mapper	
2:	method Initialize	
3:	$M \leftarrow \text{new AssociativeArray}$	\triangleright holds partial lists of postings
4:	method MAP(docid $n, \text{doc } d$)	
5:	$H \leftarrow \text{new AssociativeArray}$	\triangleright builds a histogram of term frequencies
6:	for all term $t \in \text{doc } d$ do	
7:	$H\{t\} \leftarrow H\{t\} + 1$	
8:	for all term $t \in H$ do	
9:	$M\{t\}$.ADD(posting $\langle n, H\{t\}\rangle$)	\triangleright adds a posting to partial postings lists
10:	if MemoryFull() then	
11:	FLUSH()	
12:	method Flush	\triangleright flushes partial lists of postings as intermediate output
13:	for all term $t \in M$ do	
14:	$P \leftarrow \text{SortAndEncodePostim}$	$\operatorname{NGS}(M\{t\})$
15:	EMIT(term t , postingsList P)	
16:	M.Clear()	
17:	method CLOSE	
18:	FLUSH()	

Inverted Indexing: LP

1: **class** Reducer **method** REDUCE(term t, postingsLists $[P_1, P_2, \ldots]$) 2: $P_f \leftarrow \text{new LIST}$ ▷ temporarily stores partial lists of postings 3: $R \leftarrow \text{new List}$ \triangleright stores merged partial lists of postings 4: for all $P \in \text{postingsLists} [P_1, P_2, \ldots]$ do 5: P_f .ADD(P)6: if MEMORYNEARLyFULL() then 7: $R.Add(MergeLists(P_f))$ 8: $P_f.CLEAR()$ 9: $R.Add(MergeLists(P_f))$ 10: EMIT(term t, postingsList MERGELISTS(R)) \triangleright emits fully merged postings list of term t 11:

IP vs. LP?

Experiments on ClueWeb09 collection: segments 1 + 2 101.8m documents (472 GB compressed, 2.97 TB uncompressed)

From: Elsayed et al., Brute-Force Approaches to Batch Retrieval: Scalable Indexing with MapReduce, or Why Bother? 2010

Another Look at LP

```
Remind you of anything in Spark?
 1: class MAPPER
       method INITIALIZE
 2:
          M \leftarrow \text{new AssociativeArray}
                                                                           \triangleright holds partial lists of postings
 3:
       method MAP(docid n, doc d)
 4:
          H \leftarrow \text{new AssociativeArray}
                                                                 \triangleright builds a histogram of term frequencies
 5:
          for all term t \in \text{doc } d do
 6:
              H\{t\} \leftarrow H\{t\} + 1
 7:
          for all term t \in H do
 8:
              M\{t\}.ADD(posting \langle n, H\{t\} \rangle)
                                                                 \triangleright adds a posting to partial postings lists
9:
          if MEMORYFULL() then
10:
              FLUSH()
11:
       method Flush
                                                \triangleright flushes partial lists of postings as intermediate output
12:
          for all term t \in M do
13:
                                                                                                             RDD[(K, V)]
              P \leftarrow \text{SORTANDENCODEPOSTINGS}(M\{t\})
14:
              EMIT(term t, postingsList P)
15:
          M.CLEAR()
16:
       method CLOSE
17:
           FLUSH()
18:
 1: class Reducer
                                                                                                        aggregateByKey
       method REDUCE(term t, postingsLists [P_1, P_2, \ldots])
 2:
                                                                                                    seqOp: (U, V) \Rightarrow U,
          P_f \leftarrow \text{new LIST}
                                                             \triangleright temporarily stores partial list
 3:
          R \leftarrow \text{new List}
                                                                  \triangleright stores merged partial list
 4:
                                                                                                     combOp: (U, U) \Rightarrow U
          for all P \in \text{postingsLists} [P_1, P_2, \ldots] do
 5:
              P_f.ADD(P)
 6:
              if MEMORYNEARLyFull() then
 7:
                  R.Add(MergeLists(P_f))
 8:
                  P_f.CLEAR()
9:
          R.Add(MergeLists(P_f))
10:
                                                              ▷ emits fully merged postings list of term t RDD[(K, U)]
          EMIT(term t, postingsList MERGELISTS(R))
11:
```

Algorithm design in a nutshell...

Exploit associativity and commutativity via commutative monoids (if you can)

Exploit framework-based sorting to sequence computations (if you can't)

Source: Wikipedia (Walnut)

Abstract IR Architecture

Doc 1 one fish, two fish Doc 3 cat in the hat Doc 4 green eggs and ham

Indexing: building this structure Retrieval: manipulating this structure

MapReduce it?

- The indexing problem 0
 - Scalability is critical
 - **Perfect for MapReduce!** Must be relatively fast, but need not be real time
 - Fundamentally a batch operation
 - Incremental updates may or may not be important
 - For the web, crawling is a challenge in itself
- The retrieval problem
 - Must have sub-second response time
 - For the web, only need relatively few results

Uh... not so good...

Assume everything fits in memory on a single machine... (For now)

Boolean Retrieval

- Users express queries as a Boolean expression
 - AND, OR, NOT
 - Can be arbitrarily nested
- Retrieval is based on the notion of sets
 - Any given query divides the collection into two sets: retrieved, not-retrieved
 - Pure Boolean systems do not define an ordering of the results
Boolean Retrieval

- To execute a Boolean query:
 - Build query syntax tree

(blue AND fish) OR ham

• For each clause, look up postings

• Traverse postings and apply Boolean operator

Term-at-a-Time

Efficiency analysis?

What's RPN?

Document-at-a-Time

Tradeoffs? Efficiency analysis?

Strengths and Weaknesses

• Strengths

- Precise, if you know the right strategies
- Precise, if you have an idea of what you're looking for
- Implementations are fast and efficient

Weaknesses

- Users must learn Boolean logic
- Boolean logic insufficient to capture the richness of language
- No control over size of result set: either too many hits or none
- When do you stop reading? All documents in the result set are considered "equally good"
- What about partial matches? Documents that "don't quite match" the query may be useful also

Ranked Retrieval

- Order documents by how likely they are to be relevant
 - Estimate relevance(q, d_i)
 - Sort documents by relevance
 - Display sorted results
- User model
 - Present hits one screen at a time, best results first
 - At any point, users can decide to stop looking
- How do we estimate relevance?
 - Assume document is relevant if it has a lot of query terms
 - Replace relevance (q, d_i) with sim (q, d_i)
 - Compute similarity of vector representations

Vector Space Model

Assumption: Documents that are "close together" in vector space "talk about" the same things

Therefore, retrieve documents based on how close the document is to the query (i.e., similarity ~ "closeness")

Similarity Metric

• Use "angle" between the vectors:

$$d_{j} = [w_{j,1}, w_{j,2}, w_{j,3}, \dots w_{j,n}]$$

$$d_{k} = [w_{k,1}, w_{k,2}, w_{k,3}, \dots w_{k,n}]$$

$$\cos \theta = \frac{d_{j} \cdot d_{k}}{|d_{j}||d_{k}|}$$

$$\sin(d_{j}, d_{k}) = \frac{d_{j} \cdot d_{k}}{|d_{j}||d_{k}|} = \frac{\sum_{i=0}^{n} w_{j,i} w_{k,i}}{\sqrt{\sum_{i=0}^{n} w_{j,i}^{2}} \sqrt{\sum_{i=0}^{n} w_{k,i}^{2}}}$$

• Or, more generally, inner products:

$$\sin(d_j, d_k) = d_j \cdot d_k = \sum_{i=0}^n w_{j,i} w_{k,i}$$

Term Weighting

- Term weights consist of two components
 - Local: how important is the term in this document?
 - Global: how important is the term in the collection?
- Here's the intuition:
 - Terms that appear often in a document should get high weights
 - Terms that appear in many documents should get low weights
- How do we capture this mathematically?
 - Term frequency (local)
 - Inverse document frequency (global)

TF.IDF Term Weighting

$$w_{i,j} = \mathrm{tf}_{i,j} \cdot \mathrm{log} \frac{N}{n_i}$$

 $W_{i,j}$ weight assigned to term *i* in document *j*

 $tf_{i,j}$ number of occurrence of term *i* in document *j*

- N number of documents in entire collection
- n_i number of documents with term *i*

Retrieval in a Nutshell

- Look up postings lists corresponding to query terms
- Traverse postings for each query term
- Store partial query-document scores in accumulators
- Select top k results to return

Retrieval: Document-at-a-Time

• Evaluate documents one at a time (score all query terms)

• Tradeoffs

- Small memory footprint (good)
- Skipping possible to avoid reading all postings (good)
- More seeks and irregular data accesses (bad)

Retrieval: Term-At-A-Time

- Evaluate documents one query term at a time
 - Usually, starting from most rare term (often with tf-sorted postings)

- Tradeoffs
 - Early termination heuristics (good)
 - Large memory footprint (bad), but filtering heuristics possible

Assume everything fits in memory on a single machine... Okay, let's relax this assumption now

Important Ideas

- Partitioning (for scalability)
- Replication (for redundancy)
- Caching (for speed)
- Routing (for load balancing)

The rest is just details!

Term vs. Document Partitioning

Datac

Important Ideas

- Partitioning (for scalability)
- Replication (for redundancy)
- Caching (for speed)
- Routing (for load balancing)

Questions?

Remember: Assignment 3 due next Tuesday at 8:30am

Source: Wikipedia (Japanese rock garden)