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Why big data? Science
Engineering
Commerce

Source: Wikipedia (E‘
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Source: Wikipedia (Galaxy)



Source: Wikipedia (DNA)



GATGCTTACTATGCGGGCCCC
CGGTCTAATGCTTACTATGC
GCTTACTATGCGGGCCCCTT
AATGCTTACTATGCGGGCCCCTT
TAATGCTTACTATGC
AATGCTTAGCTATGCGGGC

AATGCTTACTATGCGGGCCCCTT
AATGCTTACTATGCGGGCCCCTT

CGGTCTAGATGCTTACTATGC
AATGCTTACTATGCGGGCCCCTT

CGGTCTAATGCTTAGCTATGC
ATGCTTACTATGCGGGCCCCTT

Reads

Human genome: 3 gbp
A few billion short reads
(~100 GB compressed data)

Subject
genome

Sequencer



Engineering

The unreasonable effectiveness of data

Search, recommendation, prediction, ...
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Translate

English Spanish French English - detected «
How does Google's translation system work? x
O 2

T ARNBERAN LTE?

B A 7 Wrong?

Ruhé glgé de fanyi xitdng de gongzud?
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No data like more data!
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Know thy customers

Data — Insights — Competitive advantages
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Business Intelligence

An organization should retain data that result from carrying
out its mission and exploit those data to generate insights
that benefit the organization, for example, market analysis,
strategic planning, decision making, etc.
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Virtuous Product Cycle

a useful service

$

(hopefully)

transform insights analyze user behavior
into action to extract insights

Google. Facebook. Twitter. Amazon. Uber.

data products data science



Society

qupans as social sensors

Computatlonal socral saence
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Predicting X with Twitter

0.7 T T T T T 35 ﬁ
-5 .
O — Twitter|| §
'
430 3
0.6 ' [
\ -- CDC =
5 =
— [ 125 b
"4
@ 05 ' L
Q g
= : a Informational message
— '
S 0.4 . Today is Election Day What's this? e close
— '
= '
o 1 Find your polling place on the U.S. EE
0.3 “ Politics Page and dick the "I Voted”  People on Facebook Voted
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Week Today is Election Day What's this? e close

Find your polling place on the U.S. ma

@ Politics Page and dick the "I Voted"  People on Facebook Voted
button to tell your friends you voted.

2010 US Midterm Elections: %
60m users shown “| Voted” Messages

Summary: increased turnout b
Y y a, % & K{ Jaime Settle, Jason Jones, and 18 other
: A Lt ~ friends have voted.

60k directly and 280k indirectly
Political Mobilization on Facebook

(Paul and Dredze, ICWSM 2011; Bond et al., Nature 2011)
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User

Program
1 (1) submit
(2) sqhe‘dfjle map (2) é\ch@\dule reduce
A"/
worker >
split 0
lit 1 output
spli file O
split 2 (4) local write
- worker >
split 3
split 4 output
file 1
Input Map Intermediate files Reduce Output
files phase (on local disk) phase files

Adapted from (Dean and Ghemawat, OSDI 2004)



The datacenter is the computer

O It’s all about the right level of abstraction

® Moving beyond the von Neumann architecture

e What’s the “instruction set” of the datacenter computer?

O Hide system-level details from the developers

e No more race conditions, lock contention, etc.

e No need to explicitly worry about reliability, fault tolerance, etc.

O Separating the what from the how

e Developer specifies the computation that needs to be performed

e Execution framework (“runtime”) handles actual execution
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Building Blocks

Source: Barroso and Urs Holzle (2009)
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Storage Hierarchy

One Server

DRAM: 16 GB, 100 ns, 20 GB/s
Disk: 2T B, 10 ms, 200 MB/s
Flash: 128 GB, 100 us, 1 GB/s

Local Rack (80 servers)

DRAM: 1TB, 300 us, 100 MB/s
Disk: 160TB, 11 ms, 100 MB/s
Flash: 20TB, 400 us, 100 MB/s

Cluster (30 racks)

DRAM: 30TB, 500 us, 10 MB/s

Y Disk: 4.80PB, 12 ms, 10 MB/s
=_Flash: 600 TB, 600 us, 10 MB/s

Source: Barroso and Urs Holzle (2013)



Storage Hierarchy

10,000,000.0

1,000,000.0
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Source: Barroso and Urs Holzle (2013)
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Storage Hierarchy
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Anatomy of a Datacenter

Computer Air Handling Unit (CRAC)

+ Up To 30 Ton Sensible Caigcigrpcr Unit

» Air Discharge Can Be Upflow Or Downflow Configuration

» Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Plenum With Floor Supply Diffusers

Individual Colocation Computer Cabinets
« Typ. Cabinet Footprint (28"W x 36"D x 84"H)
« Typical Capacities Of 1750 To 3750 Watts Per Cabinet

Power Distribution Unit (PDU)
» Typical Capacitics Up To 225 kVA Per Unit
» Redundancy Through Dual PDU's With
Integral Static Transfer Switch (STS)
Emergency Diesel Generators
« Total Generator Capacity = Total Electrical Load To Building
« Multiple Generators Can Be Electrically Combined With
Paralleling Gear
+ Can Be Located Indoors Or Outdoors At Grade Or On Roof.
« Outdoor Applications Require Sound Attenuating Enclosures

Fuel Oil Storage Tanks

» Tank Capacity Dependant On Length

{ Of Generator Opcration

] « Can Be Located Underground Or At

Colocation Suites Grade Or Indoors

* Modular Configuration For
Flexible Suite Sq.Ft. Areas.

* Suites Consist Of Multiple Cabinets W/
Sccured Partitions (Cages, Walls, Etc.)

]
-~ UPS System
« Uninterruptible Power Supply Modules
- « Up To 1000 kVA Per Module
3 « Cabinets And Battery Strings Or Rotary Flywheels
i * Multiple Redundancy Configurations Can Be Designed

>
" Electrical Primary Switchgear
o « Includes Incoming Service And Distribution
* Direct Distribution To Mechanical Equipment
* Distribution To Secondary Electrical Equipment Via UPS

Heat Rejection Devices &
+ Drycoolers, Air Cooled Chillers, Etc.
« Up To 400 Ton Capacity Per Unit

* Mounted At Grade Or On Roof

* N+1 Design

« Used To Pump Condenser/Chilled Water Between Drycoolers And CRAC Units
* Additional Equipment Includes Expansion Tank, Glycol Feed System
« N+1 Design (Standby Pump)

Source: Barroso and Urs Hélzle (2013)



Anatomy of a Datacenter

Ceiling Ceiling
= L I J = n
Liquid T i Te Liquid
Supply CRAC Rack Rack K R | CRAC Supply
I unic ) * * unit =
Floor Tiles [ = e Floor Tiles
%

Floor Slab Floor Slab

Source: Barroso and Urs Hélzle (2013)
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The datacenter is the computer

O It’s all about the right level of abstraction

® Moving beyond the von Neumann architecture

e What’s the “instruction set” of the datacenter computer?

O Hide system-level details from the developers

e No more race conditions, lock contention, etc.

e No need to explicitly worry about reliability, fault tolerance, etc.

O Separating the what from the how

e Developer specifies the computation that needs to be performed

e Execution framework (“runtime”) handles actual execution



“Big ldeas”

O Scale “out”, not “up”
e Limits of SMP and large shared-memory machines
O Move processing to the data
e Cluster have limited bandwidth
O Process data sequentially, avoid random access

e Seeks are expensive, disk throughput is reasonable

O Seamless scalability

® From the mythical man-month to the tradable machine-hour



Scaling “up” vs. “out”

O No single machine is large enough

e Smaller cluster of large SMP machines vs. larger cluster of commodity
machines (e.g., 16 128-core machines vs. 128 [6-core machines)

O Nodes need to talk to each other!

e Intra-node latencies: ~100 ns
e Inter-node latencies: ~100 us

O Let’s model communication overhead...

Source: analysis on this an subsequent slides from Barroso and Urs Holzle (2009)



Modeling Communication Costs

O Simple execution cost model:

e Total cost = cost of computation + cost to access global data
e Fraction of local access inversely proportional to size of cluster

® n nodes (ignore cores for now)
1ms+fx[100 ns x (1/n) + 100 us x (1 - 1/n)]

* Light communication: f =1
* Medium communication: f=10

* Heavy communication: f =100

O What are the costs in parallelization?



Cost of Parallelization

Normalized execution time

10.00
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medium communication

number of nodes

i S L g -
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4 8 12 16 20 24 28 32



Advantages of scaling “up”
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Counterpoint: Scaling up?

O No single machine is large enough

e Smaller cluster of large SMP machines vs. larger cluster of commodity
machines (e.g., 16 128-core machines vs. 128 [6-core machines)

O Is this really true! Modern “commodity” machine:

e Four [8-core processors: 72 cores total
e 3TB RAM

Who really has big data problems?



Numbers Everyone Should Know

According to Jeff Dean
L1 cache reference 0.5 ns

Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands—->CA 150,000,000 ns

Google




Moving Data Around
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Source: Barroso and Urs Holzle (2013)
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Seeks vs. Scans

O Consider a | TB database with 100 byte records

e We want to update | percent of the records

O Scenario |: random access

e Each update takes ~30 ms (seek, read, write)
e |08 updates = ~35 days

O Scenario 2: rewrite all records

e Assume 100 MB/s throughput
e Time = 5.6 hours(!)

O Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list



Justifying the “Big Ildeas”

O Scale “out”, not “up”
e Limits of SMP and large shared-memory machines
O Move processing to the data
e Cluster have limited bandwidth
O Process data sequentially, avoid random access

e Seeks are expensive, disk throughput is reasonable

O Seamless scalability

® From the mythical man-month to the tradable machine-hour
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How do we get data to the workers?

NAS

Compute Nodes

What’s the problem here?



Distributed File System

o0 Don’t move data to workers... move workers to the data!

e Store data on the local disks of nodes in the cluster
e Start up the workers on the node that has the data local

O Why!?

e (Perhaps) not enough RAM to hold all the data in memory

e Disk access is slow, but disk throughput is reasonable

O A distributed file system is the answer

e GFS (Google File System) for Google’s MapReduce
e HDFS (Hadoop Distributed File System) for Hadoop



GFS: Assumptions

0 Commodity hardware over “exotic” hardware

e Scale “out”, not “up”
O High component failure rates

® Inexpensive commodity components fail all the time
O “Modest” number of huge files

e Multi-gigabyte files are common, if not encouraged
O Files are write-once, mostly appended to

e Perhaps concurrently

O Large streaming reads over random access

e High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)



GFS: Design Decisions

O Files stored as chunks
o Fixed size (64MB)
O Reliability through replication
e Each chunk replicated across 3+ chunkservers
O Single master to coordinate access, keep metadata

e Simple centralized management

O No data caching

e Little benefit due to large datasets, streaming reads
o Simplify the API

® Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)



From GFS to HDFS

O Terminology differences:

e GFS master = Hadoop namenode
e GFS chunkservers = Hadoop datanodes

o Differences:

e Different consistency model for file appends
e Implementation

e Performance

For the most part, we’ll use Hadoop terminology...



HDFS Architecture

HDFS namenode

Application [foo/bar
HDFS Client ) File namespace block 3df2
A

A 4

HDFS datanode HDFS datanode

Linux file system Linux file system

oe .- 98

Adapted from (Ghemawat et al., SOSP 2003)



Namenode Responsibilities

O Managing the file system namespace:

e Holds file/directory structure, metadata, file-to-block mapping, access
permissions, etc.

O Coordinating file operations:

® Directs clients to datanodes for reads and writes
® No data is moved through the namenode

O Maintaining overall health:

® Periodic communication with the datanodes
e Block re-replication and rebalancing

e Garbage collection
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Putting everything together...

namenode

namenode daemon

job submission node

jobtracker

-
-
- AN

tasktracker

datanode daemon

Linux file system

tasktracker

tasktracker

datanode daemon datanode daemon

Linux file system Linux file system

O

O O

slave node slave node slave node

(Not Quite... We’ll come back to YARN later)
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Sequoia

96 racks (12x8) BG/Q 5D Torus Fabric

98,304 compute nodes
268 l/O nodes QDR Infiniband
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The best thing since sliced bread?

O Before clouds...
e Grids

e Connection machine

e Vector supercomputers

O Cloud computing means many different things:

e Big data
e Rebranding of web 2.0
e Utility computing

e Everything as a service



Rebranding of web 2.0

O Rich, interactive web applications

e Clouds refer to the servers that run them
e AJAX as the de facto standard (for better or worse)

e Examples: Facebook, YouTube, Gmail, ...

O “The network is the computer’”: take two

e User data is stored “in the clouds”
e Rise of the netbook, smartphones, etc.

e Browser is the OS
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Utility Computing

o What!

e Computing resources as a metered service (“pay as you go”)
e Ability to dynamically provision virtual machines

O Why!?

e Cost: capital vs. operating expenses
e Scalability: “infinite” capacity

e Elasticity: scale up or down on demand

O Does it make sense!?

e Benefits to cloud users

e Business case for cloud providers

| think there is a world
market for about five
computers.




Enabling Technology: Virtualization

App App App

App App App OS OS OS
Operating System Hypervisor
Hardware Hardware

Traditional Stack Virtualized Stack



Everything as a Service

o Utility computing = Infrastructure as a Service (laaS)

® Why buy machines when you can rent cycles!?
e Examples: Amazon’s EC2, Rackspace

O Platform as a Service (Paa$S)

e Give me nice API and take care of the maintenance, upgrades, ...

e Example: Google App Engine

O Software as a Service (Saal)

® Just run it for me!

e Example: Gmail, Salesforce



Who cares?

O A source of problems...

e Cloud-based services generate big data
e Clouds make it easier to start companies that generate big data

O As well as a solution...

e Ability to provision analytics clusters on-demand in the cloud

e Commoditization and democratization of big data capabilities






