
Big Data Infrastructure

Week 2: MapReduce Algorithm Design (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

January 14, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

Source: Wikipedia (The Scream)

Source: Wikipedia (Japanese rock garden)

MapReduce Algorithm Design
¢  How do you express everything in terms of m, r, c, p?

¢  Toward “design patterns”

Source: Google

MapReduce

MapReduce: Recap
¢  Programmers must specify:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
l  All values with the same key are reduced together

¢  Optionally, also:
partition (k’, number of partitions) → partition for k’
l  Often a simple hash of the key, e.g., hash(k’) mod n
l  Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
l  Mini-reducers that run in memory after the map phase
l  Used as an optimization to reduce network traffic

¢  The execution framework handles everything else…

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

“Everything Else”
¢  The execution framework handles everything else…

l  Scheduling: assigns workers to map and reduce tasks
l  “Data distribution”: moves processes to data

l  Synchronization: gathers, sorts, and shuffles intermediate data

l  Errors and faults: detects worker failures and restarts

¢  Limited control over data and execution flow
l  All algorithms must expressed in m, r, c, p

¢  You don’t know:
l  Where mappers and reducers run

l  When a mapper or reducer begins or finishes
l  Which input a particular mapper is processing

l  Which intermediate key a particular reducer is processing

Tools for Synchronization
¢  Cleverly-constructed data structures

l  Bring partial results together

¢  Sort order of intermediate keys
l  Control order in which reducers process keys

¢  Partitioner
l  Control which reducer processes which keys

¢  Preserving state in mappers and reducers
l  Capture dependencies across multiple keys and values

MapReduce API*
¢  Mapper<Kin,Vin,Kout,Vout>

l  void setup(Mapper.Context context) ���
Called once at the beginning of the task

l  void map(Kin key, Vin value, Mapper.Context context) ���
Called once for each key/value pair in the input split

l  void cleanup(Mapper.Context context) ���
Called once at the end of the task

¢  Reducer<Kin,Vin,Kout,Vout>/Combiner<Kin,Vin,Kout,Vout>
l  void setup(Reducer.Context context) ���

Called once at the start of the task
l  void reduce(Kin key, Iterable<Vin> values, Reducer.Context context) ���

Called once for each key

l  void cleanup(Reducer.Context context) ���
Called once at the end of the task

*Note that there are two versions of the API!

Preserving State

Mapper object

setup

map

cleanup

state
one object per task

Reducer object

setup

reduce

close

state

one call per input ���
key-value pair

one call per ���
intermediate key

API initialization hook

API cleanup hook

Scalable Hadoop Algorithms: Themes
¢  Avoid object creation

l  (Relatively) costly operation
l  Garbage collection

¢  Avoid buffering
l  Limited heap size

l  Works for small datasets, but won’t scale!

Importance of Local Aggregation
¢  Ideal scaling characteristics:

l  Twice the data, twice the running time
l  Twice the resources, half the running time

¢  Why can’t we achieve this?
l  Synchronization requires communication

l  Communication kills performance

¢  Thus… avoid communication!
l  Reduce intermediate data via local aggregation

l  Combiners can help

Shuffle and Sort

Mapper

Reducer

other mappers

other reducers

circular buffer ���
(in memory)

spills (on disk)

merged spills ���
(on disk)

intermediate files ���
(on disk)

Combiner

Combiner

Word Count: Baseline

What’s the impact of combiners?

Word Count: Version 1

Are combiners still needed?

Word Count: Version 2

Are combiners still needed?

Design Pattern for Local Aggregation
¢  “In-mapper combining”

l  Fold the functionality of the combiner into the mapper by preserving
state across multiple map calls

¢  Advantages

l  Speed
l  Why is this faster than actual combiners?

¢  Disadvantages
l  Explicit memory management required

l  Potential for order-dependent bugs

Combiner Design
¢  Combiners and reducers share same method signature

l  Sometimes, reducers can serve as combiners
l  Often, not…

¢  Remember: combiner are optional optimizations
l  Should not affect algorithm correctness

l  May be run 0, 1, or multiple times

¢  Example: find average of integers associated with the same key

Computing the Mean: Version 1

Why can’t we use reducer as combiner?

Computing the Mean: Version 2

Why doesn’t this work?

Computing the Mean: Version 3

Fixed?

Computing the Mean: Version 4

Are combiners still needed?

Mapper<Kin,Vin,Kout,Vout>

Combiner<Kin,Vin,Kout,Vout>

Reducer<Kin,Vin,Kout,Vout>

MapReduce API

Algorithm Design: Running Example
¢  Term co-occurrence matrix for a text collection

l  M = N x N matrix (N = vocabulary size)
l  Mij: number of times i and j co-occur in some context ���

(for concreteness, let’s say context = sentence)

¢  Why?
l  Distributional profiles as a way of measuring semantic distance

l  Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems
¢  Term co-occurrence matrix for a text collection���

= specific instance of a large counting problem
l  A large event space (number of terms)

l  A large number of observations (the collection itself)

l  Goal: keep track of interesting statistics about the events

¢  Basic approach
l  Mappers generate partial counts

l  Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: “Pairs”
¢  Each mapper takes a sentence:

l  Generate all co-occurring term pairs
l  For all pairs, emit (a, b) → count

¢  Reducers sum up counts associated with these pairs

¢  Use combiners!

Pairs: Pseudo-Code

“Pairs” Analysis
¢  Advantages

l  Easy to implement, easy to understand

¢  Disadvantages
l  Lots of pairs to sort and shuffle around (upper bound?)

l  Not many opportunities for combiners to work

Another Try: “Stripes”
¢  Idea: group together pairs into an associative array

¢  Each mapper takes a sentence:
l  Generate all co-occurring term pairs

l  For each term, emit a → { b: countb, c: countc, d: countd … }

¢  Reducers perform element-wise sum of associative arrays

(a, b) → 1
(a, c) → 2
(a, d) → 5
(a, e) → 3
(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }
a → { b: 1, c: 2, d: 2, f: 2 }
a → { b: 2, c: 2, d: 7, e: 3, f: 2 }

+

Key idea: cleverly-constructed data st
ructure

brings together partial
results

Stripes: Pseudo-Code

“Stripes” Analysis
¢  Advantages

l  Far less sorting and shuffling of key-value pairs
l  Can make better use of combiners

¢  Disadvantages
l  More difficult to implement

l  Underlying object more heavyweight

l  Fundamental limitation in terms of size of event space

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Stripes >> Pairs?
¢  Tradeoff: Developer code vs. framework

¢  Tradeoff: CPU vs. RAM vs. disk vs. network

¢  Number of key-value pairs
l  Sorting and shuffling data across the network

¢  Size of each key-value pair
l  De/serialization overhead

¢  Local aggregation
l  Opportunities to perform local aggregation varies

l  Combiners make a big difference
l  Combiners vs. in-mapper combining

¢  Watch out for load imbalance

Tradeoffs
¢  Pairs:

l  Generates a lot more key-value pairs
l  Less combining opportunities

l  More sorting and shuffling

l  Simple aggregation at reduce

¢  Stripes:
l  Generates fewer key-value pairs

l  More opportunities for combining
l  Less sorting and shuffling

l  More complex (slower) aggregation at reduce

Where’s the potential for load imbalance?

Relative Frequencies
¢  How do we estimate relative frequencies from counts?

¢  Why do we want to do this?

¢  How do we do this with MapReduce?

f(B|A) =
N(A,B)

N(A)
=

N(A,B)P
B0 N(A,B0)

f(B|A): “Stripes”

¢  Easy!
l  One pass to compute (a, *)

l  Another pass to directly compute f(B|A)

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

f(B|A): “Pairs”
¢  What’s the issue?

l  Computing relative frequencies requires marginal counts
l  But the marginal cannot be computed until you see all counts

l  Buffering is a bad idea!

¢  Solution:
l  What if we could get the marginal count to arrive at the reducer first?

f(B|A): “Pairs”

¢  For this to work:

l  Must emit extra (a, *) for every bn in mapper
l  Must make sure all a’s get sent to same reducer (use partitioner)

l  Must make sure (a, *) comes first (define sort order)

l  Must hold state in reducer across different key-value pairs

(a, b1) → 3
(a, b2) → 12
(a, b3) → 7
(a, b4) → 1
…

(a, *) → 32

(a, b1) → 3 / 32
(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32
…

Reducer holds this value in memory

“Order Inversion”
¢  Common design pattern:

l  Take advantage of sorted key order at reducer to sequence
computations

l  Get the marginal counts to arrive at the reducer before the joint counts

¢  Optimization:
l  Apply in-memory combining pattern to accumulate marginal counts

Synchronization: Pairs vs. Stripes
¢  Approach 1: turn synchronization into an ordering problem

l  Sort keys into correct order of computation
l  Partition key space so that each reducer gets the appropriate set of

partial results
l  Hold state in reducer across multiple key-value pairs to perform

computation
l  Illustrated by the “pairs” approach

¢  Approach 2: construct data structures that bring partial results
together
l  Each reducer receives all the data it needs to complete the computation
l  Illustrated by the “stripes” approach

Secondary Sorting
¢  MapReduce sorts input to reducers by key

l  Values may be arbitrarily ordered

¢  What if want to sort value also?
l  E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

Secondary Sorting: Solutions
¢  Solution 1:

l  Buffer values in memory, then sort
l  Why is this a bad idea?

¢  Solution 2:
l  “Value-to-key conversion” design pattern: form composite intermediate

key, (k, v1)
l  Let execution framework do the sorting

l  Preserve state across multiple key-value pairs to handle processing

l  Anything else we need to do?

Recap: Tools for Synchronization
¢  Cleverly-constructed data structures

l  Bring data together

¢  Sort order of intermediate keys
l  Control order in which reducers process keys

¢  Partitioner
l  Control which reducer processes which keys

¢  Preserving state in mappers and reducers
l  Capture dependencies across multiple keys and values

Issues and Tradeoffs
¢  Tradeoff: Developer code vs. framework

¢  Tradeoff: CPU vs. RAM vs. disk vs. network

¢  Number of key-value pairs
l  Sorting and shuffling data across the network

¢  Size of each key-value pair
l  De/serialization overhead

¢  Local aggregation
l  Opportunities to perform local aggregation varies

l  Combiners make a big difference
l  Combiners vs. in-mapper combining

¢  Watch out for load imbalance

Debugging at Scale
¢  Works on small datasets, won’t scale… why?

l  Memory management issues (buffering and object creation)
l  Too much intermediate data

l  Mangled input records

¢  Real-world data is messy!
l  There’s no such thing as “consistent data”

l  Watch out for corner cases

l  Isolate unexpected behavior, bring local

Source: Wikipedia (Japanese rock garden)

Questions?

Remember: Assignment 1 due next Tuesday at 8:30am

