
Big Data Infrastructure

Week 2: MapReduce Algorithm Design (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

January 12, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

Source: Wikipedia (The Scream)

Source: Wikipedia (Clouds)

Aside: Cloud Computing

The best thing since sliced bread?
¢  Before clouds…

l  Grids
l  Connection machine

l  Vector supercomputers

l  …

¢  Cloud computing means many different things:
l  Big data

l  Rebranding of web 2.0
l  Utility computing

l  Everything as a service

Rebranding of web 2.0
¢  Rich, interactive web applications

l  Clouds refer to the servers that run them
l  AJAX as the de facto standard (for better or worse)

l  Examples: Facebook, YouTube, Gmail, …

¢  “The network is the computer”: take two
l  User data is stored “in the clouds”

l  Rise of the tablets, smartphones, etc. (“thin client”)

l  Browser is the OS

Source: Wikipedia (Electricity meter)

Utility Computing
¢  What?

l  Computing resources as a metered service (“pay as you go”)
l  Ability to dynamically provision virtual machines

¢  Why?
l  Cost: capital vs. operating expenses

l  Scalability: “infinite” capacity

l  Elasticity: scale up or down on demand

¢  Does it make sense?
l  Benefits to cloud users

l  Business case for cloud providers

I think there is a world
market for about five
computers.

Enabling Technology: Virtualization

Hardware

Operating System

App App App

Traditional Stack

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

Today’s buzzword: Docker

Everything as a Service
¢  Utility computing = Infrastructure as a Service (IaaS)

l  Why buy machines when you can rent cycles?
l  Examples: Amazon’s EC2, Rackspace

¢  Platform as a Service (PaaS)
l  Give me nice API and take care of the maintenance, upgrades, …

l  Example: Google App Engine, Altiscale

¢  Software as a Service (SaaS)
l  Just run it for me!

l  Example: Gmail, Salesforce

Who cares?
¢  A source of problems…

l  Cloud-based services generate big data
l  Clouds make it easier to start companies that generate big data

¢  As well as a solution…
l  Ability to provision analytics clusters on-demand in the cloud

l  Commoditization and democratization of big data capabilities

Source: Wikipedia (Clouds)

So, what is the cloud?

What is the Matrix?

Source: The Matrix - PPC Wiki - Wikia

Source: Google

The datacenter is the computer!

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

Source: Wikipedia (Mahout)

Aside, what about Spark?

MapReduce API*
¢  Mapper<Kin,Vin,Kout,Vout>

l  void setup(Mapper.Context context) ���
Called once at the beginning of the task

l  void map(Kin key, Vin value, Mapper.Context context) ���
Called once for each key/value pair in the input split

l  void cleanup(Mapper.Context context) ���
Called once at the end of the task

¢  Reducer<Kin,Vin,Kout,Vout>/Combiner<Kin,Vin,Kout,Vout>
l  void setup(Reducer.Context context) ���

Called once at the start of the task
l  void reduce(Kin key, Iterable<Vin> values, Reducer.Context context) ���

Called once for each key

l  void cleanup(Reducer.Context context) ���
Called once at the end of the task

*Note that there are two versions of the API!

MapReduce API*
¢  Partitioner

l  int getPartition(K key, V value, int numPartitions) ���
Get the partition number given total number of partitions

¢  Job

l  Represents a packaged Hadoop job for submission to cluster
l  Need to specify input and output paths

l  Need to specify input and output formats

l  Need to specify mapper, reducer, combiner, partitioner classes

l  Need to specify intermediate/final key/value classes
l  Need to specify number of reducers (but not mappers, why?)

l  Don’t depend of defaults!

*Note that there are two versions of the API!

A tale of two packages…

org.apache.hadoop.mapreduce
org.apache.hadoop.mapred

Source: Wikipedia (Budapest)

Data Types in Hadoop: Keys and Values

Writable Defines a de/serialization protocol. Every
data type in Hadoop is a Writable.

WritableComprable Defines a sort order. All keys must be of
this type (but not values).

IntWritable ���
LongWritable
Text
…

Concrete classes for different data types.

SequenceFiles Binary encoded of a sequence of ���
key/value pairs

“Hello World”: Word Count

Map(String docid, String text):
 for each word w in text:
 Emit(w, 1);

Reduce(String term, Iterator<Int> values):
 int sum = 0;
 for each v in values:
 sum += v;
 Emit(term, sum);

“Hello World”: Word Count

 private static class MyMapper
 extends Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable ONE = new IntWritable(1);
 private final static Text WORD = new Text();

 @Override
 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 String line = ((Text) value).toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 WORD.set(itr.nextToken());
 context.write(WORD, ONE);
 }
 }
 }

“Hello World”: Word Count

 private static class MyReducer
 extends Reducer<Text, IntWritable, Text, IntWritable> {

 private final static IntWritable SUM = new IntWritable();

 @Override
 public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException {
 Iterator<IntWritable> iter = values.iterator();
 int sum = 0;
 while (iter.hasNext()) {
 sum += iter.next().get();
 }
 SUM.set(sum);
 context.write(key, SUM);
 }
 }

Three Gotchas
¢  Avoid object creation if possible

l  Reuse Writable objects, change the payload

¢  Execution framework reuses value object in reducer

¢  Passing parameters via class statics

Getting Data to Mappers and Reducers
¢  Configuration parameters

l  Directly in the Job object for parameters

¢  “Side data”
l  DistributedCache

l  Mappers/reducers read from HDFS in setup method

Complex Data Types in Hadoop
¢  How do you implement complex data types?

¢  The easiest way:

l  Encoded it as Text, e.g., (a, b) = “a:b”
l  Use regular expressions to parse and extract data

l  Works, but janky

¢  The hard way:
l  Define a custom implementation of Writable(Comprable)

l  Must implement: readFields, write, (compareTo)

l  Computationally efficient, but slow for rapid prototyping

l  Implement WritableComparator hook for performance

¢  Somewhere in the middle:

l  Bespin (via lin.tl) offers JSON support and lots of useful Hadoop types

Basic Cluster Components*
¢  One of each:

l  Namenode (NN): master node for HDFS
l  Jobtracker (JT): master node for job submission

¢  Set of each per slave machine:
l  Tasktracker (TT): contains multiple task slots

l  Datanode (DN): serves HDFS data blocks

* Not quite… leaving aside YARN for now

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

Anatomy of a Job
¢  MapReduce program in Hadoop = Hadoop job

l  Jobs are divided into map and reduce tasks
l  An instance of running a task is called a task attempt (occupies a slot)

l  Multiple jobs can be composed into a workflow

¢  Job submission:
l  Client (i.e., driver program) creates a job, configures it, and submits it to

jobtracker
l  That’s it! The Hadoop cluster takes over…

Anatomy of a Job
¢  Behind the scenes:

l  Input splits are computed (on client end)
l  Job data (jar, configuration XML) are sent to JobTracker

l  JobTracker puts job data in shared location, enqueues tasks

l  TaskTrackers poll for tasks

l  Off to the races…

InputSplit

Source: redrawn from a slide by Cloduera, cc-licensed

InputSplit InputSplit

Input File Input File

InputSplit InputSplit

RecordReader RecordReader RecordReader RecordReader RecordReader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
pu

tF
or

m
at

… …

InputSplit InputSplit InputSplit

Client

Records

Mapper

RecordReader

Mapper

RecordReader

Mapper

RecordReader

Source: redrawn from a slide by Cloduera, cc-licensed

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here)

Source: redrawn from a slide by Cloduera, cc-licensed

Reducer Reducer Reduce

Output File

RecordWriter

O
ut

pu
tF

or
m

at

Output File

RecordWriter

Output File

RecordWriter

Input and Output
¢  InputFormat:

l  TextInputFormat
l  KeyValueTextInputFormat

l  SequenceFileInputFormat

l  …

¢  OutputFormat:
l  TextOutputFormat

l  SequenceFileOutputFormat
l  …

Shuffle and Sort in MapReduce
¢  Probably the most complex aspect of MapReduce execution

¢  Map side

l  Map outputs are buffered in memory in a circular buffer
l  When buffer reaches threshold, contents are “spilled” to disk

l  Spills merged in a single, partitioned file (sorted within each partition):
combiner runs during the merges

¢  Reduce side
l  First, map outputs are copied over to reducer machine

l  “Sort” is a multi-pass merge of map outputs (happens in memory and on
disk): combiner runs during the merges

l  Final merge pass goes directly into reducer

Shuffle and Sort

Mapper

Reducer

other mappers

other reducers

circular buffer ���
(in memory)

spills (on disk)

merged spills ���
(on disk)

intermediate files ���
(on disk)

Combiner

Combiner

Hadoop Workflow

Hadoop ClusterYou Submit node
(workspace)

Getting data in?
Writing code?
Getting data out?

Debugging Hadoop
¢  First, take a deep breath

¢  Start small, start locally

¢  Build incrementally

Source: Wikipedia (The Scream)

Code Execution Environments
¢  Different ways to run code:

l  Local (standalone) mode
l  Pseudo-distributed mode

l  Fully-distributed mode

¢  Learn what’s good for what

Hadoop Debugging Strategies
¢  Good ol’ System.out.println

l  Learn to use the webapp to access logs
l  Logging preferred over System.out.println

l  Be careful how much you log!

¢  Fail on success
l  Throw RuntimeExceptions and capture state

¢  Programming is still programming
l  Use Hadoop as the “glue”

l  Implement core functionality outside mappers and reducers

l  Independently test (e.g., unit testing)
l  Compose (tested) components in mappers and reducers

Source: Wikipedia (Japanese rock garden)

Questions?

