
Big Data Infrastructure

Week 4: Analyzing Text (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

January 26, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

Structure of the Course

“Core” framework features  
and algorithm design

An
al

yz
in

g
Te

xt

An
al

yz
in

g
G

ra
ph

s

An
al

yz
in

g
Re

la
tio

na
l D

at
a

Da
ta

 M
in

in
g

Count.

Source: http://www.flickr.com/photos/guvnah/7861418602/

Count.
(Efficiently)

Count.

Source: http://www.flickr.com/photos/guvnah/7861418602/ https://twitter.com/mrogati/status/481927908802322433

Divide.

Pairs. Stripes.
Seems pretty trivial…

More than a “toy problem”?
Answer: language models

What are they?

Language Models

How do we build them?
How are they useful?

[chain rule]

Is this tractable?

Language Models

Approximating Probabilities: N-Grams

Basic idea: limit history to fixed number of (N – 1) words
(Markov Assumption)

N=1: Unigram Language Model

Approximating Probabilities: N-Grams

Basic idea: limit history to fixed number of (N – 1) words
(Markov Assumption)

N=2: Bigram Language Model

Approximating Probabilities: N-Grams

Basic idea: limit history to fixed number of (N – 1) words
(Markov Assumption)

N=3: Trigram Language Model

Building N-Gram Language Models
¢  Compute maximum likelihood estimates (MLE) for individual ���
n-gram probabilities
l  Unigram:

l  Bigram:

l  Generalizes to higher-order n-grams

l  State of the art models use ~5-grams

¢  We already know how to do this in MapReduce!

Fancy way of saying: ���

count + divide

Minor detail here…
?

The two commandments of estimating
probability distributions…

Source: Wikipedia (Moses)

Probabilities must sum up to one

Source: http://www.flickr.com/photos/37680518@N03/7746322384/

Thou shalt smooth

Source: http://www.flickr.com/photos/brettmorrison/3732910565/

What? Why?

Source: https://www.flickr.com/photos/avlxyz/6898001012/

P() > P ()

P() ? P ()

Example: Bigram Language Model

Note: We don’t ever cross sentence boundaries

I am Sam���
Sam I am
I do not like green eggs and ham

<s>
<s>
<s>

</s>
</s>

</s>

Training Corpus

P(I | <s>) = 2/3 = 0.67 P(Sam | <s>) = 1/3 = 0.33
P(am | I) = 2/3 = 0.67 P(do | I) = 1/3 = 0.33
P(</s> | Sam)= 1/2 = 0.50 P(Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Data Sparsity

P(I like ham)

= P(I | <s>) P(like | I) P(ham | like) P(</s> | ham)

= 0

P(I | <s>) = 2/3 = 0.67 P(Sam | <s>) = 1/3 = 0.33
P(am | I) = 2/3 = 0.67 P(do | I) = 1/3 = 0.33
P(</s> | Sam)= 1/2 = 0.50 P(Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Why is this bad?

Issue: Sparsity!

Thou shalt smooth!
¢  Zeros are bad for any statistical estimator

l  Need better estimators because MLEs give us a lot of zeros
l  A distribution without zeros is “smoother”

¢  The Robin Hood Philosophy: Take from the rich (seen n-grams)
and give to the poor (unseen n-grams)
l  And thus also called discounting

l  Make sure you still have a valid probability distribution!

¢  Lots of techniques:
l  Laplace, Good-Turing, Katz backoff, Jelinek-Mercer

l  Kneser-Ney represents best practice

Laplace Smoothing
¢  Simplest and oldest smoothing technique

¢  Just add 1 to all n-gram counts including the unseen ones

¢  So, what do the revised estimates look like?

Learn fancy words

for simple ideas!

Laplace Smoothing

Unigrams

Bigrams

What if we don’t know V?

Careful, don’t confuse the N’s!

Jelinek-Mercer Smoothing: Interpolation
¢  Mix a trigram model with bigram and unigram models to offset

sparsity

¢  Mix = Weighted Linear Combination���
���
���
���
���

Kneser-Ney Smoothing
¢  Kneser-Ney: Interpolate discounted model with a special

“continuation” unigram model
l  Based on appearance of unigrams in different contexts

l  Excellent performance, state of the art

= number of different contexts wi has appeared in

Kneser-Ney Smoothing: Intuition
¢  I can’t see without my __________

¢  “San Francisco” occurs a lot

¢  I can’t see without my Francisco?

S(wi|wi�1
i�k+1) =

(
f(wi

i�k+1)

f(wi�1
i�k+1)

if f(wi
i�k+1) > 0

↵S(wi|wi�1
i�k+2) otherwise

Stupid Backoff
¢  Let’s break all the rules:

¢  But throw lots of data at the problem!

S(wi) =
f(wi)

N

Source: Brants et al. (EMNLP 2007)

Stupid Backoff Implementation: Pairs!
¢  Straightforward approach: count each order separately

¢  More clever approach: count all orders together

A B
A B C
A B D
A B E
…

A B
A B C
A B C P
A B C Q
A B D
A B D X
A B D Y
…

remember this value

remember this value
remember this value

remember this value

S(C|A B) = f(A B C)/f(A B)
S(D|A B) = f(A B D)/f(A B)
S(E|A B) = f(A B E)/f(A B)
 …

Stupid Backoff: Additional Optimizations
¢  Replace strings with integers

l  Assign ids based on frequency (better compression using vbyte)

¢  Partition by bigram for better load balancing
l  Replicate all unigram counts

State of the art smoothing (less data)

vs. Count and divide (more data)

Source: Wikipedia (Boxing)

Source: Wikipedia (Rosetta Stone)

Statistical Machine Translation

Translation
Model

Language���
Model

Decoder

Foreign Input Sentence
maria no daba una bofetada a la bruja verde

English Output Sentence
mary did not slap the green witch

Word Alignment

Statistical Machine Translation

(vi, i saw)
(la mesa pequeña, the small table)
…

Phrase Extraction

i saw the small table
vi la mesa pequeña
Parallel Sentences

he sat at the table
the service was good

Target-Language Text

Training Data

ê1
I = argmax

e1
I

P(e1
I | f1

J)!" #$= argmax
e1
I

P(e1
I)P(f1

J | e1
I)!" #$

Maria no dio una bofetada a la bruja verde

Mary not

did not

no

did not give

give a slap to the witch green

slap

a slap

to the

to

the

green witch

the witch

by

slap

Translation as a Tiling Problem

Mary

did not

slap

the

green witch

ê1
I = argmax

e1
I

P(e1
I | f1

J)!" #$= argmax
e1
I

P(e1
I)P(f1

J | e1
I)!" #$

Results: Running Time

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 10 100 1000 10000 100000 1e+06

 0.1

 1

 10

 100

 1000

N
um

be
r o

f n
-g

ra
m

s

Ap
pr

ox
. L

M
 s

iz
e

in
 G

B

LM training data size in million tokens

x1.8/x2

x1.8/x2

x1.8/x2

x1.6/x2

target
+ldcnews

+webnews
+web

Figure 3: Number of n-grams (sum of unigrams to
5-grams) for varying amounts of training data.

target: The English side of Arabic-English parallel
data provided by LDC5 (237 million tokens).
ldcnews: This is a concatenation of several English
news data sets provided by LDC6 (5 billion tokens).
webnews: Data collected over several years, up to
December 2005, from web pages containing pre-
dominantly English news articles (31 billion to-
kens).
web: General web data, which was collected in Jan-
uary 2006 (2 trillion tokens).
For testing we use the “NIST” part of the 2006

Arabic-English NIST MT evaluation set, which is
not included in the training data listed above7. It
consists of 1797 sentences of newswire, broadcast
news and newsgroup texts with 4 reference transla-
tions each. The test set is used to calculate transla-
tion BLEU scores. The English side of the set is also
used to calculate perplexities and n-gram coverage.

7.2 Size of the Language Models
We measure the size of language models in total
number of n-grams, summed over all orders from
1 to 5. There is no frequency cutoff on the n-grams.

5http://www.nist.gov/speech/tests/mt/doc/
LDCLicense-mt06.pdf contains a list of parallel resources
provided by LDC.

6The bigger sets included are LDC2005T12 (Gigaword,
2.5B tokens), LDC93T3A (Tipster, 500M tokens) and
LDC2002T31 (Acquaint, 400M tokens), plus many smaller
sets.

7The test data was generated after 1-Feb-2006; all training
data was generated before that date.

target webnews web
tokens 237M 31G 1.8T
vocab size 200k 5M 16M
n-grams 257M 21G 300G
LM size (SB) 2G 89G 1.8T
time (SB) 20 min 8 hours 1 day
time (KN) 2.5 hours 2 days –
machines 100 400 1500

Table 2: Sizes and approximate training times for
3 language models with Stupid Backoff (SB) and
Kneser-Ney Smoothing (KN).

There is, however, a frequency cutoff on the vocab-
ulary. The minimum frequency for a term to be in-
cluded in the vocabulary is 2 for the target, ldcnews
and webnews data sets, and 200 for the web data set.
All terms below the threshold are mapped to a spe-
cial term UNK, representing the unknown word.
Figure 3 shows the number of n-grams for lan-

guage models trained on 13 million to 2 trillion to-
kens. Both axes are on a logarithmic scale. The
right scale shows the approximate size of the served
language models in gigabytes. The numbers above
the lines indicate the relative increase in language
model size: x1.8/x2 means that the number of n-
grams grows by a factor of 1.8 each time we double
the amount of training data. The values are simi-
lar across all data sets and data sizes, ranging from
1.6 to 1.8. The plots are very close to straight lines
in the log/log space; linear least-squares regression
finds r2 > 0.99 for all four data sets.
Theweb data set has the smallest relative increase.

This can be at least partially explained by the higher
vocabulary cutoff. The largest language model gen-
erated contains approx. 300 billion n-grams.
Table 2 shows sizes and approximate training

times when training on the full target, webnews, and
web data sets. The processes run on standard current
hardware with the Linux operating system. Gen-
erating models with Kneser-Ney Smoothing takes
6 – 7 times longer than generating models with
Stupid Backoff. We deemed generation of Kneser-
Ney models on the web data as too expensive and
therefore excluded it from our experiments. The es-
timated runtime for that is approximately one week
on 1500 machines.

864

Source: Brants et al. (EMNLP 2007)

Results: Translation Quality

Source: Brants et al. (EMNLP 2007)

English
French channel

P (e|f) = P (e) · P (f |e)
P (f)

ê = argmax

e
P (e)P (f |e)

Source: http://www.flickr.com/photos/johnmueller/3814846567/in/pool-56226199@N00/

What’s actually going on?

P (e|f) = P (e) · P (f |e)
P (f)

ê = argmax

e
P (e)P (f |e)

Source: http://www.flickr.com/photos/johnmueller/3814846567/in/pool-56226199@N00/

It’s hard to recognize speech
It’s hard to wreck a nice beach

Signal
Text channel

receive
recieve channel

P (e|f) = P (e) · P (f |e)
P (f)

ê = argmax

e
P (e)P (f |e)

Source: http://www.flickr.com/photos/johnmueller/3814846567/in/pool-56226199@N00/

autocorrect #fail

Count.

Source: http://www.flickr.com/photos/guvnah/7861418602/

Search!

First, nomenclature…
¢  Search and information retrieval (IR)

l  Focus on textual information (= text/document retrieval)
l  Other possibilities include image, video, music, …

¢  What do we search?
l  Generically, “collections”

l  Less-frequently used, “corpora”

¢  What do we find?
l  Generically, “documents”

l  Even though we may be referring to web pages, PDFs, PowerPoint
slides, paragraphs, etc.

The Central Problem in Search

Do these represent the same concepts?

Author
Searcher

“tragic love story” “fateful star-crossed romance”

Concepts

Query Terms

Concepts

Document Terms

Abstract IR Architecture

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

offlineonline
document acquisition ���

(e.g., web crawling)

How do we represent text?
¢  Remember: computers don’t “understand” anything!

¢  “Bag of words”

l  Treat all the words in a document as index terms
l  Assign a “weight” to each term based on “importance” ���

(or, in simplest case, presence/absence of word)
l  Disregard order, structure, meaning, etc. of the words

l  Simple, yet effective!

¢  Assumptions
l  Term occurrence is independent

l  Document relevance is independent

l  “Words” are well-defined

What’s a word?

天主教教宗若望保祿二世因感冒再度住進醫院。
這是他今年第二度因同樣的病因住院。 ووققاالل مماارركك ررييججييفف - االلننااططقق ببااسسمم

االلخخااررججييةة االلإإسسرراائئييللييةة - إإنن ششاارروونن ققببلل
االلددععووةة ووسسييققوومم للللممررةة االلأأووللىى ببززييااررةة

تتووننسس٬، االلتتيي ككااننتت للففتتررةة ططووييللةة االلممققرر
االلررسسمميي للممننظظممةة االلتتححررييرر االلففللسسططييننييةة ببععدد خخررووججههاا ممنن للببنناانن ععاامم 1982.

Выступая в Мещанском суде Москвы экс-глава ЮКОСа
заявил не совершал ничего противозаконного, в чем
обвиняет его генпрокуратура России.

भारत सरकार ने आर्थिक सर्वेक्षण में वित्तीय वर्ष 2005-06 मे ंसात फ़ीसदी
विकास दर हासिल करने का आकलन किया है और कर सुधार पर ज़ोर दिया है

日米連合で台頭中国に対処…アーミテージ前副長官提言

조재영 기자= 서울시는 25일 이명박 시장이 `행정중심복합도시'' 건설안에 대해 `
군대라도 동원해 막고싶은 심정''이라고 말했다는 일부 언론의 보도를 부인했다.

Sample Document
McDonald's slims down
spuds
Fast-food chain to reduce certain types of fat
in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as it
moves to make all its fried menu items healthier.

But does that mean the popular shoestring fries won't
taste the same? The company says no. "It's a win-win
for our customers because they are getting the same
great french-fry taste along with an even healthier
nutrition profile," said Mike Roberts, president of
McDonald's USA.

But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use, but
at least one nutrition expert says playing with the
formula could mean a different taste.

Shares of Oak Brook, Ill.-based McDonald's (MCD:
down $0.54 to $23.22, Research, Estimates) were
lower Tuesday afternoon. It was unclear Tuesday
whether competitors Burger King and Wendy's
International (WEN: down $0.80 to $34.91, Research,
Estimates) would follow suit. Neither company could
immediately be reached for comment.

…

14 × McDonalds

12 × fat

11 × fries

8 × new

7 × french

6 × company, said, nutrition

5 × food, oil, percent, reduce,
taste, Tuesday

…

“Bag of Words”

Counting Words…

Documents

Inverted
Index

Bag of
Words

case folding, tokenization, stopword removal, stemming

syntax, semantics, word knowledge, etc.

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

green eggs and ham
Doc 4

1red

1two

What goes in each cell?

boolean
count
positions

Abstract IR Architecture

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

offlineonline

Indexing

Retrieval

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

green eggs and ham
Doc 4

1red

1two

Indexing: building this structure

Retrieval: manipulating this structure

Where have we seen this before?

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

3

4

1

4

4

3

2

1

blue

cat

egg

fish

green

ham

hat

one

2

green eggs and ham
Doc 4

1red

1two

2red

1two

postings lists

Indexing: Performance Analysis
¢  Fundamentally, a large sorting problem

l  Terms usually fit in memory
l  Postings usually don’t

¢  How is it done on a single machine?

¢  How can it be done with MapReduce?

¢  First, let’s characterize the problem size:
l  Size of vocabulary

l  Size of postings

Vocabulary Size: Heaps’ Law

¢  Heaps’ Law: linear in log-log space

¢  Vocabulary size grows unbounded!

bkTM =
M is vocabulary size
T is collection size (number of documents)
k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

Heaps’ Law for RCV1

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

k = 44
b = 0.49

First 1,000,020 terms:
 Predicted = 38,323
 Actual = 38,365

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

Postings Size: Zipf’s Law

¢  Zipf’s Law: (also) linear in log-log space

l  Specific case of Power Law distributions

¢  In other words:

l  A few elements occur very frequently
l  Many elements occur very infrequently

i
c

i =cf cf is the collection frequency of i-th common term
c is a constant

Zipf’s Law for RCV1

Fit isn’t that good…
but good enough!

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Figure from: Newman, M. E. J. (2005) “Power laws, Pareto
distributions and Zipf's law.” Contemporary Physics 46:323–351.

Power Laws are
 everywhere!

MapReduce: Index Construction
¢  Map over all documents

l  Emit term as key, (docno, tf) as value
l  Emit other information as necessary (e.g., term position)

¢  Sort/shuffle: group postings by term

¢  Reduce

l  Gather and sort the postings (e.g., by docno or tf)
l  Write postings to disk

¢  MapReduce does all the heavy lifting!

1

1

2

1

1

2 2

1
1

1

1
1

1

1

1

2

Inverted Indexing with MapReduce

1one

1two

1fish

one fish, two fish
Doc 1

2red

2blue

2fish

red fish, blue fish
Doc 2

3cat

3hat

cat in the hat
Doc 3

1fish 2

1one
1two

2red

3cat
2blue

3hat

Shuffle and Sort: aggregate values by keys

Map

Reduce

Inverted Indexing: Pseudo-Code

1: class Mapper
2: method Map(docid n, doc d)
3: H new AssociativeArray . histogram to hold term frequencies
4: for all term t 2 doc d do . processes the doc, e.g., tokenization and stopword removal
5: H{t} H{t}+ 1

6: for all term t 2 H do

7: Emit(term t, posting hn,H{t}i) . emits individual postings

1: class Reducer
2: method Reduce(term t, postings [hn1, f1i . . .])
3: P new List
4: for all hn, fi 2 postings [hn1, f1i . . .] do
5: P.Append(hn, fi) . appends postings unsorted

6: P.Sort() . sorts for compression
7: Emit(term t, postingsList P)

Figure 2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce.

Given an existing single-machine indexer, one simple way to take advantage of MapReduce is to
leverage reducers to merge indexes built on local disk. This might proceed as follows: an existing
indexer is embedded inside the mapper, and mappers are applied over the entire document collection.
Each indexer operates independently and builds an index on local disk for the documents it encounters.
Once the local indexes have been built, compressed postings are emitted as values, keyed by the term.
In the reducer, postings from each locally-built index are merged into a final index.3

Another relatively straightforward adaptation of a single-machine indexer is demonstrated by
Nutch.4 Its algorithm processes documents in the map phase, and emits pairs consisting of docids
and analyzed document contents. The sort and shu✏e phase in MapReduce is used essentially for doc-
ument partitioning, and the reducers build each individual index partition independently. In contrast
with the above approach, Nutch basically embeds a traditional indexer in the reducers, instead of the
mappers. With this approach, the number of reducers specifies the number of document partitions—
which limits the degree of parallelization that can be achieved.

We decided not to pursue the two approaches discussed above since they seemed like incremental
improvements over existing indexing methods. Instead, we implemented and evaluated two distinct
algorithms that make fuller use of the MapReduce programming model. The first is a scalable variant of
the baseline inverted indexing algorithm in MapReduce, in which the mappers emit individual postings.
The second is an algorithm in which the mappers emit partial lists of postings. The algorithms primarily
di↵er in how postings are sorted: by the execution framework (in the first algorithm) or by the indexing
code itself (in the second algorithm). Detailed descriptions of both are provided below, followed by a
general discussion of their relative merits.

3.2 Emitting Individual Postings

The starting point of our first algorithm, based on mappers emitting individual postings, is an obser-
vation about a significant bottleneck in the baseline algorithm in Figure 2: it assumes that there is
su�cient memory to hold all postings associated with the same term before sorting them. Since the
MapReduce execution framework makes no guarantees about the ordering of values associated with
the same key, the reducer must first bu↵er all postings and then perform an in-memory sort before the

3Indri is capable of distributed indexing using exactly this approach, albeit outside of the MapReduce framework.
4http://lucene.apache.org/nutch/

5

What’s the problem?

Stay tuned…

Source: Wikipedia (Japanese rock garden)

Questions?

