Big Data Infrastructure
 CS 489/698 Big Data Infrastructure (Winter 2016)

Week 4:Analyzing Text (I/2) January 26, 2016

Jimmy Lin
David R. Cheriton School of Computer Science University of Waterloo

These slides are available at http://lintool.github.io/bigdata-2016w/

Structure of the Course

Count.

1

Count.

(Efficiently)
class Mapper
2: method $\operatorname{MAP}(\operatorname{docid} a, \operatorname{doc} d)$
3: \quad for all term $t \in \operatorname{doc} d$ do
4:
Emit(term t, count 1)
class Reducer
method REDUcE(term t, counts $\left.\left[c_{1}, c_{2}, \ldots\right]\right)$
sum $\leftarrow 0$
for all count $c \in$ counts $\left[c_{1}, c_{2}, \ldots\right]$ do
sum $\leftarrow \operatorname{sum}+c$
$\operatorname{Emit}($ term t, count $s)$

My favorite data science ard X in group Y is a neat blog-post-gene 재우ำ
nemwers

Pairs. Stripes. Seems pretty trivial...

More than a "toy problem"? Answer: language models

Language Models

$$
P\left(w_{1}, w_{2}, \ldots, w_{T}\right)
$$

What are they?
How do we build them?
How are they useful?

Language Models

$$
\begin{aligned}
& P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \\
& \quad=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}, w_{2}\right) \ldots P\left(w_{T} \mid w_{1}, \ldots, w_{T-1}\right) \\
& \quad \quad[\text { chain rule }]
\end{aligned}
$$

Approximating Probabilities: \mathbf{N}-Grams

Basic idea: limit history to fixed number of $(N-I)$ words (Markov Assumption)

$$
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-N+1}, \ldots, w_{k-1}\right)
$$

$\mathbf{N}=1$: Unigram Language Model

$$
\begin{aligned}
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) & \approx P\left(w_{k}\right) \\
\Rightarrow & P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \approx P\left(w_{1}\right) P\left(w_{2}\right) \ldots P\left(w_{T}\right)
\end{aligned}
$$

Approximating Probabilities: \mathbf{N}-Grams

Basic idea: limit history to fixed number of $(N-I)$ words (Markov Assumption)

$$
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-N+1}, \ldots, w_{k-1}\right)
$$

N=2: Bigram Language Model

$$
\begin{aligned}
& P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-1}\right) \\
\Rightarrow & P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \approx P\left(w_{1} \mid<\mathrm{S}>\right) P\left(w_{2} \mid w_{1}\right) \ldots P\left(w_{T} \mid w_{T-1}\right)
\end{aligned}
$$

Approximating Probabilities: \mathbf{N}-Grams

Basic idea: limit history to fixed number of $(N-I)$ words (Markov Assumption)

$$
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-N+1}, \ldots, w_{k-1}\right)
$$

$\mathbf{N}=3$: Trigram Language Model

$$
\begin{aligned}
& P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-2}, w_{k-1}\right) \\
\Rightarrow & P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \approx P\left(w_{1} \mid<\mathrm{S}><\mathrm{S}>\right) \ldots P\left(w_{T} \mid w_{T-2} w_{T-1}\right)
\end{aligned}
$$

Building N-Gram Language Models

- Compute maximum likelihood estimates (MLE) for individual n-gram probabilities
- Unigram: $\quad P\left(w_{i}\right)=\frac{C\left(w_{i}\right)}{N}$

Fancy way of saying:
count + divide

- Bigram: $\quad P\left(w_{i}, w_{j}\right)=\frac{C\left(w_{i}, w_{j}\right)}{N}$

$$
P\left(w_{j} \mid w_{i}\right)=\frac{P\left(w_{i}, w_{j}\right)}{P\left(w_{i}\right)}=\frac{C\left(w_{i}, w_{j}\right)}{\sum_{w} C\left(w_{i}, w\right)} \neq \frac{C\left(w_{i}, w_{j}\right)}{C\left(w_{i}\right)}
$$

Minor detail here...

- Generalizes to higher-order n-grams
- State of the art models use ~ 5-grams
- We already know how to do this in MapReduce!

Probabilities must sum up to one

$$
\begin{aligned}
\mathrm{P}(\bullet) & >\mathrm{P}(\bigcirc) \\
\mathrm{P}(\odot) & ? \mathrm{P}(\bigcirc \bullet)
\end{aligned}
$$

Example: Bigram Language Model

$$
\begin{aligned}
& \text { <s> I am Sam </s> } \\
& \text { <s> Sam I am </s> } \\
& \text { <s> I do not like green eggs and ham </s> }
\end{aligned}
$$

Training Corpus

$$
\begin{aligned}
& P(I \mid<s>)=2 / 3=0.67 \\
& P(\mathrm{am} \mid \mathrm{I})=2 / 3=0.67 \\
& P(</ \mathrm{s}\rangle \mid \text { Sam })=I / 2=0.50
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { Sam } \mid\langle s\rangle)=I / 3=0.33 \\
& P(\text { do } \mid I)=I / 3=0.33 \\
& P(\text { Sam } \mid \text { am })=I / 2=0.50
\end{aligned}
$$

Bigram Probability Estimates

Note:We don't ever cross sentence boundaries

Data Sparsity

$$
\begin{aligned}
& \mathrm{P}(1|<\mathrm{s}\rangle)=2 / 3=0.67 \\
& \mathrm{P}(\mathrm{am} \mid \mathrm{I})=2 / 3=0.67 \\
& \mathrm{P}(\langle/ \mathrm{s}>| \text { Sam })=1 / 2=0.50
\end{aligned}
$$

Bigram Probability Estimates

P(I like ham)

$$
\begin{aligned}
& =P(I \mid<s>) P(\text { like } \mid I) P(\text { ham } \mid \text { like }) P(</ s\rangle \mid \text { ham }) \\
& =0
\end{aligned}
$$

Why is this bad?

Issue: Sparsity!

Thou shalt smooth!

- Zeros are bad for any statistical estimator
- Need better estimators because MLEs give us a lot of zeros
- A distribution without zeros is "smoother"
- The Robin Hood Philosophy: Take from the rich (seen n-grams) and give to the poor (unseen n-grams)
- And thus also called discounting
- Make sure you still have a valid probability distribution!
- Lots of techniques:
- Laplace, Good-Turing, Katz backoff, Jelinek-Mercer
- Kneser-Ney represents best practice

Laplace Smoothing

- Simplest and oldest smoothing technique
- Just add I to all n-gram counts including the unseen ones
- So, what do the revised estimates look like?

Laplace Smoothing

Unigrams

$$
P_{M L E}\left(w_{i}\right)=\frac{C\left(w_{i}\right)}{N} \quad \longrightarrow \quad P_{L A P}\left(w_{i}\right)=\frac{C\left(w_{i}\right)+1}{N+V}
$$

Bigrams
$P_{M L E}\left(w_{i}, w_{j}\right)=\frac{C\left(w_{i}, w_{j}\right)}{N} \longrightarrow P_{L A P}\left(w_{i}, w_{j}\right)=\frac{C\left(w_{i}, w_{j}\right)+1}{N+V^{2}}$
Careful, don't confuse the N's!

$$
P_{L A P}\left(w_{j} \mid w_{i}\right)=\frac{P_{L A P}\left(w_{i}, w_{j}\right)}{P_{L A P}\left(w_{i}\right)}=\frac{C\left(w_{i}, w_{j}\right)+1}{C\left(w_{i}\right)+V}
$$

Jelinek-Mercer Smoothing: Interpolation

- Mix a trigram model with bigram and unigram models to offset sparsity
- Mix $=$ Weighted Linear Combination

$$
\begin{aligned}
& P\left(w_{k} \mid w_{k-2} w_{k-1}\right)= \\
& \lambda_{1} P\left(w_{k} \mid w_{k-2} w_{k-1}\right)+\lambda_{2} P\left(w_{k} \mid w_{k-1}\right)+\lambda_{3} P\left(w_{k}\right) \\
& 0<=\lambda_{i}<=1 \quad \sum_{i} \lambda_{i}=1
\end{aligned}
$$

Kneser-Ney Smoothing

o Kneser-Ney: Interpolate discounted model with a special "continuation" unigram model

- Based on appearance of unigrams in different contexts
- Excellent performance, state of the art

$$
\begin{aligned}
P_{K N}\left(w_{k} \mid w_{k-1}\right) & =\frac{C\left(w_{k-1} w_{k}\right)-D}{C\left(w_{k-1}\right)}+\beta\left(w_{k}\right) P_{C O N T}\left(w_{k}\right) \\
P_{C O N T}\left(w_{i}\right) & =\frac{N\left(\bullet w_{i}\right)}{\sum_{w^{\prime}} N\left(\bullet w^{\prime}\right)}
\end{aligned}
$$

$N\left(\bullet w_{i}\right) \quad=$ number of different contexts w_{i} has appeared in

Kneser-Ney Smoothing: Intuition

- I can't see without my
o "San Francisco" occurs a lot
- I can't see without my Francisco?

Stupid Backoff

- Let's break all the rules:

$$
\begin{aligned}
S\left(w_{i} \mid w_{i-k+1}^{i-1}\right) & = \begin{cases}\frac{f\left(w_{i-k+1}^{i}\right)}{f\left(w_{i-k+1}^{i-1}\right)} & \text { if } f\left(w_{i-k+1}^{i}\right)>0 \\
\alpha S\left(w_{i} \mid w_{i-k+2}^{i-1}\right) & \text { otherwise }\end{cases} \\
S\left(w_{i}\right) & =\frac{f\left(w_{i}\right)}{N}
\end{aligned}
$$

o But throw lots of data at the problem!

Stupid Backoff Implementation: Pairs!

o Straightforward approach: count each order separately

$$
\begin{array}{ll}
\text { A B } \leftarrow & \text { remember this value } \\
\text { A B C } & S(C \mid A B)=f(A B C) / f(A B) \\
\text { A B D } & S(D \mid A B)=f(A B C) / f(A B) \\
\text { A B E } & S(E \mid A B)=f(A B C) / f(A B)
\end{array}
$$

o More clever approach: count all orders together

$$
\begin{array}{ll}
\text { A B } & \longleftarrow \\
\text { A B C } & \longleftarrow \text { remember this value } \\
\text { A B C P } & \\
\text { A B C Q } & \\
\text { A B D } & \longleftarrow \text { remember this value } \\
\text { A B D X } & \\
\text { A B D Y } &
\end{array}
$$

Stupid Backoff: Additional Optimizations

- Replace strings with integers
- Assign ids based on frequency (better compression using vbyte)
- Partition by bigram for better load balancing
- Replicate all unigram counts

State of the art smoothing (less data)

Statistical Machine Translation

$$
\begin{aligned}
& \text { Whanavanc. }
\end{aligned}
$$

Statistical Machine Translation

maria no daba una bofetada a la bruja verde Foreign Input Sentence
mary did not slap the green witch English Output Sentence

$$
\hat{e}_{1}^{I}=\underset{e_{1}^{I}}{\arg \max }\left[P\left(e_{1}^{I} \mid f_{1}^{J}\right)\right]=\underset{e_{1}^{I}}{\arg \max }\left[P\left(e_{1}^{I}\right) P\left(f_{1}^{J} \mid e_{1}^{I}\right)\right]
$$

Translation as a Tiling Problem

$$
\hat{e}_{1}^{I}=\underset{e_{1}^{I}}{\arg \max }\left[P\left(e_{1}^{I} \mid f_{1}^{J}\right)\right]=\underset{e_{1}^{I}}{\arg \max }\left[P\left(e_{1}^{I}\right) P\left(f_{1}^{J} \mid e_{1}^{I}\right)\right]
$$

Results: Running Time

	target	webnews	web
\# tokens	237 M	31 G	1.8 T
vocab size	200 k	5 M	16 M
\# n-grams	257 M	21 G	300 G
LM size (SB)	2 G	89 G	1.8 T
time (SB)	20 min	8 hours	1 day
time (KN)	2.5 hours	2 days	-
\# machines	100	400	1500

Results: Translation Quality

What's actually going on?

 English$$
\begin{aligned}
P(e \mid f) & =\frac{P(e) \cdot P(f \mid e)}{P(f)} \\
\hat{e} & =\arg \max _{e} P(e) P(f \mid e)
\end{aligned}
$$

Count. Search!

1

First, nomenclature...

- Search and information retrieval (IR)
- Focus on textual information (= text/document retrieval)
- Other possibilities include image, video, music, ...
- What do we search?
- Generically, "collections"
- Less-frequently used, "corpora"
- What do we find?
- Generically, "documents"
- Even though we may be referring to web pages, PDFs, PowerPoint slides, paragraphs, etc.

The Central Problem in Search

Concepts

"tragic love story"

Concepts

Document Terms
"fateful star-crossed romance"
Do these represent the same concepts?

Abstract IR Architecture

How do we represent text?

- Remember: computers don't "understand" anything!
- "Bag of words"
- Treat all the words in a document as index terms
- Assign a "weight" to each term based on "importance" (or, in simplest case, presence/absence of word)
- Disregard order, structure, meaning, etc. of the words
- Simple, yet effective!
- Assumptions
- Term occurrence is independent
- Document relevance is independent
- "Words" are well-defined

What＇s a word？

天主教教宗若望保祿二世因感冒再度住進醫院。這是他今年第二度因同樣的病因住院。

وقال مارك ري جيف ـ الناطق باسم
الخخارجية الإسراوئيلية－إن شارون قبل
الدعوة وسيقووم للدمرة الأولى بزيارة
تونس، التتي كانت لفـترة طويلة المققر
الرسمي لمنظمة التحريد الفـلسطينية بعد خروجها من لبنان عام 1982.

Выступая в Мещанском суде Москвы экс－глава ЮКОСа заявил не совершал ничего противозаконного，в чем обвиняет его генпрокуратура России．

भारत सरकार ने आर्थकि सर्वेक्षण में वतितीय वर्ष 2005－06 में सात फ़ीसदी वकिास दर हासलि करने का आकंलन कयिा है और कर सुधार पर ज़ोर दयिा है

日米連合で台頭中国に対処．．．アーミテージ前副長官提言
조재영 기자＝서울시는 $\mathbf{2 5}$ 일 이명박 시장이｀행정중심복합도시＂건설안에 대해｀ 군대라도 동원해 막고싶은 심정＂이라고 말했다는 일부 언론의 보도를 부인했다．

Sample Document

McDonald's slims down spuds

Fast-food chain to reduce certain types of fat in its french fries with new cooking oil.
NEW YORK (CNN/Money) - McDonald's Corp. is cutting the amount of "bad" fat in its french fries nearly in half, the fast-food chain said Tuesday as it moves to make all its fried menu items healthier.
But does that mean the popular shoestring fries won't taste the same? The company says no. "It's a win-win for our customers because they are getting the same great french-fry taste along with an even healthier nutrition profile," said Mike Roberts, president of McDonald's USA.
But others are not so sure. McDonald's will not specifically discuss the kind of oil it plans to use, but at least one nutrition expert says playing with the formula could mean a different taste.
Shares of Oak Brook, III.-based McDonald's (MCD: down $\$ 0.54$ to $\$ 23.22$, Research, Estimates) were lower Tuesday afternoon. It was unclear Tuesday whether competitors Burger King and Wendy's International (WEN: down $\$ 0.80$ to $\$ 34.9$ I, Research, Estimates) would follow suit. Neither company could immediately be reached for comment.

"Bag of Words"

$14 \times$ McDonalds

$12 \times \mathrm{fat}$
II \times fries
$8 \times$ new
$7 \times$ french
$6 \times$ company, said, nutrition
$5 \times$ food, oil, percent, reduce, taste, Tuesday

Counting Words...

case folding, tokenization, stopword removal, stemming

Doc 1
one fish, two fish

Doc 2 red fish, blue fish

Doc 3
cat in the hat

Doc 4
green eggs and ham

	$1 \begin{array}{lll}1 & 2\end{array}$			
blue		1		
cat			1	
egg				1
fish	1	1		
green				1
ham				1
hat			1	
one	1			
red		1		
two	1			

What goes in each cell?
boolean count positions

Abstract IR Architecture

Doc 2 red fish, blue fish

Doc 3
cat in the hat

Doc 4
green eggs and ham

Indexing: building this structure
Retrieval: manipulating this structure

Where have we seen this before?

Doc 1
one fish, two fish

Doc 2 red fish, blue fish
cat in the hat

Doc 4
green eggs and ham

	1 234			
blue		1		
cat			1	
egg				1
fish	1	1		
green				1
ham				1
hat			1	
one	1			
red		1		
two	1			

Indexing: Performance Analysis

- Fundamentally, a large sorting problem
- Terms usually fit in memory
- Postings usually don't
o How is it done on a single machine?
o How can it be done with MapReduce?
o First, let's characterize the problem size:
- Size of vocabulary
- Size of postings

Vocabulary Size: Heaps' Law

$$
1 \sim \text { LT } \begin{aligned}
& M \text { is vocabulary size } \\
& T \text { is collection size (number of documents) } \\
& k \text { and } b \text { are constants }
\end{aligned}
$$

Typically, k is between 30 and $100, b$ is between 0.4 and 0.6

- Heaps' Law: linear in log-log space
- Vocabulary size grows unbounded!

Heaps' Law for RCV I

Reuters-RCVI collection: 806,79I newswire documents (Aug 20, I996-August I9, I997)

Postings Size: Zipf's Law

- Zipf's Law: (also) linear in log-log space
- Specific case of Power Law distributions
- In other words:
- A few elements occur very frequently
- Many elements occur very infrequently

Zipf's Law for RCVI

Fit isn't that good... but good enough!

Reuters-RCVI collection: 806,79I newswire documents (Aug 20, I996-August I9, I997)

Figure from: Newman, M. E. J. (2005) "Power laws, Pareto distributions and Zipf's law." Contemporary Physics 46:323-351.

MapReduce: Index Construction

- Map over all documents
- Emit term as key, (docno, tf) as value
- Emit other information as necessary (e.g., term position)
- Sort/shuffle: group postings by term
- Reduce
- Gather and sort the postings (e.g., by docno or tf)
- Write postings to disk
- MapReduce does all the heavy lifting!

Inverted Indexing with MapReduce

Shuffle and Sort: aggregate values by keys

Inverted Indexing: Pseudo-Code

```
class Mapper
    method MAP \((\operatorname{docid} n, \operatorname{doc} d)\)
    \(H \leftarrow\) new AssociativeArray \(\quad \triangleright\) histogram to hold term frequencies
    for all term \(t \in \operatorname{doc} d\) do \(\quad \triangleright\) processes the doc, e.g., tokenization and stopword removal
        \(H\{t\} \leftarrow H\{t\}+1\)
        for all term \(t \in H\) do
        Emit(term \(t\), posting \(\langle n, H\{t\}\rangle\) ) \(\triangleright\) emits individual postings
    class Reducer
        method Reduce (term \(t\), postings \(\left.\left[\left\langle n_{1}, f_{1}\right\rangle \ldots\right]\right)\)
            \(P \leftarrow\) new List
            for all \(\langle n, f\rangle \in\) postings \(\left[\left\langle n_{1}, f_{1}\right\rangle \ldots\right.\) ] do
            \(-\underline{P} . \operatorname{APPEND}(\langle n, f\rangle)\), \(\quad\) appends postings unsorted
            \(\operatorname{P.\operatorname {Sort}()}\); What's the problem?
                                \(\triangleright\) sorts for compression
7: \(\quad\) Enionerm \(t\), postingsList \(P\) )
```


