
Big Data Infrastructure

Week 1: Introduction (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

January 7, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

Source: Wikipedia (Everest)

Why big data? Science
Engineering
Commerce
Society

Emergence of the 4th Paradigm

Data-intensive e-Science
Maximilien Brice, © CERN

Science

Maximilien Brice, © CERN

Maximilien Brice, © CERN

Source: Wikipedia (Galaxy)

Source: Wikipedia (DNA)

GATGCTTACTATGCGGGCCCC
CGGTCTAATGCTTACTATGC

GCTTACTATGCGGGCCCCTT
AATGCTTACTATGCGGGCCCCTT

TAATGCTTACTATGC
AATGCTTAGCTATGCGGGC

AATGCTTACTATGCGGGCCCCTT
AATGCTTACTATGCGGGCCCCTT

CGGTCTAGATGCTTACTATGC
AATGCTTACTATGCGGGCCCCTT
CGGTCTAATGCTTAGCTATGC

ATGCTTACTATGCGGGCCCCTT

?

Subject
genome

Sequencer

Reads

Human genome: 3 gbp
A few billion short reads ���
(~100 GB compressed data)

Engineering
The unreasonable effectiveness of data

Search, recommendation, prediction, …

Source: Wikipedia (Three Gorges Dam)

Source: Wikipedia (Rosetta Stone)

No data like more data!

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

s/knowledge/data/g;

Commerce

Know thy customers

Data → Insights → Competitive advantages

Source: Wikiedia (Shinjuku, Tokyo)

An organization should retain data that result from carrying
out its mission and exploit those data to generate insights
that benefit the organization, for example, market analysis,
strategic planning, decision making, etc.

Business Intelligence

Duh!?

a useful service

analyze user behavior
to extract insights

transform insights
into action

$���
(hopefully)

Virtuous Product Cycle

Google. Facebook. Twitter. Amazon. Uber.

data sciencedata products

Source: Wikiedia (Guardian)

Humans as social sensors

Computational social science

Society

Predicting X with Twitter

(Paul and Dredze, ICWSM 2011; Bond et al., Nature 2011)

Political Mobilization on Facebook

2010 US Midterm Elections: ���
60m users shown “I Voted” Messages
Summary: increased turnout by
60k directly and 280k indirectly

Source: Google

Tackling Big Data

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

The datacenter is the computer
¢  It’s all about the right level of abstraction

l  Moving beyond the von Neumann architecture
l  What’s the “instruction set” of the datacenter computer?

¢  Hide system-level details from the developers
l  No more race conditions, lock contention, etc.

l  No need to explicitly worry about reliability, fault tolerance, etc.

¢  Separating the what from the how

l  Developer specifies the computation that needs to be performed

l  Execution framework (“runtime”) handles actual execution

Source: Google

The datacenter is the computer!

Source: Wikipedia (The Dalles, Oregon)

Source: Google

Source: Google

Source: Bonneville Power Administration

Building Blocks

Source: Barroso and Urs Hölzle (2009)

Source: Google

Source: Google

Source: Facebook

Storage Hierarchy

Source: Barroso and Urs Hölzle (2013)

Storage Hierarchy

Source: Barroso and Urs Hölzle (2013)

Storage Hierarchy

Source: Barroso and Urs Hölzle (2013)

Anatomy of a Datacenter

Source: Barroso and Urs Hölzle (2013)

Anatomy of a Datacenter

Source: Barroso and Urs Hölzle (2013)

Source: Google

Source: Google

Source: CumminsPower

Source: Google

Source: Google

Aside: How much is 30 MW?

The datacenter is the computer
¢  It’s all about the right level of abstraction

l  Moving beyond the von Neumann architecture
l  What’s the “instruction set” of the datacenter computer?

¢  Hide system-level details from the developers
l  No more race conditions, lock contention, etc.

l  No need to explicitly worry about reliability, fault tolerance, etc.

¢  Separating the what from the how

l  Developer specifies the computation that needs to be performed

l  Execution framework (“runtime”) handles actual execution

“Big Ideas”
¢  Scale “out”, not “up”

l  Limits of SMP and large shared-memory machines

¢  Move processing to the data
l  Cluster have limited bandwidth

¢  Process data sequentially, avoid random access
l  Seeks are expensive, disk throughput is reasonable

¢  Seamless scalability
l  From the mythical man-month to the tradable machine-hour

Scaling “up” vs. “out”
¢  No single machine is large enough

l  Smaller cluster of large SMP machines vs. larger cluster of commodity
machines (e.g., 16 128-core machines vs. 128 16-core machines)

¢  Nodes need to talk to each other!

l  Intra-node latencies: ~100 ns
l  Inter-node latencies: ~100 µs

¢  Let’s model communication overhead…

Source: analysis on this an subsequent slides from Barroso and Urs Hölzle (2009)

Modeling Communication Costs
¢  Simple execution cost model:

l  Total cost = cost of computation + cost to access global data
l  Fraction of local access inversely proportional to size of cluster

l  n nodes (ignore cores for now)

•  Light communication: f =1
•  Medium communication: f =10
•  Heavy communication: f =100

¢  What are the costs in parallelization?

1 ms + f × [100 ns × (1/n) + 100 µs × (1 - 1/n)]

Cost of Parallelization

Advantages of scaling “up”

So why not?
Why does commodity beat exotic?

Counterpoint: Scaling up?
¢  No single machine is large enough

l  Smaller cluster of large SMP machines vs. larger cluster of commodity
machines (e.g., 16 128-core machines vs. 128 16-core machines)

¢  Is this really true? Modern “commodity” machine:

l  Four 18-core processors: 72 cores total
l  3TB RAM

Who really has big data problems?

Numbers Everyone Should Know

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 100 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 10,000 ns

Send 2K bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns

Disk seek 10,000,000 ns

Read 1 MB sequentially from network 10,000,000 ns

Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

According to Jeff Dean

Moving Data Around

Source: Barroso and Urs Hölzle (2013)

Seeks vs. Scans
¢  Consider a 1 TB database with 100 byte records

l  We want to update 1 percent of the records

¢  Scenario 1: random access
l  Each update takes ~30 ms (seek, read, write)

l  108 updates = ~35 days

¢  Scenario 2: rewrite all records
l  Assume 100 MB/s throughput

l  Time = 5.6 hours(!)

¢  Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list

Justifying the “Big Ideas”
¢  Scale “out”, not “up”

l  Limits of SMP and large shared-memory machines

¢  Move processing to the data
l  Cluster have limited bandwidth

¢  Process data sequentially, avoid random access
l  Seeks are expensive, disk throughput is reasonable

¢  Seamless scalability
l  From the mythical man-month to the tradable machine-hour

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

How do we get data to the workers?

Compute Nodes

NAS

SAN

What’s the problem here?

Distributed File System
¢  Don’t move data to workers… move workers to the data!

l  Store data on the local disks of nodes in the cluster
l  Start up the workers on the node that has the data local

¢  Why?
l  (Perhaps) not enough RAM to hold all the data in memory

l  Disk access is slow, but disk throughput is reasonable

¢  A distributed file system is the answer
l  GFS (Google File System) for Google’s MapReduce

l  HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions
¢  Commodity hardware over “exotic” hardware

l  Scale “out”, not “up”

¢  High component failure rates
l  Inexpensive commodity components fail all the time

¢  “Modest” number of huge files
l  Multi-gigabyte files are common, if not encouraged

¢  Files are write-once, mostly appended to
l  Perhaps concurrently

¢  Large streaming reads over random access
l  High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

GFS: Design Decisions
¢  Files stored as chunks

l  Fixed size (64MB)

¢  Reliability through replication
l  Each chunk replicated across 3+ chunkservers

¢  Single master to coordinate access, keep metadata
l  Simple centralized management

¢  No data caching
l  Little benefit due to large datasets, streaming reads

¢  Simplify the API
l  Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

From GFS to HDFS
¢  Terminology differences:

l  GFS master = Hadoop namenode
l  GFS chunkservers = Hadoop datanodes

¢  Differences:
l  Different consistency model for file appends

l  Implementation

l  Performance

For the most part, we’ll use Hadoop terminology…

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

Namenode Responsibilities
¢  Managing the file system namespace:

l  Holds file/directory structure, metadata, file-to-block mapping, access
permissions, etc.

¢  Coordinating file operations:

l  Directs clients to datanodes for reads and writes
l  No data is moved through the namenode

¢  Maintaining overall health:
l  Periodic communication with the datanodes

l  Block re-replication and rebalancing

l  Garbage collection

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

(Not Quite… We’ll come back to YARN later)

Sequoia
16.32 PFLOPS
98,304 nodes with 1,572,864 million cores���
1.6 petabytes of memory
7.9 MWatts total power

Source: LLNL

Source: Wikipedia (Clouds)

Aside: Cloud Computing

The best thing since sliced bread?
¢  Before clouds…

l  Grids
l  Connection machine

l  Vector supercomputers

l  …

¢  Cloud computing means many different things:
l  Big data

l  Rebranding of web 2.0
l  Utility computing

l  Everything as a service

Rebranding of web 2.0
¢  Rich, interactive web applications

l  Clouds refer to the servers that run them
l  AJAX as the de facto standard (for better or worse)

l  Examples: Facebook, YouTube, Gmail, …

¢  “The network is the computer”: take two
l  User data is stored “in the clouds”

l  Rise of the netbook, smartphones, etc.

l  Browser is the OS

Source: Wikipedia (Electricity meter)

Utility Computing
¢  What?

l  Computing resources as a metered service (“pay as you go”)
l  Ability to dynamically provision virtual machines

¢  Why?
l  Cost: capital vs. operating expenses

l  Scalability: “infinite” capacity

l  Elasticity: scale up or down on demand

¢  Does it make sense?
l  Benefits to cloud users

l  Business case for cloud providers

I think there is a world
market for about five
computers.

Enabling Technology: Virtualization

Hardware

Operating System

App App App

Traditional Stack

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

Everything as a Service
¢  Utility computing = Infrastructure as a Service (IaaS)

l  Why buy machines when you can rent cycles?
l  Examples: Amazon’s EC2, Rackspace

¢  Platform as a Service (PaaS)
l  Give me nice API and take care of the maintenance, upgrades, …

l  Example: Google App Engine

¢  Software as a Service (SaaS)
l  Just run it for me!

l  Example: Gmail, Salesforce

Who cares?
¢  A source of problems…

l  Cloud-based services generate big data
l  Clouds make it easier to start companies that generate big data

¢  As well as a solution…
l  Ability to provision analytics clusters on-demand in the cloud

l  Commoditization and democratization of big data capabilities

Source: Wikipedia (Japanese rock garden)

Questions?

Remember: Assignment 0 due next Tuesday at 8:30am

