

Big Data Infrastructure

CS 489/698 Big Data Infrastructure (Winter 2016)

Week 2: MapReduce Algorithm Design (2/2) January 14, 2016

Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

MapReduce Algorithm Design

- How do you express everything in terms of m, r, c, p?
- Toward "design patterns"

MapReduce

MapReduce: Recap

- Programmers must specify: map $(k, v) \rightarrow \langle k', v' \rangle^*$ reduce $(k', v') \rightarrow \langle k', v' \rangle^*$
 - All values with the same key are reduced together
- Optionally, also:

partition (k', number of partitions) \rightarrow partition for k'

- Often a simple hash of the key, e.g., hash(k') mod n
- Divides up key space for parallel reduce operations combine $(k', v') \rightarrow \langle k', v' \rangle^*$
- Mini-reducers that run in memory after the map phase
- Used as an optimization to reduce network traffic

• The execution framework handles everything else...

"Everything Else"

• The execution framework handles everything else...

- Scheduling: assigns workers to map and reduce tasks
- "Data distribution": moves processes to data
- Synchronization: gathers, sorts, and shuffles intermediate data
- Errors and faults: detects worker failures and restarts
- Limited control over data and execution flow
 - All algorithms must expressed in m, r, c, p
- You don't know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing

Tools for Synchronization

- Cleverly-constructed data structures
 - Bring partial results together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

MapReduce API*

- Mapper $< K_{in}, V_{in}, K_{out}, V_{out} >$
 - void setup(Mapper.Context context)
 Called once at the beginning of the task
 - void map(K_{in} key, V_{in} value, Mapper.Context context)
 Called once for each key/value pair in the input split
 - void cleanup(Mapper.Context context)
 Called once at the end of the task

• Reducer<K_{in},V_{in},K_{out},V_{out}>/Combiner<K_{in},V_{in},K_{out},V_{out}>

- void setup(Reducer.Context context)
 Called once at the start of the task
- void reduce(K_{in} key, Iterable<V_{in}> values, Reducer.Context context)
 Called once for each key
- void cleanup(Reducer.Context context)
 Called once at the end of the task

Preserving State

Scalable Hadoop Algorithms: Themes

- Avoid object creation
 - (Relatively) costly operation
 - Garbage collection
- Avoid buffering
 - Limited heap size
 - Works for small datasets, but won't scale!

Importance of Local Aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Combiners can help

Shuffle and Sort

Word Count: Baseline

```
1: class MAPPER
       method MAP(docid a, doc d)
2:
           for all term t \in \text{doc } d do
3:
               EMIT(term t, count 1)
4:
1: class Reducer.
       method REDUCE(term t, counts [c_1, c_2, \ldots])
2:
           sum \leftarrow 0
3:
           for all count c \in \text{counts} [c_1, c_2, \ldots] do
4:
               sum \leftarrow sum + c
5:
           EMIT(term t, count s)
6:
```

What's the impact of combiners?

Word Count: Version I

- 1: class Mapper
- 2: **method** MAP(docid a, doc d)
- 3: $H \leftarrow \text{new AssociativeArray}$
- 4: for all term $t \in \operatorname{doc} d$ do
- 5: $H\{t\} \leftarrow H\{t\} + 1$
- 6: for all term $t \in H$ do
- 7: EMIT(term t, count $H\{t\}$)

 \triangleright Tally counts for entire document

Are combiners still needed?

Word Count: Version 2

Are combiners still needed?

Design Pattern for Local Aggregation

- "In-mapper combining"
 - Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Combiner Design

• Combiners and reducers share same method signature

- Sometimes, reducers can serve as combiners
- Often, not...
- Remember: combiner are optional optimizations
 - Should not affect algorithm correctness
 - May be run 0, 1, or multiple times
- Example: find average of integers associated with the same key

Computing the Mean: Version I

1: class MAPPER method MAP(string t, integer r) 2: EMIT(string t, integer r) 3: 1: class Reducer. method REDUCE(string t, integers $[r_1, r_2, \ldots]$) 2: $sum \leftarrow 0$ 3: $cnt \leftarrow 0$ 4: for all integer $r \in$ integers $[r_1, r_2, \ldots]$ do 5: $sum \leftarrow sum + r$ 6: $cnt \leftarrow cnt + 1$ 7: $r_{avg} \leftarrow sum/cnt$ 8: EMIT(string t, integer r_{ava}) 9:

Why can't we use reducer as combiner?

Computing the Mean: Version 2

```
1: class MAPPER
       method MAP(string t, integer r)
2:
           EMIT(string t, integer r)
3:
1: class Combiner.
       method COMBINE(string t, integers [r_1, r_2, \ldots])
2:
           sum \leftarrow 0
3:
     cnt \leftarrow 0
4:
          for all integer r \in integers [r_1, r_2, \ldots] do
5:
               sum \leftarrow sum + r
6:
               cnt \leftarrow cnt + 1
7:
           E_{MIT}(string t, pair (sum, cnt))
                                                                        \triangleright Separate sum and count
8:
1: class Reducer
       method REDUCE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
           sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
               sum \leftarrow sum + s
6:
               cnt \leftarrow cnt + c
7:
           r_{avg} \leftarrow sum/cnt
8:
           EMIT(string t, integer r_{avg})
9:
                                                       Why doesn't this work?
```

Computing the Mean: Version 3

```
1: class MAPPER
       method MAP(string t, integer r)
2:
            EMIT(string t, pair (r, 1))
3:
1: class Combiner.
       method COMBINE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
           sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
           EMIT(string t, pair (sum, cnt))
8:
1: class Reducer
       method REDUCE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
            sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
           r_{avg} \leftarrow sum/cnt
8:
            EMIT(string t, pair (r_{avg}, cnt))
9:
```


Computing the Mean: Version 4

- 1: class Mapper
- 2: method Initialize
- 3: $S \leftarrow \text{new AssociativeArray}$
- 4: $C \leftarrow \text{new AssociativeArray}$
- \mathfrak{p} : method MAP(string t, integer r)
- $6: \qquad S\{t\} \leftarrow S\{t\} + r$
- 7: $C\{t\} \leftarrow C\{t\} + 1$
- 8: method CLOSE
- 9: for all term $t \in S$ do
- 10: EMIT(term t, pair $(S\{t\}, C\{t\}))$

Are combiners still needed?

MapReduce API

$$\begin{split} & \mathsf{Mapper} < \mathsf{K}_{\mathsf{in}}, \mathsf{V}_{\mathsf{in}}, \mathsf{K}_{\mathsf{out}}, \mathsf{V}_{\mathsf{out}} > \\ & \mathsf{Combiner} < \mathsf{K}_{\mathsf{in}}, \mathsf{V}_{\mathsf{in}}, \mathsf{K}_{\mathsf{out}}, \mathsf{V}_{\mathsf{out}} > \\ & \mathsf{Reducer} < \mathsf{K}_{\mathsf{in}}, \mathsf{V}_{\mathsf{in}}, \mathsf{K}_{\mathsf{out}}, \mathsf{V}_{\mathsf{out}} > \end{split}$$

Algorithm Design: Running Example

• Term co-occurrence matrix for a text collection

- M = N x N matrix (N = vocabulary size)
- M_{ij}: number of times *i* and *j* co-occur in some context (for concreteness, let's say context = sentence)
- Why?
 - Distributional profiles as a way of measuring semantic distance
 - Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems

- Term co-occurrence matrix for a text collection
 - = specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of observations (the collection itself)
 - Goal: keep track of interesting statistics about the events
- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: "Pairs"

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit (a, b) \rightarrow count
- Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: Pseudo-Code

1: class Mapper		
2: method MAP(docid $a, doc d$)		
3: for all term $w \in \operatorname{doc} d$ do		
4: for all term $u \in \text{NEIGHBORS}(w)$ de	D	
5: $EMIT(pair (w, u), count 1)$	\triangleright Emit count for each co-occurrence	
1: class Reducer		
2: method REDUCE(pair p , counts $[c_1, c_2,$])	
$s \leftarrow 0$		
4: for all count $c \in \text{counts} [c_1, c_2, \ldots]$ do		
5: $s \leftarrow s + c$	\triangleright Sum co-occurrence counts	
6: EMIT(pair p , count s)		

"Pairs" Analysis

- Advantages
 - Easy to implement, easy to understand
- Disadvantages
 - Lots of pairs to sort and shuffle around (upper bound?)
 - Not many opportunities for combiners to work

Another Try: "Stripes"

• Idea: group together pairs into an associative array

$$\begin{array}{ll} (a,\,b) \to 1 \\ (a,\,c) \to 2 \\ (a,\,d) \to 5 \\ (a,\,e) \to 3 \\ (a,\,f) \to 2 \end{array} \qquad \qquad a \to \{\,b:\,1,\,c:\,2,\,d:\,5,\,e:\,3,\,f:\,2\,\} \end{array}$$

• Each mapper takes a sentence:

- Generate all co-occurring term pairs
- For each term, emit $a \rightarrow \{ b: count_b, c: count_c, d: count_d \dots \}$

• Reducers perform element-wise sum of associative arrays

$$\begin{array}{rl} \mathbf{a} \rightarrow \{b; 1, & d; 5, e; 3\} \\ \hline \mathbf{a} \rightarrow \{b; 1, c; 2, d; 2, & f; 2\} \\ \hline \mathbf{a} \rightarrow \{b; 2, c; 2, d; 7, e; 3, f; 2\} \\ \hline Key \ idea: \ cleverly-constructed \ brings \ together \ partial \ results \\ \hline brings \ together \ partial \ results \end{array}$$

...0

Stripes: Pseudo-Code

1:	class Mapper	
2:	method MAP(docid $a, doc d$)	
3:	for all term $w \in \operatorname{doc} d$ do	
4:	$H \leftarrow \text{new AssociativeArray}$	
5:	for all term $u \in \text{NEIGHBORS}(w)$ do	
6:	$H\{u\} \leftarrow H\{u\} + 1$ \triangleright Tally words co-occurring with w	
7:	EMIT(Term w , Stripe H)	
1: class Reducer		
2:	method REDUCE(term w , stripes $[H_1, H_2, H_3, \ldots]$)	
3:	$H_f \leftarrow \text{new AssociativeArray}$	
4:	for all stripe $H \in \text{stripes } [H_1, H_2, H_3, \ldots]$ do	
5:	$SUM(H_f, H)$ \triangleright Element-wise sum	
6:	EMIT(term w , stripe H_f)	

"Stripes" Analysis

• Advantages

- Far less sorting and shuffling of key-value pairs
- Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object more heavyweight
 - Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

1x 4x 2x 3x 5000 4000 4x $R^2 = 0.997$ running time (seconds) relative speedup 3x 3000 2000 2x Ð. 1000 1x 0 20 30 40 50 60 70 10 80 90 size of EC2 cluster (number of slave instances)

Effect of cluster size on "stripes" algorithm

relative size of EC2 cluster

Stripes >> Pairs?

- Tradeoff: Developer code vs. framework
- Tradeoff: CPU vs. RAM vs. disk vs. network
- Number of key-value pairs
 - Sorting and shuffling data across the network
- Size of each key-value pair
 - De/serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation varies
 - Combiners make a big difference
 - Combiners vs. in-mapper combining
- Watch out for load imbalance

Tradeoffs

• Pairs:

- Generates *a lot* more key-value pairs
- Less combining opportunities
- More sorting and shuffling
- Simple aggregation at reduce
- Stripes:
 - Generates fewer key-value pairs
 - More opportunities for combining
 - Less sorting and shuffling
 - More complex (slower) aggregation at reduce

Where's the potential for load imbalance?

Relative Frequencies

• How do we estimate relative frequencies from counts?

$$f(B|A) = \frac{N(A,B)}{N(A)} = \frac{N(A,B)}{\sum_{B'} N(A,B')}$$

- Why do we want to do this?
- How do we do this with MapReduce?

f(B|A): "Stripes"

$$a \rightarrow \{b_1:3, b_2:12, b_3:7, b_4:1, \dots\}$$

• Easy!

- One pass to compute (a, *)
- Another pass to directly compute f(B|A)

f(B|A): "Pairs"

- What's the issue?
 - Computing relative frequencies requires marginal counts
 - But the marginal cannot be computed until you see all counts
 - Buffering is a bad idea!
- Solution:
 - What if we could get the marginal count to arrive at the reducer first?

f(B|A): "Pairs"

• For this to work:

- Must emit extra (a, *) for every b_n in mapper
- Must make sure all a's get sent to same reducer (use partitioner)
- Must make sure (a, *) comes first (define sort order)
- Must hold state in reducer across different key-value pairs

"Order Inversion"

- Common design pattern:
 - Take advantage of sorted key order at reducer to sequence computations
 - Get the marginal counts to arrive at the reducer before the joint counts
- Optimization:
 - Apply in-memory combining pattern to accumulate marginal counts

Synchronization: Pairs vs. Stripes

• Approach I: turn synchronization into an ordering problem

- Sort keys into correct order of computation
- Partition key space so that each reducer gets the appropriate set of partial results
- Hold state in reducer across multiple key-value pairs to perform computation
- Illustrated by the "pairs" approach
- Approach 2: construct data structures that bring partial results together
 - Each reducer receives all the data it needs to complete the computation
 - Illustrated by the "stripes" approach

Secondary Sorting

- MapReduce sorts input to reducers by key
 - Values may be arbitrarily ordered
- What if want to sort value also?
 - E.g., $k \to (v_1, r)$, (v_3, r) , (v_4, r) , (v_8, r) ...

Secondary Sorting: Solutions

- Solution I:
 - Buffer values in memory, then sort
 - Why is this a bad idea?
- Solution 2:
 - "Value-to-key conversion" design pattern: form composite intermediate key, (k, v₁)
 - Let execution framework do the sorting
 - Preserve state across multiple key-value pairs to handle processing
 - Anything else we need to do?

Recap: Tools for Synchronization

- Cleverly-constructed data structures
 - Bring data together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Issues and Tradeoffs

- Tradeoff: Developer code vs. framework
- Tradeoff: CPU vs. RAM vs. disk vs. network
- Number of key-value pairs
 - Sorting and shuffling data across the network
- Size of each key-value pair
 - De/serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation varies
 - Combiners make a big difference
 - Combiners vs. in-mapper combining
- Watch out for load imbalance

Debugging at Scale

- Works on small datasets, won't scale... why?
 - Memory management issues (buffering and object creation)
 - Too much intermediate data
 - Mangled input records
- Real-world data is messy!
 - There's no such thing as "consistent data"
 - Watch out for corner cases
 - Isolate unexpected behavior, bring local

Questions?

Remember: Assignment I due next Tuesday at 8:30am

Source: Wikipedia (Japanese rock garden)