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Source: Wikipedia (Clouds) 

Aside: Cloud Computing



The best thing since sliced bread?
¢  Before clouds…

l  Grids
l  Connection machine

l  Vector supercomputers

l  …

¢  Cloud computing means many different things:
l  Big data

l  Rebranding of web 2.0
l  Utility computing

l  Everything as a service



Rebranding of web 2.0
¢  Rich, interactive web applications

l  Clouds refer to the servers that run them
l  AJAX as the de facto standard (for better or worse)

l  Examples: Facebook, YouTube, Gmail, …

¢  “The network is the computer”: take two
l  User data is stored “in the clouds”

l  Rise of the tablets, smartphones, etc. (“thin client”)

l  Browser is the OS



Source: Wikipedia (Electricity meter) 



Utility Computing
¢  What?

l  Computing resources as a metered service (“pay as you go”)
l  Ability to dynamically provision virtual machines

¢  Why?
l  Cost: capital vs. operating expenses

l  Scalability: “infinite” capacity

l  Elasticity: scale up or down on demand

¢  Does it make sense?
l  Benefits to cloud users

l  Business case for cloud providers

I think there is a world 
market for about five 
computers.



Enabling Technology: Virtualization
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Everything as a Service
¢  Utility computing = Infrastructure as a Service (IaaS)

l  Why buy machines when you can rent cycles?
l  Examples: Amazon’s EC2, Rackspace

¢  Platform as a Service (PaaS)
l  Give me nice API and take care of the maintenance, upgrades, …

l  Example: Google App Engine, Altiscale

¢  Software as a Service (SaaS)
l  Just run it for me!

l  Example: Gmail, Salesforce



Who cares?
¢  A source of problems…

l  Cloud-based services generate big data
l  Clouds make it easier to start companies that generate big data

¢  As well as a solution…
l  Ability to provision analytics clusters on-demand in the cloud

l  Commoditization and democratization of big data capabilities 



Source: Wikipedia (Clouds) 

So, what is the cloud?



What is the Matrix?

Source:  The Matrix - PPC Wiki - Wikia 



Source: Google 

The datacenter is the computer!



combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 
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Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 

c 2 3 6 8 
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Source: Wikipedia (Mahout) 

Aside, what about Spark?



MapReduce API*
¢  Mapper<Kin,Vin,Kout,Vout>

l  void setup(Mapper.Context context) ���
Called once at the beginning of the task

l  void map(Kin key, Vin value, Mapper.Context context) ���
Called once for each key/value pair in the input split

l  void cleanup(Mapper.Context context) ���
Called once at the end of the task

¢  Reducer<Kin,Vin,Kout,Vout>/Combiner<Kin,Vin,Kout,Vout>
l  void setup(Reducer.Context context) ���

Called once at the start of the task
l  void reduce(Kin key, Iterable<Vin> values, Reducer.Context context) ���

Called once for each key

l  void cleanup(Reducer.Context context) ���
Called once at the end of the task

*Note that there are two versions of the API!



MapReduce API*
¢  Partitioner

l  int getPartition(K key, V value, int numPartitions) ���
Get the partition number given total number of partitions 

¢  Job

l  Represents a packaged Hadoop job for submission to cluster
l  Need to specify input and output paths

l  Need to specify input and output formats

l  Need to specify mapper, reducer, combiner, partitioner classes

l  Need to specify intermediate/final key/value classes
l  Need to specify number of reducers (but not mappers, why?)

l  Don’t depend of defaults!

*Note that there are two versions of the API!



A tale of two packages…

org.apache.hadoop.mapreduce 
org.apache.hadoop.mapred

Source: Wikipedia (Budapest) 



Data Types in Hadoop: Keys and Values

Writable Defines a de/serialization protocol. Every 
data type in Hadoop is a Writable.

WritableComprable Defines a sort order.  All keys must be of 
this type (but not values).

IntWritable ���
LongWritable
Text
…

Concrete classes for different data types.

SequenceFiles Binary encoded of a sequence of ���
key/value pairs



“Hello World”: Word Count

Map(String docid, String text):
     for each word w in text:
          Emit(w, 1);

Reduce(String term, Iterator<Int> values):
     int sum = 0;
     for each v in values:
          sum += v;
     Emit(term, sum);



“Hello World”: Word Count

 private static class MyMapper 
     extends Mapper<LongWritable, Text, Text, IntWritable> { 
 
    private final static IntWritable ONE = new IntWritable(1); 
    private final static Text WORD = new Text(); 
 
    @Override 
    public void map(LongWritable key, Text value, Context context) 
        throws IOException, InterruptedException { 
      String line = ((Text) value).toString(); 
      StringTokenizer itr = new StringTokenizer(line); 
      while (itr.hasMoreTokens()) { 
        WORD.set(itr.nextToken()); 
        context.write(WORD, ONE); 
      } 
    } 
  } 



“Hello World”: Word Count

 private static class MyReducer 
     extends Reducer<Text, IntWritable, Text, IntWritable> { 
 
    private final static IntWritable SUM = new IntWritable(); 
 
    @Override 
    public void reduce(Text key, Iterable<IntWritable> values, 
        Context context) throws IOException, InterruptedException { 
      Iterator<IntWritable> iter = values.iterator(); 
      int sum = 0; 
      while (iter.hasNext()) { 
        sum += iter.next().get(); 
      } 
      SUM.set(sum); 
      context.write(key, SUM); 
    } 
  } 



Three Gotchas
¢  Avoid object creation if possible

l  Reuse Writable objects, change the payload

¢  Execution framework reuses value object in reducer

¢  Passing parameters via class statics



Getting Data to Mappers and Reducers
¢  Configuration parameters

l  Directly in the Job object for parameters

¢  “Side data”
l  DistributedCache

l  Mappers/reducers read from HDFS in setup method



Complex Data Types in Hadoop
¢  How do you implement complex data types?

¢  The easiest way:

l  Encoded it as Text, e.g., (a, b) = “a:b”
l  Use regular expressions to parse and extract data

l  Works, but janky

¢  The hard way:
l  Define a custom implementation of Writable(Comprable)

l  Must implement: readFields, write, (compareTo)

l  Computationally efficient, but slow for rapid prototyping

l  Implement WritableComparator hook for performance

¢  Somewhere in the middle:

l  Bespin (via lin.tl) offers JSON support and lots of useful Hadoop types



Basic Cluster Components*
¢  One of each:

l  Namenode (NN): master node for HDFS
l  Jobtracker (JT): master node for job submission

¢  Set of each per slave machine:
l  Tasktracker (TT): contains multiple task slots

l  Datanode (DN): serves HDFS data blocks

* Not quite… leaving aside YARN for now



Putting everything together…
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Anatomy of a Job
¢  MapReduce program in Hadoop = Hadoop job

l  Jobs are divided into map and reduce tasks
l  An instance of running a task is called a task attempt (occupies a slot)

l  Multiple jobs can be composed into a workflow

¢  Job submission: 
l  Client (i.e., driver program) creates a job, configures it, and submits it to 

jobtracker
l  That’s it! The Hadoop cluster takes over…



Anatomy of a Job
¢  Behind the scenes:

l  Input splits are computed (on client end)
l  Job data (jar, configuration XML) are sent to JobTracker

l  JobTracker puts job data in shared location, enqueues tasks

l  TaskTrackers poll for tasks

l  Off to the races…



InputSplit 

Source: redrawn from a slide by Cloduera, cc-licensed 
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… …
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Source: redrawn from a slide by Cloduera, cc-licensed 
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Source: redrawn from a slide by Cloduera, cc-licensed 
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Input and Output
¢  InputFormat:

l  TextInputFormat
l  KeyValueTextInputFormat

l  SequenceFileInputFormat

l  …

¢  OutputFormat:
l  TextOutputFormat

l  SequenceFileOutputFormat
l  …



Shuffle and Sort in MapReduce
¢  Probably the most complex aspect of MapReduce execution

¢  Map side

l  Map outputs are buffered in memory in a circular buffer
l  When buffer reaches threshold, contents are “spilled” to disk

l  Spills merged in a single, partitioned file (sorted within each partition): 
combiner runs during the merges

¢  Reduce side
l  First, map outputs are copied over to reducer machine

l  “Sort” is a multi-pass merge of map outputs (happens in memory and on 
disk): combiner runs during the merges

l  Final merge pass goes directly into reducer



Shuffle and Sort
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Hadoop Workflow

Hadoop ClusterYou Submit node
(workspace)

Getting data in?
Writing code?
Getting data out?



Debugging Hadoop
¢  First, take a deep breath

¢  Start small, start locally

¢  Build incrementally



Source: Wikipedia (The Scream) 



Code Execution Environments
¢  Different ways to run code:

l  Local (standalone) mode
l  Pseudo-distributed mode

l  Fully-distributed mode

¢  Learn what’s good for what



Hadoop Debugging Strategies
¢  Good ol’ System.out.println

l  Learn to use the webapp to access logs
l  Logging preferred over System.out.println

l  Be careful how much you log!

¢  Fail on success
l  Throw RuntimeExceptions and capture state

¢  Programming is still programming
l  Use Hadoop as the “glue”

l  Implement core functionality outside mappers and reducers

l  Independently test (e.g., unit testing)
l  Compose (tested) components in mappers and reducers



Source: Wikipedia (Japanese rock garden) 

Questions?


